Supporting Information | 2 | | |------------|---| | 3 | Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) | | 4 | using the DGT technique | | 5 | | | 6 | JINLING LIU ^{†, ‡} , XINBIN FENG ^{†, *} , GUANGLE QIU [†] , CHRISTOPHER W. N | | 7 | ANDERSON [§] , HENG YAO [†] | | 8 | † State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese | | 9 | Academy of Sciences, Guiyang 550002, | | 10 | ‡ South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 | | 11 | P.R. China | | 12 | §Soil and Earth Sciences Group, Institute of Natural Resources, Massey University, Palmerston | | 13 | North, New Zealand | | L 4 | | | 15 | * Corresponding author: Xinbin Feng | | L6 | Phone: +86-851-5891356 | | L 7 | Fax: +86-851-5891609 | | L8 | E-mail: fengxinbin@vip.skleg.cn | | 19 | | | 20 | | | 21 | 6 pages in total, 1 Table, 3 Figures | #### **Detailed information concerning the Quality Control** - The method detection limits $(3\times\sigma)$ were 0.002 ng g⁻¹ for MeHg in tissues of rice - 3 samples as well as in soil samples. The detection limit of the DGT method for MeHg - 4 is 0.014 ng L⁻¹. The relative standard deviation for analysis of duplicate samples was - 5 \leq 10% for MeHg. The field blank for DGT was 0.042 ± 0.037 ng L⁻¹ (n=15). - 6 Recoveries for matrix spikes ranged from 80% to 116% for MeHg. Certified reference - 7 materials, including the National Research Centre for Certified Reference Materials - 8 rice standard GBW08508, the National Research Council of Canada Lobster - 9 Hepatopancreas standard TORT-2, the Institute of Geophysical and Geochemical - Exploration, China, soil standard GBW 07405 and the International Atomic Energy - 11 Agency sediment standard IAEA-356, were used for quality control of rice plant and - soil sample analysis. The corresponding analytical results for these reference - materials are described in supporting information Table S1. 14 ## 2 Table S1 List of Certified reference materials used in the present study and the ### 3 results obtained. | Producer | CRM | n | Hg speciation | Obtained value | Certified value | |----------|----------|----|-----------------------------|-------------------|-----------------| | NRCCRM* | GBW08508 | 10 | THg (mg kg ⁻¹) | 0.036 ± 0.002 | 0.038±0.003 | | NRCC** | TORT-2 | 10 | THg (mg kg ⁻¹) | 0.27±0.03 | 0.27±0.06 | | NRCC** | TORT-2 | 10 | MeHg (mg kg ⁻¹) | 0.15±0.002 | 0.152±0.013 | | IAEA*** | IAEA-356 | 5 | MeHg (mg kg ⁻¹) | 0.0055±0.00016 | 0.0054±0.00089 | ^{*}NRC CRM: National Research Centre for Certified Reference Materials; ^{5 **}NRCC: National Research Council Canada; ^{6 ***}IAEA: International Atomic Energy Agency - Figure S2. Plots of MeHg concentration in rice plant tissues (root, stalk, leaf) as a - 2 function of the MeHg concentration in soil quantified using the - 3 KOH-methanol/solvent extraction technique ## Figure S3. - a. The linear regression fit for the correlation of the MeHg concentration in soil with that in pore water as measured by DGT (the bioavailable concentration) - b. Plots of MeHg concentration in rice plant tissues (root, stalk, leaf) as a function of the MeHg concentration in pore water measured by DGT. a.