Supporting Information

2	
3	Prediction of methyl mercury uptake by rice plants (Oryza sativa L.)
4	using the DGT technique
5	
6	JINLING LIU ^{†, ‡} , XINBIN FENG ^{†, *} , GUANGLE QIU [†] , CHRISTOPHER W. N
7	ANDERSON [§] , HENG YAO [†]
8	† State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese
9	Academy of Sciences, Guiyang 550002,
10	‡ South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301
11	P.R. China
12	§Soil and Earth Sciences Group, Institute of Natural Resources, Massey University, Palmerston
13	North, New Zealand
L 4	
15	* Corresponding author: Xinbin Feng
L6	Phone: +86-851-5891356
L 7	Fax: +86-851-5891609
L8	E-mail: fengxinbin@vip.skleg.cn
19	
20	
21	6 pages in total, 1 Table, 3 Figures

Detailed information concerning the Quality Control

- The method detection limits $(3\times\sigma)$ were 0.002 ng g⁻¹ for MeHg in tissues of rice
- 3 samples as well as in soil samples. The detection limit of the DGT method for MeHg
- 4 is 0.014 ng L⁻¹. The relative standard deviation for analysis of duplicate samples was
- 5 \leq 10% for MeHg. The field blank for DGT was 0.042 ± 0.037 ng L⁻¹ (n=15).
- 6 Recoveries for matrix spikes ranged from 80% to 116% for MeHg. Certified reference
- 7 materials, including the National Research Centre for Certified Reference Materials
- 8 rice standard GBW08508, the National Research Council of Canada Lobster
- 9 Hepatopancreas standard TORT-2, the Institute of Geophysical and Geochemical
- Exploration, China, soil standard GBW 07405 and the International Atomic Energy
- 11 Agency sediment standard IAEA-356, were used for quality control of rice plant and
- soil sample analysis. The corresponding analytical results for these reference
- materials are described in supporting information Table S1.

14

2 Table S1 List of Certified reference materials used in the present study and the

3 results obtained.

Producer	CRM	n	Hg speciation	Obtained value	Certified value
NRCCRM*	GBW08508	10	THg (mg kg ⁻¹)	0.036 ± 0.002	0.038±0.003
NRCC**	TORT-2	10	THg (mg kg ⁻¹)	0.27±0.03	0.27±0.06
NRCC**	TORT-2	10	MeHg (mg kg ⁻¹)	0.15±0.002	0.152±0.013
IAEA***	IAEA-356	5	MeHg (mg kg ⁻¹)	0.0055±0.00016	0.0054±0.00089

^{*}NRC CRM: National Research Centre for Certified Reference Materials;

^{5 **}NRCC: National Research Council Canada;

^{6 ***}IAEA: International Atomic Energy Agency

- Figure S2. Plots of MeHg concentration in rice plant tissues (root, stalk, leaf) as a
- 2 function of the MeHg concentration in soil quantified using the
- 3 KOH-methanol/solvent extraction technique

Figure S3.

- a. The linear regression fit for the correlation of the MeHg concentration in soil with that in pore water as measured by DGT (the bioavailable concentration)
- b. Plots of MeHg concentration in rice plant tissues (root, stalk, leaf) as a function of the MeHg concentration in pore water measured by DGT.

a.

