Supporting Information

# From spirosiloxane precursors via intramolecular hydrosilylation to photoinduced polysiloxane architectures

Christian A. Anger,<sup>a</sup> Konrad Hindelang,<sup>a</sup> Tobias Helbich,<sup>a</sup> Tobias Halbach,<sup>b</sup> Jürgen Stohrer<sup>b</sup> and

Bernhard Rieger \*<sup>a</sup>

<sup>a</sup> - WACKER-Lehrstuhl für Makromolekulare Chemie, Technische Universität München,

Fakultät für Chemie, Lichtenbergstraße 4, Garching 85748, Germany

Email: <u>rieger@tum.de</u>

<sup>b</sup> - Consortium für elektrochemische Industrie der Wacker Chemie AG,

Zielstattstraße 20, München 81379, Germany

#### Content:

- 1 General
- 2 Experimental procedures and characterization data
- 3 Spectra

#### 1. General

All chemicals were purchased from commercial sources and were used as received. Diethyl ether and dichloromethane were dried and purified directly before their usage by a solvent purification system (MBRAUN SPS-800). 1-Methylimidazole was dried by distillation over sodium and stored over molecular sieve (4 Å). Infrared spectra were recorded on a *ReactIR<sup>™</sup> 45m* of *Mettler-Toledo* and the irradiation was executed with a MAX-302 of ASAHI SPECTRA. Nuclear magnetic resonance spectra were recorded on a Bruker Avance 500 UltraShield (500 MHz) and an Avance 300 (300 MHz). They were recorded in ppm and the solvent was used as an internal standard (CDCl<sub>3</sub> at 7.26 ppm for <sup>1</sup>H and at 77.0 ppm for  ${}^{13}C{}^{1}H$ ). The coupling constants J are given in Hertz (Hz) and the multiplicities were abbreviated as follows: s = singlet, d = duplet, m = multiplett. Mass spectras were recorded on a Thermo Scientific DFS (electron impact, EI, 70 eV). 2-Methylpent-4-en-2-ol and tris(pentafluorophenyl)borane were prepared according to literature methods.<sup>[1,2]</sup>

#### 2. Experimental procedures and characterization data



SI Scheme 1. Synthesis of bis(2-methylpent-4-en-2-yl)oxy)silane

**Bis(2-methylpent-4-en-2-yl)oxy)silane** In a baked out Schlenk three-necked flask fitted a dropping funnel, reflux condenser and an Ar inlet about one quarter of the previously prepared mixture of 31.9 g (389 mmol, 2 eq) 1-methylimidazole and 38.9 g (389 mmol, 2 eq) 2-methylpent-4-en-2-ol in 50 mL diethyl ether were added from the dropping funnel to 250 mL diethyl ether. The 19.6 g (194 mmol, 1 eq) dichlorosilane which precondensed into a Schlenk tube at -78 °C was allowed to slowly diffuse into the stirred reaction mixture at -78 °C. Meanwhile the residual mixture from the

dropping funnel was slowly added to the reaction mixture which is then stirred for a further 10 h at room temperature. The resulting methylimidazole hydrochloride was then filtrated through a Schlenk frit and the solvent removed under reduced pressure (200 mbar). After fractionated condensation in vacuo (0.3 mbar, 60 °C) 35.7 g (156 mmol, 81 %) bis((2-methylpent-4-en-2-yl)oxy)silane were obtained as a colorless liquid. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>, 300 K):  $\delta$  [ppm] = 5.97 – 5.76 (m, 2H), 5.14 – 5.00 (H, 4H), 4.67 (s, 2H), 2.29 (d, <sup>3</sup>*J* = 7.3 Hz, 2H), 1.3 (s, 12). <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>, 300 K):  $\delta$  [ppm] = 134.8 (s), 117.7 (s), 75.5 (s), 49.0 (s), 29.1 (s). MS (EI), m/z (%): 213.16 (13) [(M-CH<sub>3</sub>)<sup>+</sup>], 187.13 (100), 129.08 (87). [(M-C<sub>6</sub>H<sub>11</sub>O)<sup>+</sup>]. HRMS (C<sub>11</sub>H<sub>21</sub>O<sub>2</sub><sup>28</sup>Si = [(M – CH<sub>3</sub>)<sup>+</sup>]): calcd:213.1311, found: 213.1305.



SI Scheme 2. Synthesis of compound 1.

**2,2,8,8-Tetramethyl-1,7-dioxa-6-silaspiro**[**5.5**]**undecane** (**1**). To 23.8 g (104 mmol, 1 eq) of the bis((2methylpent-4-en-2-yl)oxy)silane in 400 mL dry dichloromethane, 1.06 g (2.07 mmol, 2 mol%) B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> was added with constant stirring at room temperature. The reaction mixture was then stirred for a further 12 h. The solvent was then removed under reduced pressure (200 mbar). Purification of the liquid residue by fractionized condensation (0.3 mbar, 60 °C) yielded 15.45 g (67.6 mmol, 65 %) of the spiro compound as a colorless liquid. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>, 300 K): 1.91 – 1.64 (m, 4H), 1.60 – 1.38 (m, 4H), 1.29 (s, 6H), 1.20 (s, 6H), 0.68 – 0.42 (m, 4H). <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>, 300 K): 74.4 (s, 2C), 40.9 (s, 2C), 31.7 (s, 2C), 30.2 (s, 2C), 17.8 (s, 2C), 12.1 (s, 2C). <sup>29</sup>Si-NMR (99 MHz, CDCl<sub>3</sub>, 300 K): 14.41 (s). MS (EI), m/z (%): 228 (7) [M<sup>+</sup>], 213 (100), [(M-CH<sub>3</sub>)<sup>+</sup>], 185 (21), 129 (26), 131 (27), 129 (39), 127 (34), 103 (33), 99 (50). HRMS (C<sub>12</sub>H<sub>24</sub>O<sub>2</sub>Si): calcd: 228.1546, found: 228.1542.



SI Scheme 3. Photoacid activated polymerization

In a two necked quartz Schlenk tube a solution of 75.3 mg (0.18 mmol, 2 mol%) of the photoacid generator **PAG 2**, and 0.79 mL (0.044 mmol, 0.5 mol%) water in 5 mL dry acetone was prepared and used for the background measurement of the IR spectrometer. The recording was then started and after 1 min 2.00 g (8.75 mmol, 1 eq) of 2,2,8,8-tetramethyl-1,7-dioxa-6-silaspiro[5.5]undecane were added to the solution. The light source was activated and the reaction mixture was irradiated for 2 hours.



**SI Figure 1.** Monomer first order in the polymerization reaction (plot of  $\ln \frac{[A_0]}{[A]}$  vs. time)

### **Copolymerisation experiments**

All polymerizations are done in the same way. To OH-terminated poly(dimethylsiloxane), **1** were added in a two necked quartz Schlenk tube. During stirring a solution of triphenylsulfonium triflate and diphenyliodonium triflate in acetone were added via a syringe. After that the irradiation with 200 – 300nm was started for two hours. Immediately after the reaction finished gpc measurements in THF are done. By all reactions the parameters were varied (table 1 and 2).

| SI Table 1. Copol | vmerization  | parameters | / PAG = Dir | bhenv | liodonium | triflate |
|-------------------|--------------|------------|-------------|-------|-----------|----------|
|                   | ynnenization | parameters |             |       | noaonnann | crinace  |

| compound 1             |       |      | Polvsiloxane          |      | Diphenyliodonium<br>Triflate |       |       |        |      |
|------------------------|-------|------|-----------------------|------|------------------------------|-------|-------|--------|------|
| Initial weight<br>[mg] | mmol  | mol% | Initial weight<br>[g] | mmol | Initial weight [mg]          | mmol  | mol % | Mw     | PDI  |
| 0                      | 0     | 0    | 4                     | 1.77 | 10                           | 0.023 | 1.30  | 0      | 0    |
| 0                      | 0     | 0    | 4                     | 1.77 | 20                           | 0.046 | 2.60  | 70000  | 2    |
| 0                      | 0     | 0    | 4                     | 1.77 | 30                           | 0.070 | 3.94  | 15000  | 2.4  |
| 20                     | 0.088 | 5    | 4                     | 1.77 | 10                           | 0.023 | 1.30  | 127000 | 2.17 |
| 20                     | 0.088 | 5    | 4                     | 1.77 | 20                           | 0.046 | 2.60  | 150000 | 2.5  |
| 20                     | 0.088 | 5    | 4                     | 1.77 | 30                           | 0.070 | 3.94  | 400000 | 3.5  |

SI Table 2. Copolymerization parameters/ Triphenylsulfonium triflate

| compound 1     |       |         | Polysiloxane   |      | Triphenylsulfonium<br>Triflate |    |       |       |        |     |
|----------------|-------|---------|----------------|------|--------------------------------|----|-------|-------|--------|-----|
| Initial weight | mmol  | mol%    | Initial weight | mmol | Initial weight [ma]            |    | mmol  | mol % | Mw     | PDI |
| [              |       | 1110170 | 191            | 4 77 | initial weight [ing]           | ~  | 0.000 | 1.20  | 70050  | 101 |
| 0              | 0     | 0       | 4              | 1.// |                                | 9  | 0.023 | 1.30  | 70050  | 3   |
| 0              | 0     | 0       | 4              | 1.77 |                                | 19 | 0.046 | 2.60  | 30000  | 2   |
| 0              | 0     | 0       | 4              | 1.77 |                                | 29 | 0.070 | 3.94  | 100000 | 2   |
| 20             | 0.088 | 5       | 4              | 1.77 |                                | 9  | 0.023 | 1.30  | 220000 | 3.5 |
| 20             | 0.088 | 5       | 4              | 1.77 |                                | 19 | 0.046 | 2.60  | 304000 | 4.4 |
| 20             | 0.088 | 5       | 4              | 1.77 |                                | 29 | 0.070 | 3.94  | x      | х   |

## Size exclusion chromatographie

This chromatogram is an exemplary size exclusion chromatogram of the obtained copolymers.



3. Spectra

Η Η <sup>Si</sup> 0 /

Bis(2-methylpent-4-en-2-yl)oxy)silane



**SI Figure 2a.** <sup>1</sup>H-spectrum of the spiro compound precursor bis(2-methylpent-4-en-2-yl)oxy)silane.



SI Figure 2b. Proton decoupled <sup>13</sup>C-spectrum of bis(2-methylpent-4-en-2-yl)oxy)silane.





SI Figure 3a. <sup>1</sup>H-spectrum of the spiro compound 1



SI Figure 3b. Proton decoupled <sup>13</sup>C-spectrum of the spiro compound 1



SI Figure 3c. <sup>29</sup>Si-NMR of the spiro compound 1



SI-Figure 4 - <sup>1</sup>H NMR spectrum of the obtained copolymer

The  $^{1}$ H NMR spectrum shows mainly the backbone of polydimethylsiloxane. By 1.8 – 1.2 the polymerized spirocycle can be detected. By 4.8 – 3.9 the not well resolved double bonds are detected.

 <sup>&</sup>lt;sup>1</sup> Taillier, C ; Hameury, T; Bellosta, V.; Cossy, J. *Tetrahedron*, **2007**, *63*, 4472-4490.
<sup>2</sup> Lehmann, M.; Schulz, A.; Villinger, A. *Angew. Chem. Int. Ed.*, **2009**, *48*, 7444-7447.