Supplemental Information S3

We define M as the number of occupied bins, B as the number of bins, and N as the number of components. The length of a single bin is $0<L \leq 1$ noting that the total number of bins $B=L^{-2}$. Using normalized retention time pairs t_{1}, t_{2}, which are mapped onto a unit area, as described in the text as eq 1 , each retention time pair is used to occupy bins one of the B bins. The starting point of this treatment is to define the probability of the number of occupied and non-occupied bins. As defined in the text, the surface coverage metric SC_{G} is defined as M / B.

Let ξ_{i} be a bivariate random variable with probability density function (pdf) of $f(x, y)$ where x and y are the two normalized (between 0 and 1) retention time ranges and $1 \leq i \leq N$. Each bin has a random variable χ_{j} which is either 0 (empty) or 1 (occupied by one or more components) where the index j has limits of $1 \leq j \leq B$. Each bin is identified as β_{j}.

The probability that the j th bin is empty is:

$$
\begin{equation*}
\operatorname{Pr}\left(\chi_{j}=0\right)=\left(1-\int_{\beta_{j}} f(x, y) d x d y\right)^{N} \tag{s3.1}
\end{equation*}
$$

where the integration is over a small square patch defined by the spatial limits of β_{j}. The expected number of non-empty bins is thus

$$
\begin{equation*}
E\left[\chi_{1}+\ldots+\chi_{B}\right]=E\left[\chi_{1}\right]+\ldots+E\left[\chi_{B}\right]=\sum_{j=1}^{B}\left(1-\left(1-\int_{\beta_{l}} f(x, y) d x d y\right)^{N}\right) \tag{s3.2}
\end{equation*}
$$

where E[] denotes the average or expectation operator. For small bins (small L) the integrals above can be approximated as

$$
\begin{equation*}
\int_{\beta_{j}} f(x, y) d x d y \approx f_{j} L^{2} \tag{s3.3}
\end{equation*}
$$

where f_{j} is the value of the pdf evaluated at the center or any location within the bin. This simplifies the expression for the expected number of non-empty bins to

$$
\begin{equation*}
\sum_{j=1}^{B}\left(1-\left(1-f_{j} L^{2}\right)^{N}\right) \tag{s3.4}
\end{equation*}
$$

The ratio between the number of non-empty bins and the number of all bins is thus

$$
\begin{equation*}
\frac{\sum_{j=1}^{B}\left(1-\left(1-f_{j} L^{2}\right)^{N}\right)}{B}=\frac{\sum_{j=1}^{L^{-2}}\left(1-\left(1-f_{j} L^{2}\right)^{N}\right)}{L^{-2}} \tag{s3.5}
\end{equation*}
$$

In the special case when the number of components N is equal to the number of bins so that $N=B=L^{-2}$ and noting that $\lim _{N \rightarrow \infty}(1-1 / N)^{N}=1 / e$

$$
\begin{align*}
& S C(N)=\frac{1}{N} \sum_{j=1}^{N}\left(1-\left(1-f_{j} / N\right)^{N}\right) \approx \frac{1}{N} \sum_{j=1}^{N}\left(1-e^{-f_{j}}\right) \tag{s3.6}\\
& \approx 1-\frac{1}{N} \sum_{l=1}^{N}\left(e^{-f_{j}}\right) \approx 1-\int_{\beta} e^{-f(x, y)} d x d y
\end{align*}
$$

where the integral is over all bins. In the case where the pdf is uniformly distributed across all of the bin space, $f(x, y)=f_{j}=1$ and

$$
\begin{equation*}
S C(N, L)=\frac{L^{-2}\left(1-\left(1-L^{2}\right)^{N}\right)}{L^{-2}}=1-\left(1-L^{2}\right)^{N} \tag{s3.7}
\end{equation*}
$$

Equation s3.7 can be arranged into a form equivalent to eq 3 in the manuscript using the expressions $L^{2}=1 / B$ and $S C=M / B$. It can also be converted into a logarithmic form $s 3.8$ used to generate Figure 7 in the manuscript such that:

$$
\begin{equation*}
\log S C(N, L)=\log \left(1-\left(1-\frac{1}{B}\right)^{B}\right) \tag{s3.8}
\end{equation*}
$$

Mutual information calculation was carried out using following equations.

Total number of bins: $B=P \times Q$

Indexing of bins: $p=1 \ldots P, q=1 \ldots Q$

Total number of components: $N=\sum_{p=1}^{P} \sum_{q=1}^{Q} n_{p q}$
Column-wise (for q -th column) summation of components: $n_{+q}=\sum_{p=1}^{P} n_{p q}$

Row-wise (for p-th row) summation of components: $n_{p+}=\sum_{q=1}^{Q} n_{p q}$

Consequently: $\sum_{p=1}^{P} n_{p+}=\sum_{q=1}^{Q} n_{+q}=N$

Mutual information is than calculated according equation s3.12:
$M I=\log (N)+\frac{1}{N} \times \sum_{p=1}^{P} \sum_{q=1}^{Q} n_{p q} \log \left(\frac{n_{p q}}{n_{p+} n_{+q}}\right)$

A solved example of MI calculation is included in Excel sheet Supplemental SC(G) calculator S1 (worksheet "MI calc example").

Further simplification of relationship shown as equation 9 in the manuscript text:
Because $\mathrm{L}=\mathrm{B}^{-1 / 2}$ and for $\mathrm{B}=\mathrm{N}$ the equation 9 can be rearranged as

$$
\log S C=\log A+(D / 2-1) \log N \quad \text { s3.14 }
$$

which for $B=N=196$ further simplifies as

$$
\log S C_{G}=\log A+(D / 2-1) \log 196
$$

or

$$
S C_{G}=A \times 196^{\left(\frac{D}{2}-1\right)}
$$

The value of A needs to be obtained in the linear region of $\log L$ in equation 9. Beyond the linear region the equation 9 is not valid. See e.g. the plots in Figure 6D.

