Enantioselective Baeyer- Villiger Oxidation: Desymmetrization of meso-Cyclic Ketones and Kinetic Resolution of Racemic 2-Aryl-cyclohexanones
 Lin Zhou, Xiaohua Liu, Jie Ji, Yuheng Zhang, Xiaolei Hu, Lili Lin, and Xiaoming Feng* Key Laboratory of Green Chemistry \& Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

xmfeng@scu.edu.cn

Supporting Information

1. General S2
2. General procedure for the preparation of the racemic products S2
3. General experimental procedures for the catalytic asymmetric Baeyer-Villiger Oxidation S2
4. Experimental procedure for the synthesis of the 4 -substituted cyclohexanones S3
5. Experimental procedure for the synthesis of the 3 -substituted cyclobutanones S4
6. Experimental procedure for the asymmetric synthesis of adipic acid 5 S5
7. Extra condition optimizations for the asymmetric Baeyer-Villiger Oxidation S5
8. Characterization of the N, N^{\prime}-dioxide ligands S8
9. Characterization of the prochiral cyclohexanones S8
10. Characterization of the products and unreacted ketones. S10
11. CD spectra S40
12. References S44
13. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the ligands S45
14. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the substrates S48
15. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the products S54

1. General

${ }^{1} \mathrm{H}$ NMR spectra were recorded on commercial instruments (300 MHz or 400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta=7.26\right)$. Spectra were reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{w}=$ wide $)$, coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were collected on commercial instruments (75 MHz or 100 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard $\left(\mathrm{CDCl}_{3}: \delta=77.0\right)$. The enantiomeric excesses were determined by HPLC analysis on chiral Daicel Chiralcel AS-H, AD-H and OD-H columns in comparison with the authentic racemates and chiral GC analysis. ESI-HRMS spectra were recorded on a commercial apparatus and methanol or acetonitrile was used to dissolve the sample. Reagents obtained from commercial sources were used without further purification. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled over CaH_{2} before use. THF and other solvents were distilled from sodium benzophenone ketyl before use. The N, N^{\prime}-dioxdes were prepared according to the methods reported in the literature. ${ }^{[1]}$
2. General procedure for the preparation of the racemic products

Desymmetrization of meso-cyclic ketones: The reactions were performed with prochiral ketones $\mathbf{1}$ or $3(0.10 \mathrm{mmol})$ and m-chlorobenzoperoxoic acid (m-CPBA) (0.12 mmol) in EtOAc (1.0 mL). The mixtures were stirred at $35{ }^{\circ} \mathrm{C}$ for 18 h . After that the saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution $(10 \mathrm{~mL})$ was added and the organic layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Then the organic layers were concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$ or $8 / 1$) to afford the corresponding product.
Kinetic resolution of racemic cyclohexanones: The reactions were performed with racemic ketones 7 $(0.10 \mathrm{mmol})$, racemic catalyst solution prepared beforehand $\left(0.005 \mathrm{mmol} \mathrm{Sc}(\mathrm{OTf})_{3} / \mathbf{L} 2_{\text {rac }}\right.$ in 1.0 ml of EtOAc, $5 \mathrm{~mol} \%$ catalyst loading) in a dry reaction tube. Then m-CPBA (0.12 mmol in 1.0 ml of EtOAc) was added at $-20^{\circ} \mathrm{C}$. After the reaction mixtures were stirred for 36 h at $-20^{\circ} \mathrm{C}$, the saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (10 mL) was added and the organic layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Then the combined organic layers were concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to afford the desired products 8.

3. General experimental procedures for the catalytic asymmetric Baeyer-Villiger Oxidation

Preparation of the chiral catalyst solution: N, N^{\prime}-dioxide $\mathbf{L} 3(39.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ and scandium triflate ($24.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) were stirred in 10.0 mL of EtOAc at $35^{\circ} \mathrm{C}$ for 30 min .
Desymmetrization of meso-cyclic ketones: The reactions were performed with ketones $\mathbf{1}$ or $\mathbf{3}$ (0.10 $\mathrm{mmol})$, chiral catalyst solution prepared beforehand $\left(0.005 \mathrm{mmol} \mathrm{Sc}(\mathrm{OTf})_{3} / \mathrm{L}\right.$ in 1.0 ml of EtOAc, 5 $\mathrm{mol} \%$ catalyst loading) in a dry reaction tube. Then m-CPBA (0.12 mmol in 1.0 ml of EtOAc) was added at -20 or $-60^{\circ} \mathrm{C}$. After the reaction mixtures were stirred for 18 h at -20 or $-60{ }^{\circ} \mathrm{C}$, the saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (10 mL) was added and the organic layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Then the combined organic layers were concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$ or $8 / 1$) to afford the desired products 2 or 4.
Kinetic resolution of racemic cyclohexanones: The reactions were performed with racemic ketones 7 $(0.10 \mathrm{mmol})$ and $\mathrm{Al}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}(0.1 \mathrm{mmol}, 20.0 \mathrm{mg}$, purity: $99.99 \%)$ in a dry reaction tube, then the chiral catalyst solution prepared beforehand $\left(0.005 \mathrm{mmol} \mathrm{Sc}(\mathrm{OTf})_{3} / \mathrm{L}\right.$ in 1.0 ml of EtOAc, $5 \mathrm{~mol} \%$ catalyst loading) and m-CPBA (0.10 mmol in 1.0 ml of EtOAc) was added at the indicated temperature. After the reaction mixtures were stirred for the indicated time, the saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution $(10 \mathrm{~mL})$ was added and the organic layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. Then the combined organic layers were concentrated in vacuo and the crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to afford the desired abnormal lactones $\mathbf{8 / 9}$ and recover the unreacted ketones 7. The lactones $\mathbf{8}$ and $\mathbf{9}$ have the same Rf value and could not be separated by chromatography.
4. Experimental procedure for the synthesis of the 4-substituted cyclohexanones

Experimental procedure for the synthesis of the alcohol 11b-l: The alcohols 11b-l were prepared according to the methods reported in the literature with a minor modification. ${ }^{[2]}$ To magnesium turnings $(0.60 \mathrm{~g}, 49.6 \mathrm{mmol})$ was added a solution of $\mathbf{1 0 b}-1(23.5 \mathrm{mmol})$ dissolved in THF (40 mL). The suspension was stirred and heated at reflux until the formation of the Grignard began. Then the heat was removed and the reaction continued until all of the Mg had reacted. After the flask was cooled to room temperature, a solution of 1,4-cyclohexanedione monoethylene ketal ($3.50 \mathrm{~g}, 22.4 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ was added dropwise, and the reaction mixture was heated at reflux for 24 h . The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the resultant mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed again with aqueous $\mathrm{NaOH}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layers were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give crude solids. The crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=4 / 1$) to afford the desired products 11b-l.
Experimental procedure for the synthesis of the $\mathbf{1 2 b}-\mathbf{l}$: The products $\mathbf{1 2 b}-1$ were prepared according to the methods reported in the literature with a minor modification. ${ }^{[3]}$ To a solution of 11b-l (15.0 mmol)
in pyridine $(85 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(4.5 \mathrm{~mL}, 30.0 \mathrm{mmol})(1,8$-diazabicyclo[5.4.0]undec-7-ene) followed by $\mathrm{POCl}_{3}(2.7 \mathrm{~mL}, 29.5 \mathrm{mmol})$ dropwise. The resultant orange solution was stirred at room temperature for 1 h and at $80^{\circ} \mathrm{C}$ for 90 min during which time the orange color darkened. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and diluted carefully with $\mathrm{EtOAc}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give 12b-l as orange-brown oil. The crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=8 / 1$) to afford the desired pure sample 12b-l.
Experimental procedure for the synthesis of the 13b-l: The pure sample 12b-l from the above reactions was dissolved in $1: 1 \mathrm{MeOH} / E t O A c(25 \mathrm{~mL})$. Palladium (10% on carbon, 0.3 g) was added. The mixture was stirred for 5 h under hydrogen (4 MPa) and filtered through a pad of Celite ${ }^{\circledR}$. The solvent was evaporated in vacuo to afford the crude products. The crude products were purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=8 / 1$) to afford the desired pure sample 13b-l.
Experimental procedure for the synthesis of the cyclohenanones 1b-l: The cyclohexanones 1b-l were prepared according to the methods reported in the literature with a minor modification. ${ }^{[3]}$ The pure sample 13b-l was dissolved in a mixture of THF, water and concentrated sulfuric acid (4:2:1, 70 mL). The mixture was stirred for 90 min , diluted with brine (50 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated in vacuo. Chromatography of the residue over silica gel, eluting with petroleum ether/EtOAc $=8 / 1$, gave the desired pure sample 1b-l.
5. Experimental procedure for the synthesis of the 3-substituted cyclobutanones

Experimental procedure for the synthesis of the 15a-h: The products $\mathbf{1 5 a}$-h were prepared according to the methods reported in the literature with a minor modification. ${ }^{[4]}$ To a stirred suspension of activated $\mathrm{Zn}-\mathrm{Cu}(1.60 \mathrm{~g}, 25 \mathrm{mmol})$ and $\mathbf{1 4 a}-\mathrm{h}(10 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added dropwise through an addition funnel, during 2 h at reflux, a solution of trichloroacetic chloride ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}$) and phosphorus oxychloride $(1.9 \mathrm{~mL}, 20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The suspension was stirred overnight at reflux. The mixture was cooled to room temperature and then filtered through a pad of Celite. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic phase was concentrated in vacuo to give crude products 15a-h, which were routinely used without further purification to the next step.
Experimental procedure for the synthesis of the cyclobutanones 3a-h: The cyclobutanones 3a-h were prepared according to the methods reported in the literature with a minor modification. ${ }^{[4]}$ The solution of the previous crude products $\mathbf{1 5 a}-\mathrm{h}$ in acetic acid $(10 \mathrm{~mL})$ was added dropwise to a vigorously stirred suspension of zinc dust $(2.6 \mathrm{~g}, 40 \mathrm{mmol})$ in acetic acid $(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition, the reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was allowed to cool to room temperature and then evacuated to get rid of most of the acetic acid. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and then poured into a separation funnel containing water $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was washed with water $(3 \times 10 \mathrm{~mL})$, saturated sodium bicarbonate solution $(2 \times 10 \mathrm{~mL})$,
brine (50 mL) and dried over MgSO_{4}. The solution was then filtered and concentrated, followed by purification with flash chromatography (petroleum ether/EtOAc $=8 / 1$) to afford the desired pure sample products $\mathbf{3 a - h}$.

6. Experimental procedure for the asymmetric synthesis of adipic acid 5

Experimental procedure for the synthesis of the compound 16: The reaction was performed with ε-lactone $2 \mathrm{~m}(0.5 \mathrm{mmol}), \mathrm{KOH}(1.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL})$ in a dry tube. After the stirring was continued for 24 h at rt ., HCl solution ($1.0 \mathrm{~mol} / \mathrm{L}, 10 \mathrm{~mL}$) was added. The organic layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The extract was washed with brine, dried over NaSO_{4} and concentrated in vacuo, affording the crude product 16. The crude product was not purified and directly used for the next step.
Experimental procedure for the synthesis of the adipic acid 5: The reaction was performed with $\mathbf{1 6}$ $(0.4 \mathrm{mmol})$, Jones reagent $(4.0 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}(5.0 \mathrm{~mL})$ in a dry tube. After the stirring was continued for 24 h at rt ., isopropyl alcohol $(5.0 \mathrm{~mL})$ was added and the organic layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified directly by column chromatography on silica gel (petroleum ether $/ \mathrm{EtOAc}=1 / 1$) to afford the desired product adipic acid 5 in 62% overall yield and 84% ee value.
Experimental procedure for the synthesis of the compound 17: The reaction was performed with $\mathbf{5}$ $(0.20 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.44 \mathrm{mmol})$ and isobutyl carbonochloridate $(0.44 \mathrm{mmol})$ with THF $(1.0 \mathrm{~mL})$ in a dry tube. After the stirring was continued for 15 min at $0^{\circ} \mathrm{C}$, the aniline $(0.44 \mathrm{mmol})$ was added. Then stirring was continued for 8 h at $35^{\circ} \mathrm{C}$, the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The extract was washed with brine and concentrated in vacuo. The crude product was purified directly by column chromatography on silica gel (petroleum ether/EtOAc $=1 / 1$) to afford the desired product $\mathbf{1 7}$ in 84% yield and 84% ee value.

7. Extra condition optimizations for the asymmetric Baeyer-Villiger Oxidation

$\mathrm{L} 1: \mathrm{Ar}=2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{n}=2$

L2: $\mathrm{Ar}=2,4,6-i-\mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{n}=2$
L4: $\mathrm{Ar}=2,4,6-i-\mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{n}=1$
L5: $\mathrm{Ar}=\mathrm{Ph} ; \mathrm{n}=2$
L3: $\mathrm{Ar}=2,4,6-i-\mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$
L6: $\mathrm{Ar}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{n}=2$
L7: $\mathrm{Ar}=2,6-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{n}=2$
Table 1: Exploring the efficiency of Lewis acids on the asymmetric Baeyer-Villiger Oxidation of 4-phenylcyclohexanone $1 \mathbf{a}^{[a]}$.

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

[a] Unless otherwise noted, the reactions were performed with $\mathbf{1 a}(0.10 \mathrm{mmol})$, $\mathbf{L 1}(5 \mathrm{~mol} \%)$, metal ($5 \mathrm{~mol} \%$) in solvent $(0.5 \mathrm{~mL})$ at $35^{\circ} \mathrm{C}$ for 30 minutes. Then m-CPBA $(0.12 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 18 hours. [b] Isolated yield. [c] Determined by chiral HPLC (Chiralpak AS-H).
Table 2: Exploring the efficiency of ligands on the asymmetric Baeyer-Villiger Oxidation of 4-phenylcyclohexanone $1 \mathrm{a}^{[\mathrm{ax}}$.

Entry	ligand	${\text { Yield }[\%]^{[b]}}^{\text {[}}$	ee [\%] ${ }^{[\mathrm{Cl}]}$
1	L1	84	68
2	L2	91	86
3	L3	86	88
4	L4	58	50
5	L5	46	0
6	L6	67	34
7	L7	86	64

[a] Unless otherwise noted, the reactions were performed with $\mathbf{1 a}(0.10 \mathrm{mmol}), \mathbf{L}(5 \mathrm{~mol} \%), \mathrm{Sc}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%)$ in EtOAc at $35^{\circ} \mathrm{C}$ for 30 minutes, then m-CPBA was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 18 hours. [b] Isolated yield. [c] Determined by chiral HPLC (Chiralpak AS-H).
Table 3: Exploring the efficiency of solvent on the asymmetric Baeyer-Villiger Oxidation of 4-phenylcyclohexanone $1 \mathrm{a}^{[\mathrm{ax}]}$.

Entry	Solvent	${\text { Yield }[\%]^{[b]}}{ }^{[0]}[\%]^{[c]}$	
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	81	75
2	THF	81	80
3	PhCH_{3}	54	73

4	EtOAc	91	86
5	$\mathrm{CH}_{3} \mathrm{CN}$	53	88
6	EtOH^{2}	93	82
7	CHCl_{3}	57	68
8	MeOAc	69	86
9	$n-\mathrm{PrOAc}$	71	85
10	$i-B u O A c$	67	84
11	$t-\mathrm{BuOAc}$	74	83

[a] Unless otherwise noted, the reactions were performed with $\mathbf{1 a}(0.10 \mathrm{mmol}), \mathbf{L} 2(5 \mathrm{~mol} \%), \mathrm{Sc}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%)$ in 0.5 mL of solvent at $35{ }^{\circ} \mathrm{C}$ for 30 minutes, then $m-\mathrm{CPBA}$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 18 hours. [b] Isolated yield. [c] Determined by chiral HPLC (Chiralpak AS-H).
Table 4: Exploring the efficiency of temperature on the asymmetric Baeyer-Villiger Oxidation of 4-phenylcyclohexanone $1 \mathbf{a}^{[a]}$.

Entry	$\mathrm{T}\left[{ }^{\mathrm{O}} \mathrm{C}\right]$	Yield [\%] ${ }^{[\text {b] }}$	$e e\left[\%{ }^{[c]}\right.$
1	35	96	73
2	0	86	88
3	-20	72	91
4	-40	42	94

[a] Unless otherwise noted, the reactions were performed with $\mathbf{1 a}(0.10 \mathrm{mmol}), \mathbf{L 3}(5 \mathrm{~mol} \%), \mathrm{Sc}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%)$, in EtOAc $(0.5 \mathrm{~mL})$ at $35^{\circ} \mathrm{C}$ for 30 minutes, then $m-\mathrm{CPBA}$ was added at the indicated temperature. The reaction mixture was stirred at the indicated temperature for 18 hours. [b] Isolated yield. [c] Determined by chiral HPLC (Chiralpak AS-H).
Table 5: Exploring the efficiency of additive on the asymmetric Baeyer-Villiger Oxidation of 2-phenylcyclohexanone $7 a^{[a]}$.

Entry	additive	Yield $_{7 \mathrm{a}}\left[\%{ }^{\text {[b] }}\right.$	$E e_{7 a}\left[\%{ }^{[c]}\right.$	Yield $_{8 a+9 \mathrm{a}}\left[\%{ }^{\text {[b] }}\right.$	$E e_{8 a}\left[\%{ }^{[c]}\right.$	$8 \mathrm{a} / 9 \mathrm{a}^{[c]}$
1	-	75	23	23	94	12/1
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	77	19	22	93	11/1
3	NaHCO_{3}	82	14	13	94	9/1
4	$\mathrm{Et}_{3} \mathrm{~N}$	76	17	14	94	10/1
5	DBU	72	21	27	94	12/1
6	TSOH	93	0	trace	-	-
7	$\mathrm{CF}_{3} \mathrm{COOH}$	75	22	24	93	10/1
8	$\mathrm{NaBA}_{4} \mathrm{~F}$	0	-	99	-	0/1
9	$\mathrm{Al}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$	65	38	30	94	16/1
10	$\mathrm{Al}(\mathrm{OTf})_{3}$	37	0	62	-	0/1
11	$\mathrm{Sc}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$	49	-10	51	-	0/1
$12{ }^{[d]}$	$\mathrm{Al}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$	38	90	59	76	8/1
$13^{[\mathrm{d}, ~ e]}$	$\mathrm{Al}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{3}$	46	94	51	94	18/1

[a] Unless otherwise noted, the reactions were performed with $7 \mathbf{a}(0.10 \mathrm{mmol}), \mathbf{L 3}(5 \mathrm{~mol} \%), \mathrm{Sc}(\mathrm{OTf})_{3}(5 \mathrm{~mol} \%)$, additive ($5 \mathrm{~mol} \%$) in 1.0 mL of EtOAc at $0^{\circ} \mathrm{C}$, then $m-\mathrm{CPBA}\left(0.1 \mathrm{mmol}\right.$ in 1.0 mL of EtOAc) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 24 hours. [b] Isolated yield. [c] Determined by chiral HPLC
(Chiralpak OD-H). [d] 0.1 mmol of $\mathrm{Al}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}(20.0 \mathrm{mg})$ was added. [e] The reaction was stirred at $-40^{\circ} \mathrm{C}$ for 36 hours.

8. Characterization of the N, N^{\prime}-dioxide ligands

 chiral N, N^{\prime}-dioxide L2:

Prepared according to the methods reported in the literature. ${ }^{[1]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.80(\mathrm{~s}$, $1.64 \mathrm{H}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 3.75-3.24(\mathrm{~m}, 8 \mathrm{H}), 3.12-2.57(\mathrm{~m}$, $12 \mathrm{H}), 2.49-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.15$ $(\mathrm{m}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.74,148.08$, $144.54,128.32,121.33,121.23,76.20,65.91,64.83,34.15,28.94,26.40,23.95,23.63,23.56,22.25$, 20.10, 15.99 ppm . ES-HRMS Calcd for $\mathrm{C}_{45} \mathrm{H}_{72} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 733.5632$, Found: m/z 733.5645.
chiral N, N^{\prime}-dioxide L3:

Prepared according to the methods reported in the literature. ${ }^{[1]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.42(\mathrm{~s}$, $1.91 \mathrm{H}), 6.99(\mathrm{~s}, 4 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.32(\mathrm{~m}$, $4 \mathrm{H}), 3.00-2.64(\mathrm{~m}, 14 \mathrm{H}), 2.02-1.64(\mathrm{~m}, 12 \mathrm{H}), 1.20(\mathrm{~s}$, 36 H) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=166.25,147.82$, $144.51,128.73,121.21,83.90,80.86,65.79,42.53$, 34.59, 34.17, 32.11, 28.96, 27.70, 27.09, 23.99, 23.72, 23.34, 18.80 ppm. ES-HRMS Calcd for $\mathrm{C}_{49} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 785.5945$, Found: m/z 785.5956.
chiral N, N^{\prime}-dioxide L4:

Prepared according to the methods reported in the literature. ${ }^{[1] ~}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.45$ (s, $1.74 \mathrm{H}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 3.95-3.31(\mathrm{~m}, 10 \mathrm{H}), 3.08-2.99$ (p, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.92-2.83(\mathrm{p}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H})$, 2.76-2.39 (m, 6H), 2.11-2.03 (m, 2H), 1.24-1.16 (m, 36H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.27$, 147.96, 144.43, 128.54, 121.25, 76.85, 68.08, 63.92, 34.18, 28.93, 27.40, 23.98, 23.79, 23.17, 20.20, 19.73 ppm. ES-HRMS Calcd for $\mathrm{C}_{43} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 705.5319$, Found: m/z 705.5313.

9. Characterization of the prochiral cyclohexanones

4-(p-tolyl)cyclohexanone 1b:

1b
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.14(\mathrm{~s}, 4 \mathrm{H}), 3.00(\mathrm{tt}, J=12.0 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 4 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.83(\mathrm{~m}, 2 \mathrm{H})$.
4-(m-tolyl)cyclohexanone 1c:

1c
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60-2.44 (m, 4H), 2.36 (s, 3H), 2.27-2.14 (m, 2H), 2.04-1.86 (m, 2H).

4-(4-methoxyphenyl)cyclohexanone 1d:

1d
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.98$ ($\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60-2.42 (m, 4H), 2.28-2.13 (m, 2H), 2.02-1.80 (m, 2H).

4-(3-methoxyphenyl)cyclohexanone 1 e :

MeO

1e
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.76(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{tt}, J=12.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 2 \mathrm{H})$.

4-(4-fluorophenyl)cyclohexanone 1f:

$1 f$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19(\mathrm{dd}, J=8.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{tt}, J=$ $12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58-2.39 (m, 4H), 2.21-2.18 (w, 2H), 1.97-1.81 (m, 2H).
4-(3-fluorophenyl)cyclohexanone $\mathbf{1 g}$:

1g
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.03$ ($\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59-2.45 (m, 4H), 2.29-2.16(m, 2 H$), 2.02-1.83(\mathrm{~m}, 2 \mathrm{H})$.
4-(4-chlorophenyl)cyclohexanone 1 h :

1h
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{tt}, J=12.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.42(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.79(\mathrm{~m}, 2 \mathrm{H})$.

4-(3-chlorophenyl)cyclohexanone 1i:

1i
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.14$ (m, 2H), 2.01-1.81 (m, 2H).

4-([1,1'-biphenyl]-4-yl)cyclohexanone $\mathbf{1 j}$:

1j
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $3 \mathrm{H}), 3.09(\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.88(\mathrm{~m}, 2 \mathrm{H})$.

4-(naphthalen-1-yl)cyclohexanone 1 k :

1k
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.35(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{qd}$, $J=12.9,4.8 \mathrm{~Hz}, 2 \mathrm{H})$.
4-(naphthalen-2-yl)cyclohexanone 11:

11
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.35(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{tt}, J=12.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.49$ (m, 4H), 2.38-2.25 (m, 2H), 2.16-1.97 (m, 2H).

10. Characterization of the products and unreacted ketones

(+)-5-phenyloxepan-2-one 2a:

2a

Prepared according to general procedure. 86% yield, $95 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}{ }^{20}=$ +48.1 (c $0.73, \mathrm{CHCl}_{3}$). The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2-$ propanol $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}($ major $)=12.69 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=17.07 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.14-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.68,143.94,127.75,125.84,125.59,67.22,46.20,35.70,32.67,29.30$ ppm. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 213.0891$, Found: $\mathrm{m} / \mathrm{z} 213.0888$.

	Retention Time	\% Area
1	12.639	48.96
2	16.886	50.04

	Retention Time	\% Area
1	12.691	97.57
2	17.074	2.43

(+)-5-(p-tolyl)oxepan-2-one 2b:

2b

Prepared according to general procedure. 90% yield, $95 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}{ }^{20}$ $=+46.1\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}$ (major) $=12.82 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=16.76 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.26(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.75(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.79,142.05,136.48,129.43,126.49,68.31,46.83,36.83$, 33.72, 30.45, 21.01 ppm . ES-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \mathrm{m} / \mathrm{z} 222.1494$, Found: m / z 222.1491 .

	Retention Time	\% Area
1	12.768	50.09
2	16.445	49.91

	Retention Time	\% Area
1	12.816	97.52

2	16.757	2.48

(+)-5-(m-tolyl)oxepan-2-one 2c:

2c

Prepared according to general procedure. 84% yield, $94 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=$ $+39.5\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2-$ propanol $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}($ major $)=9.68 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.35 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.97$ (m, 2H), 4.43-4.26 (m, 2H), 2.86-2.69 (m, 3H), 2.34 (s, 3H), 2.16-1.97 $(\mathrm{m}, 3 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.77,144.97,138.41,128.68,127.61$, 127.43 , 123.63, 68.31, 47.24, 36.76, 33.74, 30.35, 21.48 ppm . ES-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+} \mathrm{m} / \mathrm{z} 222.1494$, Found: m/z 222.1491.

	Retention Time	\% Area
1	9.527	49.80
2	12.823	50.20

	Retention Time	\% Area
1	9.678	96.87
2	13.354	3.13

(+)-5-(4-methoxyphenyl)oxepan-2-one 2d:

2d

Prepared according to general procedure. 81% yield, $95 \% \mathrm{ee}$. $[\alpha]_{D}{ }^{20}=+48.0\left(\mathrm{c} 0.78, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column $($ hexane $/ 2$-propanol $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=$ $28.42 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=35.10 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.70(\mathrm{~m}$, $3 \mathrm{H}), 2.17-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.79,158.37,137.21$, $127.55,114.09,68.29,55.30,46.38,36.97,33.69,30.59 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ m/z 243.0997, Found: m/z 243.0995.

	Retention Time	\% Area
1	27.858	49.93
2	34.041	50.07

	Retention Time	\% Area
1	28.415	97.42
2	35.104	2.58

(+)-5-(3-methoxyphenyl)oxepan-2-one 2e:

2e

Prepared according to general procedure. 81% yield, $95 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+39.1\left(\mathrm{c} 0.94, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol = $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=14.61 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $21.38 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.12(\mathrm{~m}, 1 \mathrm{H})$, 6.72-6.65 (m, 3H), 4.37-4.18 (m, 2H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.62(\mathrm{~m}$, $3 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.69(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.71,159.85,146.62$, 129.80, 118.95, 112.73, 111.79, 68.23, 55.22, 47.27, 36.68, 33.67, 30.26 ppm. ES-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \mathrm{m} / \mathrm{z} 238.1443$, Found: $\mathrm{m} / \mathrm{z} 238.1449$.

	Retention Time	\% Area
1	14.510	49.99
2	20.848	50.01

	Retention Time	\% Area
1	14.608	97.12

2	21.375	2.88

(+)-5-(4-fluorophenyl)oxepan-2-one 2f:

$2 f$

Prepared according to general procedure. 71% yield, 92% ee. $[\alpha]_{\mathrm{D}}{ }^{20}=+49.2$ (c $0.93, \mathrm{CHCl}_{3}$). The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2$-propanol $=70 / 30$, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=15.89 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=20.72 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.99(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{ddd}, J=13.2,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.69(\mathrm{~m}, 3 \mathrm{H})$, $2.15-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.53,162.83,160.40$, $140.72,140.69,128.08,128.00,115.65,115.44,68.10,46.47,36.91,33.61,30.49 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 231.0797$, Found: m/z 231.0799.

	Retention Time	\% Area
1	16.079	49.97
2	20.805	50.03

	Retention Time	\% Area
1	15.893	95.95
2	20.720	4.05

(+)-5-(3-fluorophenyl)oxepan-2-one 2g:

2 g

Prepared according to general procedure. 84% yield, $94 \% \mathrm{ee} .[\alpha]_{D}{ }^{20}=$ $+41.8\left(\mathrm{c} 0.77, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2-\mathrm{propanol}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}($ major $)=12.38 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=18.69 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.84(\mathrm{~m}, 3 \mathrm{H}), 4.46-4.24(\mathrm{~m}, 2 \mathrm{H})$, 2.92-2.70 (m, 3H), 2.21-1.94 (m, 3H), 1.89-1.75 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.43,164.22,161.77,147.46,147.39,130.35,130.27,122.27,122.24,113.88$, 113.76, 113.67, 113.54, 68.02, 46.92, 46.91, 36.59, 33.56, 30.15 ppm . ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 231.0797$, Found: m/z 231.0801.

	Retention Time	\% Area
1	12.356	50.20
2	18.219	49.80

	Retention Time	\% Area
1	12.376	96.79
2	18.691	3.21

(+)-5-(4-chlorophenyl)oxepan-2-one 2h:

2h

Prepared according to general procedure. 82% yield, $94 \% e e$. $[\alpha]_{\mathrm{D}}{ }^{20}=+40.2\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right)$. The $e e$ was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=$ $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=15.69 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $20.78 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.44,143.35,132.58,128.93,127.98,68.05,46.63,36.70$, 33.60, 30.28 ppm. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}^{34.9689} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 247.0502$, Found: m / z 247.0506 .

	Retention Time	\% Area
1	15.561	50.23
2	20.385	49.77

	Retention Time	\% Area
1	15.688	96.77

2	20.779	3.23

(+)-5-(3-chlorophenyl)oxepan-2-one 2i:

$2 i$

Prepared according to general procedure. 81% yield, $94 \% e e .[\alpha]_{D}{ }^{20}$ $=+40.8\left(\mathrm{c} 0.87, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}$), major diastereomer: $\mathrm{t}_{\mathrm{r}}($ major $)=13.58 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)$ $=21.88 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.25(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.70(\mathrm{~m}$, $3 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $175.38,146.88,134.52,130.11,127.08,126.98,124.80,68.00,46.90,36.57,33.57,30.14 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}^{34.9689} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 247.0502$, Found: $\mathrm{m} / \mathrm{z} 247.0502$.

	Retention Time	\% Area
1	13.632	49.67
2	21.529	50.33

	Retention Time	\% Area
1	13.579	96.89
2	21.882	3.11

(+)-5-([1,1'-biphenyl]-4-yl)oxepan-2-one 2j:

2j

Prepared according to general procedure. 81% yield, 94% ee. $[\alpha]_{\mathrm{D}}{ }^{20}=+50.0\left(\mathrm{c} 0.47, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol = $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), major diastereomer: $\mathrm{t}_{\mathrm{r}}($ major $)=$ $17.57 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=27.16 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.40-4.20(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{tt}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.70(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.69,144.02,140.68,139.86,128.82,127.50,127.32,127.07$, 127.03, 68.25, 46.89, 36.75, 33.72, 30.35 ppm . ES-HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 289.1204$, Found: m/z 289.1201.

	Retention Time	\% Area
1	17.574	49.97
2	26.967	50.03

	Retention Time	\% Area
1	17.566	97.00
2	27.160	3.00

(+)-5-(naphthalen-1-yl)oxepan-2-one 2k:

2k

Prepared according to general procedure. 84% yield, $95 \% e e .[\alpha]_{D}{ }^{20}=$ +24.5 (c $0.86, \mathrm{CHCl}_{3}$). The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2$-propanol $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}($ major $)=15.40 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=21.58 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.37$ (m, 2H), $3.68(\mathrm{tt}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.07(\mathrm{~m}$, $3 \mathrm{H}), 2.03-1.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.77,140.66,134.01,130.59,129.34$, 127.36, 126.29, 125.68, 125.67, 122.86, 122.27, 68.64, 41.62, 36.35, 34.09, 29.95 ppm. ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \mathrm{m} / \mathrm{z} 258.1494$, Found: $\mathrm{m} / \mathrm{z} 258.1493$.

	Retention Time	\% Area
1	15.401	97.45
2	21.576	2.55

(+)-5-(naphthalen-2-yl)oxepan-2-one 21:

21

Prepared according to general procedure. 87% yield, $94 \% e e$. $[\alpha]_{\mathrm{D}}{ }^{20}=+47.3\left(\mathrm{c} 0.89, \mathrm{CHCl}_{3}\right)$. The $e e$ was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol = $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=15.90 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $34.42 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}$, 1 H), 4.49-4.30 (m, 2H), 3.01 (tt, $J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.07(\mathrm{~m}, 3 \mathrm{H})$, $2.02-1.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.70,142.37,133.54,132.44,128.50,127.66$, $126.31,125.76,125.28,124.89,68.27,47.31,36.73,33.75,30.30 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \mathrm{m} / \mathrm{z} 258.1494$, Found: m/z 258.1485.

	Retention Time	\% Area
1	15.908	49.80
2	33.760	50.20

	Retention Time	\% Area
1	15.898	96.77
2	34.415	3.23

(+)-(R)-5-methyloxepan-2-one 2m:

Prepared according to general procedure: 76% yield, $84 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=+26.9$ (c $0.39, \mathrm{CHCl}_{3}$); $\left[\right.$ Lit.: ${ }^{[5]}[\alpha]_{\mathrm{D}}{ }^{20}=-45.0\left(\mathrm{c} \mathrm{1.40}, \mathrm{CHCl}_{3}\right.$) for S-isomer with $\left.98 \% \mathrm{ee}\right]$. The $e e$ was determined by GC using a Chiralsil DEX CB column $\left(130^{\circ} \mathrm{C}\right)$; t_{r} (major) $=16.94 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=16.73 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.27(\mathrm{dd}, J=$ $11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{dt}, J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

	Retention Time	\% Area
1	16.519	49.16
2	16.878	50.84

	Retention Time	\% Area
1	16.728	8.15
2	16.942	91.85

(+)-(R)-5-ethyloxepan-2-one 2n:

Prepared according to general procedure: 72% yield, $85 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=+30.3$ (c $0.45, \mathrm{CHCl}_{3}$); $\left[\right.$ Lit.: ${ }^{[5]}[\alpha]_{\mathrm{D}}{ }^{20}=-29.0\left(\mathrm{c} \mathrm{3.20}, \mathrm{CHCl}_{3}\right)$ for S-isomer with $\left.98 \% \mathrm{ee}\right]$. The ee was determined by GC using a Chiralsil DEX CB column $\left(120{ }^{\circ} \mathrm{C}\right)$; $\mathrm{t}_{\mathrm{r}}($ major $)=48.21 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=47.22 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 2n $4.33-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=176.18,68.21,41.89,34.96,33.17,29.14,28.52,11.31 \mathrm{ppm}$.

	Retention Time	\% Area
1	45.476	49.94
2	47.234	50.06

(+)-(R)-5-isopropyloxepan-2-one 20:

20

Prepared according to general procedure: 75% yield, $92 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=+34.8$ (c $\left.0.50, \mathrm{CHCl}_{3}\right) ;\left[\mathrm{Lit.}^{[5]}[\alpha]_{\mathrm{D}}{ }^{20}=-27.0\left(\mathrm{c} 2.00, \mathrm{CHCl}_{3}\right)\right.$ for S-isomer with $\left.98 \% \mathrm{ee}\right]$. The ee was determined by GC using a Chiralsil DEX CB column $\left(120{ }^{\circ} \mathrm{C}\right)$; $\mathrm{t}_{\mathrm{r}}($ major $)=81.18 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=80.36 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 4.32 (ddd, $J=12.8,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=12.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=176.24,68.52,46.60,33.41,32.57,32.02,25.69,19.39,19.27 \mathrm{ppm}$.

	Retention Time	\% Area
1	79.377	49.61
2	81.234	50.39

	Retention Time	\% Area
1	80.363	4.04
2	81.179	95.95

(+)-(R)-5-(tert-butyl)oxepan-2-one 2p:

Prepared according to general procedure: 81% yield, $94 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=+30.2$ (c $1.06, \mathrm{CHCl}_{3}$); $\left[\mathrm{Lit}. .{ }^{[6]}[\alpha]_{\mathrm{D}}{ }^{20}=-34.9\left(\mathrm{c} 0.78, \mathrm{CHCl}_{3}\right)\right.$ for S-isomer with $\left.98 \% \mathrm{ee}\right]$.

The ee was determined by GC using a Chiralsil DEX CB column $\left(150{ }^{\circ} \mathrm{C}\right) ; \mathrm{t}_{\mathrm{r}}($ major $)=23.93 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $)=24.28 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.37-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.68$ (dd, $J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.425(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.25(\mathrm{~m}$, $2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.32,68.64,50.76,33.46,33.00,30.34,27.46$, 23.77 ppm .

	Retention Time	\% Area
1	23.934	97.16
2	24.283	2.84

(+)-(S)-4-phenyldihydrofuran-2(3H)-one 4a:

4a

Prepared according to general procedure: 82% yield, $91 \% e e .[\alpha]_{D}{ }^{20}=+41.0$ (c $0.84, \mathrm{CHCl}_{3}$); $\left[\right.$ Lit. ${ }^{[7]}[\alpha]_{\mathrm{D}}{ }^{20}=-46.7\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right.$) for R-isomer with 88% $e e$]. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), t_{r} (minor) $=16.67 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ major $)=18.77 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (p, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=17.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H})$.

	Retention Time	\% Area
1	16.694	48.96
2	18.889	51.04

	Retention Time	\% Area
1	16.665	4.55
2	18.774	95.45

(+)-(S)-4-(p-tolyl)dihydrofuran-2(3H)-one 4b:

4b

Prepared according to general procedure: 84% yield, $90 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=$ +37.3 (c $0.64, \mathrm{CHCl}_{3}$); $\left[\right.$ Lit.: ${ }^{[7]}[\alpha]_{\mathrm{D}}{ }^{20}=-31.3\left(\mathrm{c} 0.67, \mathrm{CHCl}_{3}\right)$ for R-isomer with $93 \% e e$]. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2$-propanol $=92 / 8,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=$ $21.40 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=20.00 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{p}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=17.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.

	Retention Time	\% Area
1	19.992	48.79
2	21.407	51.21

	Retention Time	\% Area
1	20.000	5.16
2	21.398	94.84

(+)-4-(m-tolyl)dihydrofuran-2(3H)-one 4c:

4c

Prepared according to general procedure: 80% yield, $91 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}{ }^{20}=+37.6$ (c $0.57, \mathrm{CHCl}_{3}$). The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2$-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), t_{r} (major) $=$ $13.82 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.20 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{t}, J=8.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.29(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{p}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=17.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=$ 17.5, 9.2 Hz, 1H), $2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=176.54,139.41,138.92,129.03$, $128.45,127.43,123.72,74.11,41.04,35.72,21.43 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ 199.0735, Found: m/z 199.0738 .

	Retention Time	\% Area
1	12.301	49.56
2	13.662	50.44

	Retention Time	\% Area
1	12.198	4.48
2	13.824	95.52

(+)-(S)-4-(4-methoxyphenyl)dihydrofuran-2(3H)-one 4d:

4d

Prepared according to general procedure: 78% yield, $91 \% e e .[\alpha]_{D}{ }^{20}=$ +36.8 (c 0.60, CHCl_{3}); [Lit.: ${ }^{[7]}[\alpha]_{\mathrm{D}}{ }^{20}=-28.3$ (c $0.90, \mathrm{CHCl}_{3}$) for R-isomer with $85 \% e e]$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane/2-propanol $=90 / 10$, 1.0 $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=29.26 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=27.19 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{p}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=17.6,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63 (dd, $J=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H})$.

	Retention Time	\% Area
1	27.063	50.16
2	29.416	49.84

	Retention Time	\% Area
1	27.193	4.46
2	29.258	95.54

(+)-(S)-4-(4-fluorophenyl)dihydrofuran-2(3H)-one 4e:

$4 e$

Prepared according to general procedure: 71% yield, $87 \% e e .[\alpha]_{D}{ }^{20}=$ $+41.0\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right) ;\left[\mathrm{Lit} .:{ }^{[7]}[\alpha]_{\mathrm{D}}{ }^{20}=-40.2\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)\right.$ for R-isomer with $84 \% \mathrm{ee}$]. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane $/ 2$-propanol $=95 / 5,0.6 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), t_{r} (major) $=26.91 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=28.14 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20$ (dd, $J=8.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{p}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=17.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.6,8.8 \mathrm{~Hz}, 1 \mathrm{H})$.

	Retention Time	\% Area
1	26.683	49.30
2	27.891	50.70

	Retention Time	\% Area
1	26.908	93.44
2	28.139	6.56

(+)-(S)-4-(4-chlorophenyl)dihydrofuran-2(3H)-one 4f:

$4 f$ Prepared according to general procedure: 83% yield, $87 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}=$ +43.7 (c 0.59, CHCl_{3}); [Lit.: ${ }^{[7]}[\alpha]_{\mathrm{D}}{ }^{20}=-47.2$ (c $0.90, \mathrm{CHCl}_{3}$) for R-isomer with $82 \% \mathrm{ee}$]. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane/2-propanol $=95 / 5,0.6 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=29.22 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=30.83 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.77(\mathrm{p}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=17.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=17.2,8.8 \mathrm{~Hz}, 1 \mathrm{H})$.

	Retention Time	\% Area
1	29.221	93.54
2	30.832	6.46

(+)-(R)-4-(3-methoxybenzyl)dihydrofuran-2(3H)-one 4g:

$4 g$

Prepared according to general procedure: 99% yield, $80 \% e e .[\alpha]_{D}{ }^{20}$ $=+5.5\left(\mathrm{c} 0.77, \mathrm{CHCl}_{3}\right) ;$ LLit. ${ }^{[8]}[\alpha]_{\mathrm{D}}{ }^{20}=-6.5\left(\mathrm{c} 1.42, \mathrm{CHCl}_{3}\right)$ for S-isomer with $98 \% e e]$. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane/2-propanol $=90 / 10$, 1.0 $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=12.93 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=14.34 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 1 \mathrm{H})$, $4.03(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=17.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dd, $J=17.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$.

	Retention Time	\% Area
1	12.964	50.05
2	14.353	49.95

	Retention Time	\% Area
1	12.925	90.11
2	14.336	9.89

(+)-(R)-4-(benzo[d][1,3]dioxol-5-ylmethyl)dihydrofuran-2(3H)-one 4h:

4h

Prepared according to general procedure: 99% yield, $80 \% e e .[\alpha]_{D}{ }^{20}=$ +3.9 (c 0.83, CHCl_{3}); $\left[\right.$ Lit.: ${ }^{[8]}[\alpha]_{\mathrm{D}}{ }^{20}=-4.2$ (c $0.75, \mathrm{CHCl}_{3}$) for S-isomer with $98 \% e e]$. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$, $210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=26.63 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=28.06 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.74(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.2$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=17.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=17.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H})$.

	Retention Time	\% Area
1	26.774	49.63
2	28.178	50.37

	Retention Time	\% Area
1	26.633	89.75
2	28.057	10.25

(-)-(S)-2-phenylcyclohexanone 7a:

7a

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 36 \mathrm{~h}, 46 \%$ yield, $94 \% \mathrm{ee} .[\alpha]_{\mathrm{D}}{ }^{20}$ $=-80.5\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}{ }^{20}=-36.0\left(\mathrm{c} 0.48, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left[\mathrm{Lit} . \mathrm{:}^{[9]}[\alpha]_{\mathrm{D}}{ }^{25}=-113.5(\mathrm{c} 0.6\right.$, $\mathrm{C}_{6} \mathrm{H}_{6}$) for S-isomer]. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=8.12$ $\min , \mathrm{t}_{\mathrm{r}}($ minor $)=8.86 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.12(\mathrm{~m}, 5 \mathrm{H}), 3.60$
(dd, $J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.76-1.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=290.24,137.75,127.50,127.32,125.85$, $56.35,41.15,34.06,26.79,24.29 \mathrm{ppm}$.

	Retention Time	\% Area
1	8.216	49.06
2	8.966	50.94

	Retention Time	\% Area
1	8.121	96.78
2	8.863	3.22

(+)-(R)-3-phenyloxepan-2-one 8a:

8a

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 36 \mathrm{~h}, 51 \%$ yield, $94 \% e e .[\alpha]_{\mathrm{D}}{ }^{20}$ $=+80.6\left(\mathrm{c} 0.37, \mathrm{CHCl}_{3}, \mathbf{8 a} / \mathbf{9 a}=17 / 1\right)$. The $e e$ was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2$-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=12.67 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.04 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.36-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.85(\mathrm{~m}, 4 \mathrm{H})$, $1.84-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.72$, 138.97, 127.42, 127.19, 126.15, 67.81, 48.19, 30.25, 27.82, 27.10 ppm . ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ 213.0891, Found: m/z 213.0899.

	Retention Time	\% Area
1	10.057	50.66
2	12.744	49.34

	Retention Time	\% Area
1	10.043	3.05
2	12.674	96.95

7-phenyloxepan-2-one 9a:

9a $\quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73-2.65 (m, 2H), 2.10-1.87 (m, 4H), 1.73-1.58(m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.89$, $139.79,127.55,127.08,124.84,81.08,36.45,33.94,27.59,21.83 \mathrm{ppm}$.

(-)-(S)-2-(4-chlorophenyl)cyclohexanone 7b:

7b

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 41 \mathrm{~h}, 47 \%$ yield, $97 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-77.2\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=7.35 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.00 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.27 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=208.74,136.23,131.64,128.92,127.44,55.76,41.16,34.23,26.75$, 24.33 ppm .

	Retention Time	\% Area
1	7.034	49.13
2	7.382	50.87

	Retention Time	\% Area

1	7.008	1.53
2	7.352	98.47

(+)-(R)-3-(4-chlorophenyl)oxepan-2-one 8b:

8b

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 41 \mathrm{~h}, 53 \%$ yield, $93 \% e e$. $[\alpha]_{\mathrm{D}}{ }^{20}=+78.5\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}, \mathbf{8 b} / \mathbf{9 b}>19 / 1\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane/2-propanol $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=11.38 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.23 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.28$ $(\mathrm{m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.38,138.63,122.99,129.66,128.56,68.93,48.59,31.46,28.77,28.22$ ppm. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}^{34.9689} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 247.0502$, Found: $\mathrm{m} / \mathrm{z} 247.0503$.

	Retention Time	\% Area
1	9.282	49.71
2	11.680	50.29

	Retention Time	\% Area
1	9.231	3.50
2	11.382	96.50

7-(4-chlorophenyl)oxepan-2-one 9b:

9b $\quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{~s}, 4 \mathrm{H}), 5.25(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.79-2.69 (m, 2H), 2.10-1.90(m, 4H), 1.81-1.60(m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.60$, 138.34, 132.77, 127.70, 126.26, 80.25, 36.48, 33.88, 27.53, 21.75 ppm .
(-)-(S)-2-(4-bromophenyl)cyclohexanone 7c:

7c

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 41 \mathrm{~h}, 47 \%$ yield, $97 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-54.4$ (c $0.94, \mathrm{CHCl}_{3}$). The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=7.82 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.39 \min .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
$7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.31-2.22 (m, 1H), 2.19-2.10(m, 1H), 2.05-1.91 (m, 2H), 1.87-1.77 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=208.63,136.74,130.39,129.31,119.79,55.83,41.16,34.18,26.75,24.32 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}^{78.9183} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 275.0047$, Found: $\mathrm{m} / \mathrm{z} 275.0051$.

	Retention Time	\% Area
1	7.421	49.61
2	7.855	50.39

	Retention Time	\% Area
1	7.391	1.49
2	7.824	98.51

(+)-(R)-3-(4-bromophenyl)oxepan-2-one 8c:

8c

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 41 \mathrm{~h}, 53 \%$ yield, $92 \% e e$. m.p. $=155-156{ }^{\circ} \mathrm{C}$ (single crystal). $[\alpha]_{\mathrm{D}}{ }^{20}=+62.9\left(\mathrm{c} 0.56, \mathrm{CHCl}_{3}, \mathbf{8 c} / \mathbf{9 c}>19 / 1\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2$-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=11.65 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $)=9.59 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.26,138.14,130.47$, 129.02, 120.08, 67.91, 47.62, 30.36, 27.73, 27.17 ppm. ES-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}^{78.9183} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 290.9997$, Found: m/z 290.9998.

	Retention Time	\% Area
1	9.591	3.87
2	11.651	96.13

7-(4-bromophenyl)oxepan-2-one 9c:

9c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.57,138.85,130.66,126.57,120.90,80.26,36.46,33.88,27.52,21.74 \mathrm{ppm}$.

(-)-(S)-2-(p-tolyl)cyclohexanone 7d:

7d

Prepared according to general procedure: $-40{ }^{\circ} \mathrm{C}, 43 \mathrm{~h}, 51 \%$ yield, $89 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-61.6\left(\mathrm{c} 0.87, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane/2-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=6.97 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.70 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.16$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.57-2.40 (m, 2H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.75$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=209.38,135.40,134.71,128.06,127.33,55.97,41.13,34.05$, 26.80, 24.30, 20.05 ppm .

	Retention Time	\% Area
1	6.988	49.42
2	7.637	50.58

	Retention Time	\% Area
1	6.967	94.61

2	7.700	5.39

(+)-(R)-3-(p-tolyl)oxepan-2-one 8d:

8d

Prepared according to general procedure: $-40{ }^{\circ} \mathrm{C}, 43 \mathrm{~h}, 48 \%$ yield, $91 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+40.7\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}, \mathbf{8 d} / \mathbf{9 d}=12 / 1\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2-$ propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=11.83 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.59 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.34(\mathrm{~m}, 2 \mathrm{H})$, $3.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.97,135.99,135.71,128.12,126.99,67.77,47.77,30.23,27.82,27.06$, 20.05 ppm . ES-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 227.1048$, Found: m/z 227.1048.

	Retention Time	\% Area
1	8.603	49.34
2	11.898	50.66

	Retention Time	\% Area
1	8.587	4.57
2	11.828	95.43

7-(p-tolyl)oxepan-2-one 9d:

9d $\quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $5.19(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.98,136.88,136.81,128.18,124.78,81.02,36.41,33.95,27.57$, 21.85, 20.10 ppm .

(-)-(S)-2-(4-methoxyphenyl)cyclohexanone 7e:

7e

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 48 \mathrm{~h}, 44 \%$ yield, 82% ee. $[\alpha]_{\mathrm{D}}{ }^{20}=-65.4$ (c $\left.0.73, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2-$ propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$,
$210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=6.46 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.38 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.31-2.22 (m, 1H), 2.19-2.11 (m, 1H), 2.07-1.94 (m, 2H), 1.90-1.79 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=209.64,157.43,129.86,128.42,112.80,55.53,54.19,41.14,34.25,26.83,24.35 \mathrm{ppm}$.

	Retention Time	\% Area
1	6.438	49.69
2	7.348	50.31

	Retention Time	\% Area
1	6.463	91.09
2	7.380	8.91

(+)-(R)-3-(4-methoxyphenyl)oxepan-2-one 8e:

8e

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 48 \mathrm{~h}, 56 \%$ yield, $90 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+101.3$ (c $\left.0.38, \mathrm{CHCl}_{3}, \mathbf{8 e} / \mathbf{9} \mathbf{e}=5.6 / 1\right)$. The $e e$ was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2-$ propanol $=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=17.03 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.28 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.14$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.39-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.95$ $(\mathrm{m}, 4 \mathrm{H}), 1.86-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=175.11,157.60,131.24,128.14,112.84$, 67.76, 54.23, 47.31, 30.49, 27.81, 27.10 ppm. ES-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 243.0997$, Found: m/z 243.0997.

	Retention Time	\% Area
1	11.198	50.01
2	17.205	49.99

	Retention Time	\% Area
1	11.284	5.00
2	17.033	95.00

7-(4-methoxyphenyl)oxepan-2-one 9e:

9e $\quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.65(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=174.00,158.37,132.07,126.21,112.87,80.86,54.28,36.29$, 33.95, 27.53, 21.84 ppm .

(-)-(S)-2-([1,1'-biphenyl]-4-yl)cyclohexanone 7f:

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 48 \mathrm{~h}, 44 \%$ yield, $90 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-58.9\left(\mathrm{c} 0.76, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane/2-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=11.87 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=9.77 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.57(\mathrm{t}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=209.25,139.98$, $138.78,136.82,127.91,127.67,126.10,126.07,56.05,41.19,34.13,26.79,24.32 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 273.1255$, Found: m/z 273.1252.

	Retention Time	\% Area
1	9.867	50.24
2	12.020	49.76

	Retention Time	\% Area
1	9.771	5.01
2	11.870	94.99

(+)-(R)-3-([1,1'-biphenyl]-4-yl)oxepan-2-one 8f:

Prepared according to general procedure: $-40^{\circ} \mathrm{C}, 48 \mathrm{~h}, 53 \%$ yield, 90% ee. $[\alpha]_{\mathrm{D}}{ }^{20}=+72.7\left(\mathrm{c} 0.80, \mathrm{CHCl}_{3}, \mathbf{8 f} / \mathbf{9 f}=16.5 / 1\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane/2-propanol $=80 / 20$, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}$ (major) $=11.19 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.34 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.91$ (d, $J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.76,139.80$, $139.03,138.06,127.70,127.60,126.19,126.15,126.06,67.85,47.84,30.31,27.79,27.11 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ 289.1204, Found: m/z 289.1207.

	Retention Time	\% Area
1	11.179	49.13
2	12.221	50.87

	Retention Time	\% Area
1	11.194	95.04
2	12.344	4.96

7-([1,1'-biphenyl]-4-yl)oxepan-2-one 9f:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60-7.33(\mathrm{~m}, 9 \mathrm{H}), 5.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.84-2.68 (m, 2H), 2.21-1.94 (m, 4H), 1.85-1.65 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=174.91$, 141.04, 140.62, 139.84, 128.84, 127.45, 127.30, 127.11, 126.36, 81.86, 37.47, 34.99, 28.63, 22.88 ppm.

(-)-2-(naphthalen-1-yl)cyclohexanone 7g:

$7 g$

Prepared according to general procedure: $-20{ }^{\circ} \mathrm{C}, 27 \mathrm{~h}, 49 \%$ yield, $99 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-5.1\left(\mathrm{c} 0.88, \mathrm{CHCl}_{3}\right)$. The $e e$ was determined by HPLC analysis using a chiralcel OD-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{r}}($ major $)=9.77 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=23.58 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.70-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=208.96,134.21,132.81,130.80,127.99,126.61,124.85,124.35$, 124.31, 124.29, 122.26, 52.32, 41.60, 33.28, 26.86, 24.90 ppm. ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+$ $\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 247.1099$, Found: m/z 247.1101.

	Retention Time	\% Area
1	9.815	50.37
2	23.568	49.63

	Retention Time	\% Area
1	9.767	99.55
2	23.578	0.45

(+)-3-(naphthalen-1-yl)oxepan-2-one 8g:

8 g

Prepared according to general procedure: $-20^{\circ} \mathrm{C}, 27 \mathrm{~h}, 51 \%$ yield, $98 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+50.7\left(\mathrm{c} 0.59, \mathrm{CHCl}_{3}, \mathbf{8 g} / \mathbf{9} \mathbf{g}>19 / 1\right)$. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane/2-propanol $=70 / 30,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=11.31 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=6.65 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.68-4.46(\mathrm{~m}, 3 \mathrm{H})$, 2.43-2.21 (m, 2H), 2.20-2.12 (m, 1H), 2.10-2.00 (m, 1H), 1.98-1.72 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=174.59,135.07,132.68,130.26,128.09,126.85,125.25,124.46$,
124.43, 124.42, 121.37, 67.06, 43.28, 29.17, 27.85, 27.68 ppm . ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 263.1048$, Found: m/z 263.1045.

	Retention Time	\% Area
1	6.647	50.34
2	11.288	49.66

	Retention Time	\% Area
1	6.650	1.11
2	11.307	98.89

7-(naphthalen-1-yl)oxepan-2-one 9g:

9 g
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.91-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.03$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.34-1.24(\mathrm{~m}, 1 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.73(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.88,135.19,132.75,128.42,128.19,127.42,125.35,124.57,124.46$, $122.22,121.28,77.75,36.20,33.99,27.74,22.06 \mathrm{ppm}$.
(-)-2-(naphthalen-2-yl)cyclohexanone 7h:

7h

Prepared according to general procedure: $-20^{\circ} \mathrm{C}, 15 \mathrm{~h}, 45 \%$ yield, $90 \% \mathrm{ee}$. $[\alpha]_{\mathrm{D}}{ }^{20}=-76.9\left(\mathrm{c} 0.58, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2-$ propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}($ major $)=7.06 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.00 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.83-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $3.79(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.12(\mathrm{~m}, 2 \mathrm{H})$, 2.10-1.96 (m, 1H), 1.95-1.82 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=209.39,135.38$, 132.46, 131.52, 126.78, 126.70, 126.60, 125.96, 125.95, 124.86, 122.58, 56.43, 41.21, 34.01, 26.79, 24.28 ppm. ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 247.1099$, Found: $\mathrm{m} / \mathrm{z} 247.1099$.

	Retention Time	\% Area
1	7.076	49.23
2	8.022	50.77

	Retention Time	\% Area
1	7.062	94.94
2	8.008	5.06

(+)-3-(naphthalen-2-yl)oxepan-2-one 8h:

8h

Prepared according to general procedure: $-20^{\circ} \mathrm{C}, 15 \mathrm{~h}, 54 \%$ yield, 82% ee. $[\alpha]_{\mathrm{D}}{ }^{20}=+65.2\left(\mathrm{c} 0.87, \mathrm{CHCl}_{3}, \mathbf{8 h} / \mathbf{9 h}=9 / 1\right)$. The ee was determined by HPLC analysis using a chiralcel OD-H column (hexane $/ 2$-propanol $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}($ major $)=19.72 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.59 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.22(\mathrm{~m}, 3 \mathrm{H})$, 4.32-4.19 (m, 2H), 3.94 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.65$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.79,136.43,131.57,127.08,126.74,126.60,125.59$, $125.52,125.02,124.79,67.86,48.31,30.24,27.82,27.09 \mathrm{ppm}$. ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 263.1048$, Found: m/z 263.1050.

	Retention Time	\% Area
1	13.568	49.99
2	19.885	50.01

	Retention Time	\% Area
1	13.588	9.01
2	19.715	90.99

7-(naphthalen-2-yl)oxepan-2-one 9h:

9h
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.42(\mathrm{~m}, 3 \mathrm{H})$, $5.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.25-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.90,137.11,132.01,127.43,127.05,126.63,125.31,125.15,123.61,122.76$, $81.09,36.55,33.97,27.63,21.85 \mathrm{ppm}$.
(+)-(R)-3-methylhexanedioic acid 5:

62% yield, 84% ee. $[\alpha]_{\mathrm{D}}{ }^{20}=+7.1$ (c $0.67, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=10.92(\mathrm{w}, 2 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{dd}, J=15.6,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=180.13,179.43,41.20$, 31.69, 31.06, 29.54, 19.26 ppm; ES-HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 183.0633$, Found: m/z 183.0637.

(R)-3-methyl- N^{1}, N^{6}-diphenylhexanediamide 17:

84% yield, $84 \% e e$. The ee was determined by HPLC analysis using a chiralcel AD-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}($ major $)=6.85 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=4.79 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO): $\delta=9.87(\mathrm{w}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=7.6,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}, \mathrm{DMSO}) \delta=$ $171.22,170.50,139.30,139.22,128.60,122.97$, $122.91,119.09,119.01,43.88,34.23,32.01,30.03$, 19.23 ppm .

	Retention Time	\% Area
1	4.791	8.17
2	6.848	91.83

S39
11. $C D$ spectra:
a. CD spectra for the unreacted ketones 7a-f in methanol, (S)-7a is an authentic sample (S)-7a:

(S)-7b:

(S)-7c:

(S)-7d:

(S)-7e:

(S)-7f:

b. CD spectra for the abnormal lactones 8a-f in methanol, $(\boldsymbol{R})-8 \mathrm{c}$ is an authentic sample (R)-8a:

(R)-8b:

(R)-8c:

(R)-8d:

(R)-8e:

(R)-8f:

12. Reference:

[1] (a) Wen, Y. H.; Huang, X.; Huang, J. L.; Xiong, Y.; Qin, B.; Feng, X. M. Synlett 2005, 2445. (b) Huang, J. L.; Liu, X. H.; Wen, Y. H.; Qin, B.; Feng, X. M. J. Org. Chem. 2007, 72, 204. (c) Huang, J. L.; Wang, J.; Chen, X. H.; Wen, Y. H.; Liu, X. H.; Feng, X. M. Adv. Synth. Catal. 2008, 350, 287. (d) Li, X.; Liu, X. H.; Fu, Y. Z.; Wang, L. J.; Zhou, L.; Feng, X. M. Chem.-Eur. J. 2008, 14, 4796. (e) Yang, X.; Zhou, X.; Lin, L. L.; Chang, L.; Liu, X. H.; Feng, X. M. Angew. Chem. Int. Ed. 2008, 47, 7079. (f) Shang, D. J.; Xin, J. G.; Liu, Y. L.; Zhou, X.; Liu, X. H.; Feng, X. M. J. Org. Chem. 2008, 73, 630. (g) Shang, D. J.; Liu, Y. L.; Zhou, X.; Liu, X. H.; Feng, X. M. Chem.-Eur. J. 2009, 15, 3678. (h) Liu, Y. L.; Shang, D. J.; Zhou, X.; Liu, X. H.; Feng, X. M. Chem.-Eur. J. 2009, 15, 2055.
[2] Zhang, Y.; Schuster, G. B. J. Org. Chem. 1994, 59, 1855.
[3] Magnus, Philip.; Bailey, J. M.; Porter, M. J. Tetrahedron 1999, 55, 13927.
[4] (a) Krepski, L. R.; and Hassner, A. J. Org. Chem. 1978, 43, 2879. (b) Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2008, 130, 6231.
[5] Stewart, J. D.; Reed, K. W.; Martinez, C. A.; Zhu, J.; Chen, G.; Kayser, M. M. J. Am. Chem. Soc. 1998, 120, 3541.
[6] Taschner, M. J.; Black, D. J.; Chen, Q. Z. Tetrahedron Asymmetry 1993, 4, 1387.
[7] Xu, S.; Wang, Z.; Zhang, X.; Zhang, X. M.; Ding, K. Angew. Chem. Int. Ed. 2008, 47, 2840.
[8] Rudroff, F.; Rydz, J.; Ogink, F. H.; Fink, M.; Mihovilovic, M. D. Adv. Synth. Catal. 2007, 349, 1436.
[9] Bcrti, G.; Macchia, B.; Macchia, F.; Monti, L. J. Chem. Soc. C. 1971, 3371.
13. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the ligands:

${ }^{13} \operatorname{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.74,148.08,144.54,128.32,121.33,121.23,77.39,76.97,76.54,76.20,65.91,64.83,34.15,28.94,26.40,23.95,23.63,23.56,22.25,20.10,15.99$.

${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.27,147.96,144.43,128.54,121.25,77.40,76.97,76.85,76.55,68.08,63.92,34.18,28.93,27.40,23.98,23.79,23.17,20.20,19.73$.

14. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the substrates:

15. Copy of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the products:

$2 a$

Current Data Parameters
F2 - Acquisition Parameters
DATE: 2012-03-05T13:38:16
PULPROG: 29 gpg 30
Solvent: CDC13
NS: 512
DS: unde
DS: undefined
SWH: 24038.5 Hz
SWH: 24038.5 Hz
AQ: undefined
TE: 295.3 C
NUC1: 13 CHANNEL
P1: 9.63
P1: 9.63 usec
SFO1: undefined MHz
F2 - Processing Parameters
$\begin{array}{lll}\text { SI: } & 65536 \\ \text { DC: } & 0.05\end{array}$
IB: 1.00 Hz
First Point: 0.50
FT: Hyper Quadrature
Phase: Manual
Phase: Manual
Ph0: -57.05
Ph1: 43.68
${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.68,143.94,127.75,125.84,125.59,76.35,76.04,75.72,67.22,46.20,35.70,32.67,29.30$.

2b

Current Data Parameters

F2 - Acquisition Parameters DATE: 2012-03-05T13:42:26 PULPROG: 32768 TD: 32768
Solvent:
NS: 16
DS: unde
DS: undefined
SWH: 8223.7
SWH: 8223.7 .
AQ: undefir
TE: 295 C
NUC1: 1 CHANEL $f 1$
P1: 9.93 usec
SFO1: undefined MHz
F2 - Processing Parameters
$\begin{array}{ll}\text { SI: } & 65536 \\ \text { DC: } & 0.05\end{array}$
First Point: 0.50
FT: Hyper Quadrature
Phase: Manual
Ph0: 78.54
Ph1: 17.80
病

2b

${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.79,14205,136.48,129.43,126.49,77.38,77.06,76.74,68.31,46.83,36.83,33.72,30.45,21.01$.

2d

${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.79,158.37,137.21,127.55,114.09,77.39,77.07,76.76,68.29,55.30,46.38,36.97,33.69,30.59$.

Current Data Parameters
F2 - Acquisition Parameters
DATE: 2012-03-07T11:37:16
PULPROG: 29
TD: 32768
TD: 32768
Solvent: CDCL
Solvent:
NS: 16
DS: undefi
SWH: 8223.7 Hz
AQ: undefined
NUC1: $=$ CHANNEL $f 1$
NUC1: 1 A
P1: 9.93 used
SFO1: undefined MHz
F2 - Processing Parameters
$\begin{array}{ll}\text { SI: } & 65536 \\ \text { DC: } & 0.05\end{array}$
DC: 0.05 Hz
First Point: 0.50
FT: Hyper Quadrature
Phase: Manual
Pho: 79.92

2k

Current Data Parameters
(F2 - Acquisition Parameters
DULP: 2012-03-07T12:07:28
TD: 32768
NS: 512
DS: undefined
DS: undefined
SWH: 24038.5 Hz
AQ: undefined
TE: 295.4 C
NUC1: $=\mathbf{1 3 C}$ CHANNEL $f 1===$
P1: 9.63 usec
SFO1: undefined MHI

SI: 65536
DC: 0.05
First Point: 0.50
FT: Hyper Quadrature
Phase: Manual
Pho: -69.21
Ph1: 63.19
${ }^{13} \operatorname{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.77,140.66,134.01,130.59,129.34,127.36,126.29,125.68,125.67,122.86,122.27,77.41,77.10,76.78,68.64,41.62,36.35,34.09,29.95$

21
Current Data Parameters
F2 - Acquisition Parameters
DATE: 2012 -03-07T12:12:03
DATE: 2012-03-07T12:12:03
TD: 32768
Solvent: CDC13
NS: 16
NS: 16
DS : undefined
SWH: 8223.7 Hz
SWH: 8223.7 Hz
AQ: undefine
TE: 295 C
NUC1: 1H
P1: 9.93 usec
SFO1: undefined NHz
F2- Processing Parameters
SI: 65536
SI: 65.536
IB: 0.30 Hz
First Point: 0.50
FT: Hyper Quadrature
Phase: Man
Pho: 81.41
Ph1: 18.29

21

${ }^{13}{ }^{1} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.70,14237,133.54,132.44,128.50,127.66,126.31,125.76,125.28,124.89,77.40,77.08,76.76,68.27,47.31,3673,33.75,30.30$

${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.32,77.39,77.07,76.75,68.64,50.76,33.46,33.00,30.34,27.46,23.77$.

4a

Current Data Parameters
F2 - Acquisition Parameters
DATE: 2012-03-07T10:23:48
TD: 32768
Solvent: CDC13
Solvent: C
NS: 16
DS:
DS: undefined
SWH: 8223.7 Hz

NUC1: 1 CHANNEL $f 1$
P1: 9.93 usec
SFO1: undefined MHz
l
F2 - Processing Parameters
$\begin{array}{ll}\text { SI: } & 65536 \\ \text { DC: } & 0.05\end{array}$
DC: 0.05
IB: 0.30 Hz
First Point: 0.
First Point: 0.50
Phase: Manual
Phase: Kan
Pho: 80.98
Ph0: 80.98
Ph1: 22.44

4b

Current Data Parameters
DATE Acquisition Parameters
DATL: 2011-11-
PULPROG: 29
TD: 32768
TD: 32768
Solvent: CDC13
NS: 16
DS: undefined
DS: undefined
SWH: 8223.7 Hz
AQ: undefined
TE: 295.8 C
NUC1: 1 IR
P1: 13.3
P1: 13.3 usec
SFO1:
F2 - Processing Parameters
SI: 65536
DC: 0.05
IB: 0.60 Hz
First Point: 0.
First Point: 0.50
FT: Hyper Quadrature
Phase: Manual
Pho: -204.48
Pho: -204.48
Ph1: 16.70

7a ，

7a
$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathbf{f 1}(\mathrm{ppm})\end{array}$

デT

7c
-208.629

7c

5.6
1
 μ $\cdots \cdots$ n le

（
※্लু

器皆荡

$\underbrace{\text { Nown wivi }}$

