Supporting Information

CuI-Mediated Sequential Iodination/Cycloetherification of *o*-Arylphenols: Synthesis of 2- or 4-Iododibenzofurans and Mechanistic Studies

Jiaji Zhao,[†] Qi Zhang[‡], Lanying Liu,[†] Yimiao He,[†] Jing Li,[†] Juan Li,^{*‡} and Qiang Zhu^{*†}

[†]State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, P. R. China
[‡] Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
Email: zhu_qiang@gibh.ac.cn; tchjli@jnu.edu.cn

Table of Contents

1. General information	S2
2. Synthesis of substrates	S2
2.1 General procedures	S2
2.2 Characterization of substrates	S3
3. Optimization of the reaction conditions	S11
4. General procedures and product characterization	S12
4.1 General procedures	S12
4.2 Product characterization	S12
5. Diversification of 2a	S19
6. Mechanistic studies	S22
7. DFT calculations	S24
8. References	S26
9. Cartesian coordinates for all the species calculated in this study	S27
10. Copies of ¹ H NMR and ¹³ C NMR	S39

1. General information

DMSO was distilled under reduced pressure before use. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates (GF 254). Visualization of the developed plates was performed under UV lights (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded on a 400 or 500 MHz spectrometer. Chemical shifts (δ) were reported in ppm referenced to an internal tetramethylsilane standard or the DMSO-d₆ residual peak (δ 2.50) for ¹H NMR. Chemical shifts of ¹³C NMR were reported relative to CDCl₃ (δ 77.0) or DMSO-d₆ (δ 39.5). The following abbreviations were used to describe peak splitting patterns when appropriate: br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constant, *J*, was reported in Hertz unit (Hz). High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS spectrometer.

2. Synthesis of substrates

2.1 General procedures

Except for compounds **1a**, **1b** and **1q**, substrates **1** were synthesized according to the general procedures **A** to **C**.

Procedure A: A mixture of substituted 2-iodophenol (2 mmol), arylboronic acid (3 mmol, 1.5 equiv), $Pd(Ph_3P)_2Cl_2$ (70 mg, 0.1 mmol, 5 mol %) and potassium carbonate (828 mg, 6 mmol, 3 equiv) in dioxone/H₂O (6/2 mL) was stirred at 100 °C under argon atmosphere until the starting material was consumed (typically 20 h). HCl aqueous solution (10%, 4 mL) was added to acidify the solution with vigorous stirring. The mixture was then extracted with EtOAc (15 mL × 2), and the organic layers were combined, washed with brine, and dried over Na₂SO₄. The concentrated crude product was purified by column chromatography to afford 2-arylphenol **1**.

Procedure B¹: A solution of substituted 2-iodophenol (1 mmol), arylboronic acid (2 mmol, 2 equiv), Pd/C (10%, 53 mg, 0.05 mmol, 0.05 equiv), potassium carbonate (414 mg, 3 mmol, 3 equiv) in dioxone/water (4/4.8 mL) was stirred at 95 °C under air. The reaction was monitored by TLC until the staring material was consumed (typically 10 h). HCl aqueous solution (10%, 4 mL) was added to the reaction mixture to acidify the solution with vigorous stirring. The mixture was then extracted with EtOAc (15 mL × 2) and the organic layers were combined, washed with brine, dried over Na₂SO₄. The concentrated crude product was purified by flash column chromatography to afford 2-arylphenol **1**.

Procedure C²: A solution of substituted 2-iodophenol (1 mmol), arylboronic acid (2 mmol, 1.5 equiv), Pd/C (10%, 53 mg, 0.05 mmol, 0.05 equiv) and potassium carbonate (414 mg, 3 mmol, 3 equiv) in dioxone/H₂O (3/3 mL) was stirred at 80 °C under argon atmosphere until the starting material was consumed (typically 5-8 h). HCl aqueous solution (10%, 4 mL) was added to the reaction mixture to acidify the solution with vigorous stirring. The mixture was then extracted with EtOAc (15 mL × 2) and the organic layers were combined, washed with brine, dried over Na₂SO₄. The concentrated crude product was purified by flash column chromatography to afford 2-arylphenol **1**.

2.2 Characterization of substrates

4-nitro-2-phenylphenol (1a)³ and 2-nitro-6-phenylphenol (1q)

A 500 mL round-bottom flask was charged with 2-phenylphenol (4.01 g, 23.6 mmol) and AcOH (50 mL). The solution was stirred at 15 °C while a solution of concentrated HNO₃ (1.2 mL, 23.6 mmol, 1 equiv) in AcOH (20 mL) was added from a dropping funnel slowly. The addition rate was controlled at about 6 drops per minute, and the temperature was maintained at 15 to 20 °C. Upon completion of addition, the reaction mixture was transferred into a beaker and saturated NaHCO₃ aqueous solution (400 mL) was poured into the mixture slowly with vigorous stirring. The mixture was extracted with dichloromethane (200 mL) for three times. The organic layers were combined, and dried over Na₂SO₄. The concentrated crude product was purified by column chromatography to afford 1.80 g of **1a** as a yellow solid (34%). ¹H NMR (400 MHz, CDCl₃): δ 8.17-8.20 (m, 2H), 7.54-7.58 (m, 2H), 7.46-7.51 (m, 3H), 7.08 (d, J =8.8 Hz, 1H), 5.96 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 141.9, 134.7, 129.7, 129.1, 128.9, 128.8, 126.2, 125.2, 116.3. And 1.58 g of 1q was also obtained as a yellow solid (30%). ¹H NMR (400 MHz, CDCl₃): δ 11.13 (s, 1H), 8.14 (dd, J = 8.4, 1.6 Hz, 1H), 7.64 (dd, J = 7.2, 1.4 Hz, 1H), 7.58-7.55 (m, 2H), 7.49-7.46 (m, 2H), 7.43-7.40 (m, 1H), 7.08-7.04 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 152.8, 138.4, 135.8, 134.1, 133.1, 129.3, 128.3, 128.1, 124.3, 119.8.

2-iodo-4-nitro-6-phenylphenol (1b)

A mixture of **1a** (215 mg, 1 mmol) and iodine (508 mg, 2 mmol) in 5 mL of DMSO was stirred at 110 °C. The reaction was monitored by TLC until the starting material was consumed. The mixture was diluted with EtOAc, and it was washed with aqueous solution of sodium hydrosulfite and brine, successively. The organic layer was dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by column chromatography to provide 283 mg of **1b** as a yellow solid (83%). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, *J* = 2.6 Hz, 1H), 8.19 (d, *J* = 2.6 Hz, 1H), 7.45-7.55 (m, 5H), 6.24 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.1, 142.2, 135.0, 133.7, 129.3, 129.1, 129.0, 128.5, 126.4, 84.5.

2-(4-methylphenyl)-4-nitrophenol (1c)

Following the general method **A**, 2-iodo-4-nitrophenol and 4-methylphenylboronic acid were used. Yellow solid, yield: 76%. ¹H NMR (400 MHz, CDCl₃): δ 8.15-8.17 (m, 2H), 7.36 (s, 4H), 7.06 (d, *J* = 8.0 Hz, 1H), 5.94 (s, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 141.8, 139.2, 131.6, 130.5, 128.8, 126.1, 125.0, 116.2, 21.2.

2-(4-methoxyphenyl)-4-nitrophenol (1d)

Following the general method **A**, 2-iodo-4-nitrophenol and 4-methoxyphenylboronic acid were used. Yellow solid, yield: 71%. ¹H NMR (400 MHz, CDCl₃): δ 8.14-8.16 (m, 2H), 7.39 (d, *J* = 8.8 Hz, 2H), 7.04-7.08 (m, 3H), 5.94 (s, 1H), 3.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 160.2, 158.2, 141.6, 130.2, 128.4, 126.5, 126.2, 124.9, 116.1, 115.2, 55.4.

4-nitro-2-(4-phenylphenyl)phenol (1e)

Following the general method **A**, 2-iodo-4-nitrophenol and 4-phenylphenylboronic acid were used. Yellow solid, yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 2.8 Hz, 1H), 8.20 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.64-7.66 (m, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.48-7.51 (m, 2H), 7.39-7.43 (m, 1H), 7.10 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.1, 142.1, 141.8, 140.0, 133.3, 129.3, 129.0, 128.4, 128.3, 127.9, 127.1, 126.2, 125.2, 116.4.

2-(4-chlorophenyl)-4-nitrophenol (1f)

Following the general method **A**, 2-iodo-4-nitrophenol and 4-chlorophenylboronic acid were used. Yellow solid, yield: 85%. ¹H NMR (400 MHz, CDCl₃): δ 8.16-8.19 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.05-7.07 (m, 1H), 5.92 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.9, 141.8, 135.2, 133.1, 130.4, 129.8, 127.6, 126.3, 125.4, 116.5.

2-(4-fluorophenyl)-4-nitrophenol (1g)

Following the general method **A**, 2-iodo-4-nitrophenol and 4-fluorophenylboronic acid were used. Yellow solid, yield: 78%. ¹H NMR (400 MHz, DMSO-d₆): δ 11.33 (br s, 1H), 8.11-8.14 (m, 2H), 7.64 (dd, J = 8.6, 5.6 Hz, 2H), 7.28 (t, J = 8.8 Hz, 2H), 7.12 (d, J = 8.6 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆): δ 162.6, 160.8, 160.7, 139.8, 132.5, 132.5, 131.2, 131.1, 127.3, 126.0, 124.9, 116.3, 115.1, 115.0.

4-nitro-2-(4-trifluoromethylphenyl)phenol (1h)

Following the general method **A**, 2-iodo-4-nitrophenol and 4-trifluoromethylphenylboronic acid were used. Yellow solid, yield: 58%. ¹H NMR (400 MHz, DMSO-d₆): δ 11.51 (br s, 1H), 8.17-8.18 (m, 2H), 7.80-7.85 (m, 4H), 7.15-7.17 (m, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.7, 140.3, 139.9, 129.8, 128.4, 128.2, 128.1, 127.8, 127.5, 126.7, 126.0, 125.5, 125.3, 124.9, 124.9, 124.8, 124.8, 122.8, 120.1, 116.4.

4-nitro-2-(4-nitrophenyl)phenol (1i)

Following the general method **C**, 2-iodo-4-nitrophenol and 4-nitrophenylboronic acid were used. Yellow solid, yield: 75%. ¹H NMR (400 MHz, DMSO-d₆): δ 11.67 (br s, 1H), 8.30 (d, *J* = 8.8 Hz, 2H), 8.19-8.22 (m, 2H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.17 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.9, 146.6, 142.9, 139.9, 130.4, 126.2, 126.0, 125.9, 123.2, 116.6.

2-(3-methylphenyl)-4-nitrophenol (1j)

Following the general method **A**, 2-iodo-4-nitrophenol and 3-methylphenylboronic acid were used. Yellow solid, yield: 72%. ¹H NMR (400 MHz, CDCl₃): δ 8.16-8.18 (m, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.25-7.31 (m, 3H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.00 (s, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.1, 141.6, 139.9, 134.4, 129.9, 129.7, 129.5, 128.7, 126.1, 125.8, 125.1, 116.2, 21.5.

2-(3-methoxyphenyl)-4-nitrophenol (1k)

Following the general method **A**, 2-iodo-4-nitrophenol and 3-methoxyphenylboronic acid were used. Yellow solid, yield: 55%. ¹H NMR (400 MHz, CDCl₃): δ 8.17-8.20 (m, 2H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 7.01-7.04 (m, 2H), 6.97 (d, *J* = 1.6 Hz, 1H), 6.02 (s, 1H), 3.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 160.7, 158.1, 141.6, 135.8, 131.0, 128.4, 126.0, 125.3, 120.8, 116.3, 114.7, 114.5, 55.4.

2-(2-methylphenyl)-4-nitrophenol (11)

Following the general method **B**, 2-iodo-4-nitrophenol and 2-methylphenylboronic acid were used. Yellow solid, yield: 48%. ¹H NMR (400 MHz, CDCl₃): δ 8.21 (dd, *J* = 9.0, 2.8 Hz, 1H), 8.09 (d, *J* = 2.8 Hz, 1H), 7.32-7.43 (m, 3H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 9.0 Hz, 1H), 5.57 (br s, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.3, 141.6, 137.3, 133.2, 131.2, 130.3, 129.6, 128.4, 126.9, 126.3, 125.4, 115.9, 19.6.

2-phenyl-4-trifluoromethylphenol (1m)

Following the general method C, 2-iodo-4-trifluoromethylphenol and phenylboronic acid were used. White solid, yield: 83%. ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.58 (m, 4H), 7.42-7.49 (m, 3H), 7.06 (d, *J* = 9.2 Hz, 1H), 5.80 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 156.3, 134.6, 134.4, 133.3, 129.7, 129.3, 128.9, 128.9, 119.0, 116.9, 104.3.

4-cyano-2-phenylphenol (1n)

Following the general method **A**, 2-iodo-4-cyanophenol and phenylboronic acid were used. White solid, yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.58 (m, 4H), 7.42-7.49 (m, 3H), 7.06 (d, *J* = 9.0 Hz, 1H), 5.79 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 156.3, 134.6, 134.4, 133.3, 129.7, 129.3, 129.0, 128.9, 119.0, 116.9, 104.4.

4-formyl-2-phenylphenol (10)

Following the general method **A**, 2-iodo-4-formylphenol and phenylboronic acid were used. White solid, yield: 69%. ¹H NMR (400 MHz, DMSO-d₆): δ 10.80 (s, 1H), 9.86 (s,

1H), 7.82 (d, J = 2.0 Hz, 1H), 7.75 (dd, J = 8.4, 2.0 Hz, 1H), 7.57-7.59 (m, 2H), 7.42-7.45 (m, 2H), 7.33-7.37 (m, 1H), 7.12 (d, J = 8.4 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆): δ 191.1, 160.2, 137.2, 133.0, 130.2, 129.0, 128.7, 128.3, 128.1, 127.1, 116.5.

2-(3-hydroxymethylphenyl)-4-nitrophenol (1p)

Following the general method **A**, 2-iodo-4-nitrophenol and 3-hydroxymethylphenylboronic acid were used. Yellow solid, yield: 65%. ¹H NMR (400 MHz, DMSO-d₆): δ 11.21 (br s, 1H), 8.09-8.13 (m, 2H), 7.52 (s, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 8.8 Hz, 1H), 5.21 (t, *J* = 5.6 Hz, 1H), 4.56 (d, *J* = 5.2 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.7, 142.4, 139.8, 135.9, 128.5, 127.7, 127.2, 126.9, 125.8, 125.6, 124.4, 116.2, 62.7.

6-(4-methylphenyl)-2-nitrophenol (1r)

Following the general method **B**, 2-iodo-6-nitriphenol and 4-methylphenylboronic acid were used. Yellow solid, yield: 65%. ¹H NMR (400 MHz, CDCl₃): δ 11.12 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.06-7.02 (m, 1H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 152.8, 138.2, 138.0, 134.1, 133.1, 132.9, 129.2, 129.1, 124.0, 119.7, 21.2.

6-(4-methoxyphenyl)-2-nitrophenol (1s)

Following the general method B, 2-iodo-6-nitriphenol and 4-methoxyphenylboronic

acid were used. Yellow solid, yield: 63%. ¹H NMR (400 MHz, CDCl₃): δ 11.14 (s, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.62 (dd, J = 7.6, 1.6 Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.06-6.99 (m, 3H), 3.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.5, 152.8, 138.1, 134.2, 132.8, 130.5, 128.1, 123.8, 119.7, 113.8, 55.3.

6-(4-fluorophenyl)-2-nitrophenol (1t)

Following the general method **B**, 2-iodo-6-nitriphenol and 4-fluorophenylboronic acid were used. Yellow solid, yield: 88 %. ¹H NMR (400 MHz, CDCl₃): δ 11.14 (s, 1H), 8.14 (dd, J = 8.4, 1.6 Hz, 1H), 7.61 (dd, J = 7.6, 1.6 Hz, 1H), 7.55-7.52 (m, 2H), 7.18-7.13 (m, 2H), 7.08-7.04 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.6, 161.6, 152.7, 138.2, 134.2, 132.0, 131.71, 131.69, 131.1, 131.0, 124.4, 119.8, 115.4, 115.3.

6-(4-chlorophenyl)-2-nitrophenol (1u)

Following the general method **B**, 2-iodo-6-nitriphenol and 4-chlorophenylboronic acid were used. Yellow solid, yield: 78 %. ¹H NMR (400 MHz, CDCl₃): δ 11.14 (s, 1H), 8.15 (dd, J = 8.4, 1.6 Hz, 1H), 7.61 (dd, J = 7.6, 1.6 Hz, 1H), 7.51-7.49 (m, 2H), 7.45-7.43 (m, 2H), 7.09-7.04 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 152.6, 147.1, 138.1, 134.21, 134.15, 131.8, 130.6, 128.6, 125.4, 124.6, 121.6, 119.8.

2-nitro-6-(4-phenylphenyl)phenol (1v)

Following the general method **B**, 2-iodo-6-nitriphenol and 4-phenylphenylboronic acid were used. Yellow solid, yield: 83 %. ¹H NMR (400 MHz, CDCl₃): δ 11.19 (s, 1H), 8.15 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.73-7.64 (m, 7H), 7.49-7.45 (m, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.10-7.06 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 152.8, 141.0, 140.5, 138.2, 134.7, 134.2, 132.6, 129.7, 128.8, 127.5, 127.10, 127.06, 124.3, 119.8.

3. Optimization of the reaction conditions

O₂N _		copper salt, O ₂ N additive,		0 ₂ N	
		DMSO, air,			
	1a	140 ºC, 24 h	3	I	2a
	entry	Cu salt	additive	yield $(\%)^b$	
	chtt y	(equiv)	(equiv)	3	2a
	1^c	$Cu(OAc)_2(1.0)$		0	0
	2^d	$Cu(OAc)_2(1.0)$		0	0
	3 ^e	$Cu(OAc)_2(1.0)$		0	0
	4^{f}	$Cu(OAc)_2(1.0)$		14	0
	5	$Cu(OAc)_2(1.0)$		39	0
	6	$Cu(TFA)_2(1.0)$		trace	0
	7	Cu(OTf) ₂ (1.0)		7	0
	8	CuCl (1.0)		0	0
	9	CuI (1.0)		0	55
	10	CuI (1.5)		0	63
	11	CuI (2.0)		0	63
	12^g	CuI (1.5)		0	60
	13^h	CuI (1.5)		0	9
	14^i	CuI (0.2)	$I_2(1.0)$	0	0
	15^{i}	CuI (0.5)	$I_2(1.0)$	0	0
	16	CuI (0.5)	LiI (1.0)	0	0
	17	CuI (0.5)	NaI (1.0)	0	0
	18	CuI (0.5)	KI (1.0)	0	0
	19	CuI (0.5)	<i>n</i> -Bu ₄ NI (1.0)	0	0
	20	CuI (1.5)	AcOH (1.0)	0	79
	21	CuI (1.5)	PivOH (1.0)	0	82
	22	CuI (1.5)	PivOH (2.0)	0	82
	23^j	CuI (1.5)	PivOH (1.0)	0	81.
	^a The reaction yield. The reaction of the rea	ons were carried out a action was performed	at 0.2 mmol scale in in <i>o</i> -dichlorobenze	n 1 mL of solve ene at 140 °C.	ent. ^b Isolated The reaction

yield. The reactions were carried out at 0.2 mmol scale in 1 mL of solvent. Isolated yield. The reaction was performed in *o*-dichlorobenzene at 140 °C. The reaction was performed in toluene under reflux. The reaction was performed in DMF at 140 °C. The reaction was performed under balloon pressure of O₂. The reaction was performed under balloon pressure of O₂. The reaction time was 12 h.

4. General procedures and product characterization

4.1 General procedures

A reaction tube was charged with 2-arylphenol substrate **1** (0.2 mmol), CuI (57 mg, 0.3 mmol, 1.5 equiv), PivOH (22.5 μ L, 0.2 mmol, 1 equiv) and DMSO (1 mL). The mixture was stirred open to air at temperatures described in procedures **A** to **D**. Procedure **A**: the reaction mixture was stirred at 110 °C for 10 h and then at 140 °C for another 10 h (for **2k**, 26 h).

Procedure B: the reaction mixture was stirred at 140 °C for 10 h (for 2q-2v, 24 h).

Procedure **C**: the reaction mixture was stirred at 60 °C for 90 h and at 80 °C for another 40 h.

Procedure **D**: CuBr (1.5 equiv) was used instead of CuI; the reaction mixture was stirred at 100 °C for 24 h and at 140 °C for another 10 h.

After the completion of the reaction, EtOAc (25 mL) was added to the cooled reaction mixture. The solution was washed with concentrated NH_4OH (15 mL) and brine (15 mL), successively. The organic layer was dried over Na_2SO_4 , and concentrated under vacuum. The residue was purified by column chromatography to give the corresponding products.

4.2 Product characterization

4-iodo-2-nitrodibenzofuran (2a)

Following the general procedure **B**; white solid, yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ 8.83 (d, *J* = 2.0 Hz, 1H), 8.75 (d, *J* = 2.0 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 157.1, 144.4, 131.4, 129.4, 124.4, 124.4, 123.7, 121.8, 116.6, 112.6, 74.8; HRMS (ESI): Exact mass calcd for C₁₂H₁₆INNaO₃ [M+Na]⁺ 361.9285, found 361.9285.

4-iodo-7-methyl-2-nitrodibenzofuran (2b)

Following the general procedure **A**; white solid, yield: 76%. ¹H NMR (400 MHz, CDCl₃): δ 8.77 (d, *J* = 2.0 Hz, 1H), 8.71 (d, *J* = 2.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.52 (s, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 157.5, 144.4, 140.5, 130.8, 125.7, 124.6, 121.2, 121.0, 116.2, 112.7, 74.6, 22.1; HRMS (ESI): Exact mass calcd for C₁₃H₈INNaO₃ [M+Na]⁺ 375.9441, found 375.9444.

4-iodo-7-methoxy-2-nitrodibenzofuran (2c)

Following general procedure **A**; white solid, yield: 70%. ¹H NMR (400 MHz, CDCl₃): δ 8.71 (d, J = 2.2 Hz, 1H), 8.65 (d, J = 2.2 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.22 (d, J = 2.0 Hz, 1H), 7.05 (dd, J = 8.8, 2.2 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 159.8, 158.6, 144.5, 129.9, 124.7, 122.1, 116.4, 115.5, 113.1, 97.0, 74.2, 55.9; HRMS (ESI): Exact mass calcd for C₁₃H₈INNaO₄ [M+Na]⁺ 391.9390, found 391.9400.

4-iodo-2-nitro-7-phenyldibenzofuran (2d)

Following the general procedure **A**; white solid, yield: 67%. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 2.0 Hz, 1H), 8.75 (d, *J* = 2.0 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.94 (s, 1H), 7.68-7.73 (m, 3H), 7.52 (t, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 157.7, 144.5, 143.2, 140.1, 131.2, 129.1, 128.2, 127.4, 124.3, 123.8, 122.5, 121.8, 116.5, 110.9, 74.7; HRMS (ESI): Exact mass calcd for C₁₈H₁₀INNaO₃ [M+Na]⁺ 437.9598, found 437.9594.

7-chloro-4-iodo-2-nitrodibenzofuran (2e)

Following the general procedure **B**; white solid, yield: 70%. ¹H NMR (400 MHz, DMSO-d₆): δ 9.16 (d, J = 2.0 Hz, 1H), 8.66 (d, J = 2.0 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 1.2 Hz, 1H), 7.56 (dd, J = 8.4, 1.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 159.5, 156.3, 144.4, 133.7, 131.0, 124.8, 123.9, 123.1, 122.3, 117.6, 112.7, 76.7; HRMS (ESI): Exact mass calcd for C₁₂H₅ClINNaO₃ [M+Na]⁺ 395.8895, found 395.8893.

7-fluoro-4-iodo-2-nitrodibenzofuran (2f)

Following the general procedure **B**; white solid, yield: 74%. ¹H NMR (400 MHz, CDCl₃): δ 8.77 (d, *J* = 2.0 Hz, 1H), 8.72 (d, *J* = 2.0 Hz, 1H), 7.96 (dd, *J* = 8.6, 5.2 Hz, 1H), 7.43 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.20-7.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 162.2, 160.3, 157.5, 157.4, 144.7, 131.1, 124.0, 122.7, 122.6, 120.0, 120.0, 116.3, 113.0, 112.7, 100.9, 100.6, 74.7; HRMS (ESI): Exact mass calcd for C₁₂H₅FINNaO₃ [M+Na]⁺ 379.9190, found 379.9193.

4-iodo-2-nitro-7-trifluoromethyldibenzofuran (2g)

Following the general procedure **B**; white solid, yield: 67%. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (d, J = 2.0 Hz, 1H), 8.83 (d, J = 2.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.02 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 156.2, 144.8, 132.6, 132.0, 131.7, 131.4, 131.1, 127.7, 126.8, 125.0, 123.2, 122.4, 122.3, 121.4, 121.4, 121.4, 121.3, 119.6, 117.3, 110.4, 110.4, 110.3, 110.3, 75.2.

2,7-dinitro-4-iodo-dibenzofuran (2h)

Following the general procedure **A**; pale yellow solid, yield: 67%. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, *J* = 2.0 Hz, 1H), 8.88 (d, *J* = 2.0 Hz, 1H), 8.64 (d, *J* = 1.8 Hz, 1H), 8.42 (dd, *J* = 8.4, 1.8 Hz, 1H), 8.18 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 161.4, 155.9, 148.2, 144.9, 133.4, 129.3, 122.6, 122.2, 119.9, 117.8, 109.0, 75.6; HRMS (ESI): Exact mass calcd for C₁₂H₅IN₂NaO₅ [M+Na]⁺ 406.9135, found 406.9136.

4-iodo-8-methyl-2-nitrodibenzofuran (2i)

Following the general procedure in **A**; white solid, yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, J = 2.2 Hz, 1H), 8.73 (d, J = 2.2 Hz, 1H), 7.80 (s, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 155.4, 144.3, 134.2, 131.1, 130.6, 124.4, 123.6, 121.5, 116.5, 112.1, 74.7, 21.3; HRMS (ESI): Exact mass calcd for C₁₃H₈INNaO₃ [M+Na]⁺ 375.9441, found 375.9441.

4-iodo-8-methoxy-2-nitrodibenzofuran (2j)⁹

Following the general procedure **A**; pale yellow solid, yield: 65% (13% of the regioisomer). ¹H NMR (400 MHz, DMSO-d₆): δ 9.21 (d, *J* = 2.2 Hz, 1H), 8.67 (d, *J* = 2.2 Hz, 1H), 8.03 (d, *J* = 2.4 Hz, 1H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.23 (dd, *J* = 9.2, 2.6 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 159.7, 156.4, 150.8, 143.8, 130.5, 124.0, 123.8, 117.7, 117.5, 112.8, 105.4, 76.7, 55.8; HRMS (ESI): Exact mass calcd for C₁₃H₈INNaO₄ [M+Na]⁺ 391.9390, found 391.9393.

6-iodo-1-methyl-8-nitrodibenzofuran (2k)

Following the general procedure **A**, the reaction was performed at 140 °C for 26 h. White solid, yield: 26%. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (d, *J* = 2.2 Hz, 1H), 8.75 (d, *J* = 2.2 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.2 Hz, 1H), 2.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.6, 157.0, 144.2, 134.8, 130.9, 129.2, 125.5, 124.8, 122.3, 118.0, 109.9, 74.7, 19.7; HRMS (ESI): Exact mass calcd for C₁₃H₈INNaO₃ [M+Na]⁺ 375.9441, found 375.9446.

4-iodo-2-trifluoromethyldibenzofuran (2l)

Following the general procedure **A**; white solid, yield: 71%. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 1.4 Hz, 1H), 8.08 (d, *J* = 1.4 Hz, 1H), 7.96 (d, *J* = 7.4 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.57-7.61 (m, 1H), 7.44-7.47 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.6, 156.3, 138.8, 129.3, 124.9, 124.8, 124.2, 123.0, 121.6, 117.7, 112.5, 108.3, 75.9.

2-cyano-4-iododibenzofuran (2m)

Following the general procedure **B**; white solid, yield: 43%. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 1.4 Hz, 1H), 8.09 (d, *J* = 1.4 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.58-7.62 (m, 1H), 7.44-7.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 156.4, 138.9, 129.3, 124.9, 124.8, 124.2, 123.1, 121.6, 117.6, 112.5, 108.4, 75.9; HRMS (ESI): Exact mass calcd for C₁₃H₆INNaO [M+Na]⁺ 341.9386, found 341.9383.

2-formyl-4-iododibenzofuran (2n)

Following the general procedure **B**; white solid, yield: 35%. ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 8.43 (d, *J* = 1.4 Hz, 1H), 8.34 (d, *J* = 1.4 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.54-7.59 (m, 1H), 7.42-7.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 189.9, 159.9, 156.5, 137.7, 133.6, 128.8, 125.1, 124.0, 123.9, 122.5, 121.5, 112.4, 76.1; HRMS (ESI): Exact mass calcd for C₁₃H₇INaO₂ [M+Na]⁺ 344.9383, found 344.9382.

6-hydroxymethyl-4-iodo-2-nitrodibenzofuran (20)

Following the general procedure **C**; white solid, yield: 54%. ¹H NMR (400 MHz, DMSO-d₆): δ 9.18 (d, *J* = 2.2 Hz, 1H), 8.68 (d, *J* = 2.2 Hz, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 5.50 (t, *J* = 5.6 Hz, 1H), 4.90 (d, *J* = 5.6 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 159.0, 153.5, 144.1, 130.6, 127.8, 126.8, 124.2, 123.8, 122.8, 121.2, 117.4, 76.7, 57.1; HRMS (ESI): Exact mass calcd for C₁₃H₈INNaO₄ [M+Na]⁺ 391.9390, found 391.9391.

4-bromo-2-nitrodibenzofuran (2p)

Following the general procedure **D**; white solid, yield: 63%. ¹H NMR (400 MHz, CDCl₃): δ 8.79 (d, *J* = 2.0 Hz, 1H), 8.56 (d, *J* = 2.0 Hz, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.59-7.64 (m, 1H), 7.46-7.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 157.4, 156.6, 144.4, 129.6, 125.8, 125.7, 124.5, 123.4, 121.7, 115.8, 112.6, 104.8; HRMS (ESI): Exact mass calcd for C₁₂H₆BrNNaO₃ [M+Na]⁺ 313.9423, found 313.9425.

2-iodo-4-nitrodibenzofuran (2q)

Following the general procedure **B**; pale yellow solid, yield: 50%. ¹H NMR (400 MHz, DMSO-d₆): δ 9.05 (d, J = 1.6 Hz, 1H), 8.51 (d, J = 1.6 Hz, 1H), 8.30 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H); ¹³C NMR (125 MHz, DMSO-d₆): δ 156.1, 147.4, 136.2, 134.0, 130.4, 129.9, 129.7, 124.5, 122.1, 120.8, 112.1, 85.7; HRMS (ESI): Exact mass calcd for C₁₂H₇INO₃[M+H]⁺ 339.9465, found 339.9464.

2-iodo-7-methyl-4-nitrodibenzofuran (2r)

Following the general procedure **B**; pale yellow solid, yield: 42%. ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 1.6 Hz, 1H), 8.46 (d, *J* = 1.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.52 (s, 1H), 7.27-7.25 (m, 1H), 2.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.4, 148.2, 140.7, 134.9, 134.3, 130.7, 130.4, 125.8, 120.5, 118.4, 112.7, 83.7, 22.1; HRMS (ESI): Exact mass calcd for C₁₃H₉INO₃[M+H]⁺ 353.9622, found 353.9622.

2-iodo-7-methoxy-4-nitrodibenzofuran (2s)

Following the general procedure **B**; pale yellow solid, yield: 32%. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (d, *J* = 1.6 Hz, 1H), 8.42 (d, *J* = 1.6 Hz, 1H), 7.80 (d, *J* = 8.8 Hz, 1H), 7.25-7.24 (m, 1H), 7.04 (dd, *J* = 8.8, 2.2 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.7, 158.6, 148.4, 134.3, 134.2, 130.8, 129.4, 121.4, 113.9, 113.4, 96.8, 84.0, 55.9; HRMS (ESI): Exact mass calcd for C₁₃H₉INO₄[M+H]⁺ 369.9571, found 369.9569.

7-fluoro-2-iodo-4-nitrodibenzofuran (2t)

Following the general procedure **B**; pale yellow solid, yield: 75%. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (d, *J* = 1.6 Hz, 1H), 8.50 (d, *J* = 1.6 Hz, 1H), 7.91 (dd, *J* = 8.4, 5.2 Hz, 1H), 7.46 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.25-7.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 164.5, 162.5, 157.5, 157.4, 148.8, 135.0, 134.4, 130.7, 129.9, 121.9, 121.8, 117.44, 117.43, 113.0, 112.8, 100.9, 100.7, 84.4; HRMS (ESI): Exact mass calcd for C₁₂H₆FINO₃[M+H]⁺ 357.9371, found 357.9370.

7-chloro-2-iodo-4-nitrodibenzofuran (2u)

Following the general procedure **B**; pale yellow solid, yield: 45%. ¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 1.6 Hz, 1H), 8.51 (d, *J* = 1.6 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 1.6 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, J = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 157.2, 148.5, 135.5, 135.2, 134.7, 131.3, 129.8, 125.3, 121.5, 119.8, 113.3, 84.2; HRMS (ESI): Exact mass calcd for C₁₂H₆ClINO₃[M+H]⁺ 373.9075, found 373.9084.

2-iodo-4-nitro-7-phenyldibenzofuran (2v)

Following the general procedure **B**; pale yellow solid, yield: 56%. ¹H NMR (400 MHz, CDCl₃): δ 8.56-8.55 (m, 2H), 8.01-7.97 (m, 2H), 7.73-7.68 (m, 3H), 7.53-7.49 (m, 2H), 7.45-7.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 148.7, 143.5, 140.1, 135.2, 134.6, 130.9, 130.5, 129.1, 128.2, 127.4, 123.9, 121.1, 120.0, 110.9, 83.9; HRMS (ESI): Exact mass calcd for C₁₈H₁₁INO₃[M+H]⁺ 415.9778, found 415.9778.

5. Diversification of 2a

2-amino-4-iododibenzofuran (4)

A mixture of **2a** (34 mg, 0.1 mmol), iron powder (28 mg, 0.5 mmol, 5 equiv), 10% HCl aqueous solution (1 mL) in THF (2 mL) was stirred at 85 °C under argon atmosphere for 6 h, then another 2.5 equiv of iron powder (14 mg), 0.5 mL of 10% HCl aqueous solution and 1mL THF were added. The reaction mixture was stired for another 6 h. The mixture was diluted by EtOAc (20 mL), washed with concentrated NH₄OH (15 mL) and brine (15 mL), and dried over Na₂SO₄. The concentrated residue was purified by column chromatography to give **4** as a pink solid in 63% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.47-7.43 (m, 1H), 7.33-7.29 (m, 1H), 7.21-7.19 (m, 2H), 3.70 (br s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 156.4, 150.9, 143.4, 127.5, 124.9, 124.8, 124.0, 122.7, 121.0, 112.1, 106.1, 75.2; HRMS (ESI): Exact mass calcd for C₁₂H₉INO[M+H]⁺ 309.9723, found 309.9726.

2-nitro-4-phenyldibenzofuran (5)

Following the general procedure for the synthesis of substrate **1**, **2a** and phenylboronic acid were used. Compound **5** was isolated in 91% yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.84 (d, *J* = 2.4 Hz, 1H), 8.55 (d, *J* = 2.4 Hz, 1H), 8.07 (d, *J* = 7.6 Hz, 1H), 7.93-7.95 (m, 2H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.56-7.61 (m, 3H), 7.47-7.53 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 157.3, 156.3, 144.2, 134.2, 129.0, 128.9, 128.8, 126.5, 125.7, 124.0, 123.2, 122.1, 121.2, 115.4, 112.3; HRMS (ESI): Exact mass calcd for C₁₈H₁₁NNaO₃ [M+Na]⁺ 312.0631, found 312.0631.

1-(2-nitrodibenzo[b,d]furan-4-yl)-1H-imidazole (6)

Substrate **1a** (22 mg, 0.1 mmol) was subjected to the standard iodocyclization condition (procedure **B**). When **1a** was completely converted to **2a**, imidazole (28 mg, 0.4 mmol, 4 equiv) and KOH (17 mg, 0.3 mmol, 3 equiv) were added to the reaction mixture. The mixture was stirred at 140 °C for 20 h in argon. The cooled reaction mixture was diluted with EtOAc (20 mL), washed with concentrated NH₄OH (15 mL) and brine (15 mL), and dried over Na₂SO₄. The concentrated residue was purified by column chromatography to give **6** in 36% yield as a yellow solid. ¹H NMR (400 MHz, DMSO-d₆): δ 9.19 (d, *J* = 2.2 Hz, 1H), 8.63 (d, *J* = 2.2 Hz, 1H), 8.56 (s, 1H), 8.45 (d, *J* = 7.4 Hz, 1H), 8.06 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.71-7.67 (m, 1H), 7.57-7.53 (m, 1H), 7.27 (s, 1H); ¹³C NMR (125 MHz, DMSO-d₆): δ 156.8, 149.9, 144.0, 137.4, 129.9, 129.8, 126.6, 124.7, 122.62, 122.58, 122.4, 119.7, 115.9, 115.8, 112.6. HRMS (ESI): Exact mass calcd for C₁₅H₁₀N₃O₃[M+H]⁺ 280.0717, found 280.0718.

2-nitro-4-(phenylethynyl)dibenzofuran (7)

A mixture of **2a** (44 mg, 0.2 mmol), phenylacetylene (28.5 μ L, 0.26 mmol, 1.3 equiv), Pd(PPh₃)₂Cl₂ (2.8 mg, 0.004 mmol, 2 mol %), CuI (1.5 mg, 0.008 mmol, 4 mol %), Et₂NH (164 μ L, 1.6 mmol, 8 equiv) in DMF (2 mL) was stirred at room temperature in Ar for 3 h. The mixture was diluted with EtOAc (20 mL), washed with brine (15 mL), and dried over Na₂SO₄. The concentrated residue was purified by column chromatography to give **7** in 75% yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.78 (d, *J* = 2.4 Hz, 1H), 8.52 (d, *J* = 2.4 Hz, 1H), 8.02 (d, *J* = 7.4 Hz, 1H), 7.72-7.67 (m, 3H), 7.62-7.58 (m, 1H), 7.48-7.42 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 158.8, 157.4, 143.7, 132.0, 129.3, 129.2, 128.5, 125.7, 125.1, 124.2, 123.0, 122.1,

121.4, 116.4, 112.5, 108.9, 96.4, 81.6; HRMS (ESI): Exact mass calcd for $C_{20}H_{12}NO_3[M+H]^+$ 314.0812, found 314.0813.

6. Mechanistic studies

Synthesis and characterization of deuterated substrate 1a-D₅ 4-nitro-2-pentadeuteriumphenylphenol (1a-D₅)

Following the method **A** for the synthesis of substrate **1**, 2-iodo-4-nitrophenol and pentadeuteriumphenylboronic acid were used. **1a-D**₅ was obtained in 83% yield as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.20-8.17 (m, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.90 (s, 1H).

H/D Exchange experiment

A mixture of **1a-D**₅ (44 mg, 0.2 mmol, the deuterium rate is over 95%), CuI (57 mg, 0.3 mmol, 1.5 equiv), PivOH (22.5 μ L, 0.2 mmol, 1 equiv) in DMSO was stirred at 140 °C in air for 22 h. The mixture was diluted with EtOAc (20 mL), washed with concentrated NH₄OH (15 mL) and brine (15 mL), and dried over Na₂SO₄. The concentrated residue was purified by column chromatography to give **2a-D**₄ (D% was about 92%) in 22% yield. The iodinated intermediate **1b-D**₅ (D% was over 95%) was obtained in 55% yield.

Intermolecular competition reaction of a mixture of 1a and 1a-D₅

A mixture of **1a** (11 mg, 0.05 mmol, 0.5 equiv), **1a-D**₅ (11mg, 0.05mmol, 0.5 equiv), PivOH (11.2 μ L, 0.1 mmol, 1 equiv) and CuI (29mg, 0.15 mmol, 1.5 equiv) in DMSO (0.5 mL) was stirred at 140 °C for in air 4 h. The mixture was diluted with EtOAc (20 mL), washed with concentrated NH₄OH (15 mL) and brine (15 mL), and dried over Na₂SO₄. The concentrated residue was purified by column chromatography to give a mixture of **2a** and **2a-D₄** in a total yield of 59% in a ratio of 5:1 as determined by ¹H NMR.

Parallel competition reactions of 1a and 1a-D₅ in separate tubes

Six identical reactions were set side-by-side. Each reaction tube was charged with **1a** (22 mg, 0.1 mmol), PivOH (11.2 μ L, 0.1 mmol, 1 equiv) and CuI (29 mg, 0.15 mmol, 1.5 equiv) in DMSO (0.5 mL). The reactions were stirred at 140 °C in air and stopped in 20, 40, 60, 80, 100 and 120 min, respectively. In a parallel experiment, the same six reactions were performed using **1a-D**₅ (22 mg, 0.1mmol) as a substrate under otherwise identical conditions. Each of the reaction was worked up following procedures mentioned above. The crude reaction mixture was analyzed by ¹H NMR using 4-iodoanisole as an internal standard. The yields of **2a** and **2a-D**₄ of the 12 reactions were plotted against reaction time. The ratio of product formation was determined to be 4.1 by comparing the slopes.

7. DFT calculations

Molecular geometries of the complex were optimized at the Becke3LYP level of density functional theory.⁴ Frequency calculations at the same level of theory were also performed to identify all the stationary points as minima (zero imaginary frequencies) or transition states (one imaginary frequency) and to provide free energies at 298.15 K. Intrinsic reaction coordinate (IRC)⁵ analysis was executed to confirm that all stationary points were smoothly connected to each other. The Hay and Wadt effective core potential (ECP) with double-valence basis set (LANL2DZ)⁶ was used to describe I atom in Becke3LYP calculations. Polarization functions were added for the O atom (ζ_d =1.154).⁷ Polarization functions were also added for the C atom (ζ_d =0.600) and for the H atom (ζ_p =1.100) involved in the C–H bond-breaking process.⁷ The 6-311G* basis set was used for the Cu atom, while the 6-31G basis set was used for other atoms. All calculations were performed with the Gaussian 03 packages.⁸

For the S_EAr mechanism, a metal-carbon bond will be formed resulting in a

Wheland intermediate. Our DFT calculations showed that the Wheland intermediate is higher in energy by 25.8 kcal/mol than **A**, indicate that such a S_EAr mechanism has a higher barrier than the CMD mechanism and can be ruled out. As shown in Figure S1, the SET mechanism can be summarized in two main elementary steps. The first one is the breaking of a Cu-O bond and the formation of a new O-C bond with an energy barrier of 37.8 kcal/mol; then elimination of the aromatic proton yields **D**. The SET mechanism is also excluded because the calculated activation energy for the SET mechanism was 37.8 kcal/mol, which is higher than the value of 21.9 kcal/mol for the CMD mechanism.

Figure S1. Energy profiles of the SET mechanism for the C-H cycloetherification step with the Cu(III) catalyst. The calculated relative free energies and electronic energies (in parentheses) are given in kcal/mol. Selected bond distances (Å) calculated for species are shown in blue.

Figure S2. Energy profiles of the CMD mechanism for the C–H cycloetherification step with the Cu(II) catalyst. The calculated relative free energies and electronic

energies (in parentheses) are given in kcal/mol. Selected bond distances (Å) calculated for species are shown in blue.

8. References

(1) Pousse, G.; Devineau, A.; Dalla, V.; Humphreys, L.; Lasne, M.-C.; Rouden, J.; Blanchet, J. *Tetrahedron* **2009**, *65*, 10617.

(2) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. J. Org. Chem. 2010, 75, 8677.

(3) Novak, M.; Helmick, J. S.; Oberlies, N.; Rangappa, K. S.; Clark, W. M.; Swenton, J.
S. J. Org. Chem. 1993, 58. 867.

(4) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.

(5) (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161. (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363.

(6) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. **1985**, 82, 299. (b) Wadt, W. R. Hay, P. J.; J. Chem. Phys. **1985**, 82, 284.

(7) Huzinaga, S. Gaussian Basis Sets for Molecular Calculations; Elsevier Science Pub.Co.: Amsterdam, 1984.

(8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.

W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D01; Gaussian, Inc.: Pittsburgh, PA, **2003**.

9. Cartesian coordinates for all the species calculated in this study

•	
n	

E=-3	3085.811241au	1	
С	-3.898395	-0.859434	-0.271069
С	-3.588821	0.452169	-0.614478
С	-2.267366	0.822809	-0.899955
С	-1.239119	-0.190710	-0.832788
С	-1.623356	-1.530200	-0.499376
С	-2.933298	-1.870206	-0.211149
Н	-4.381716	1.187093	-0.630763
Н	-3.228373	-2.877019	0.048382
С	-1.986017	2.215702	-1.323461
С	-2.917023	2.881151	-2.152852
С	-0.838063	2.920699	-0.906726
С	-2.712597	4.203449	-2.547182
Н	-3.791200	2.347973	-2.512283
С	-0.643549	4.248453	-1.293789
Н	-0.106556	2.449722	-0.264146
С	-1.574566	4.894826	-2.115034
Н	-3.435383	4.690000	-3.193974
Н	0.238134	4.777040	-0.945591
Н	-1.414655	5.924750	-2.417767
N	-5.300644	-1.205355	0.044995
0	-5.546775	-2.378129	0.354653
0	-6.144233	-0.302409	-0.020674
Ι	-0.138685	-3.065671	-0.487918
0	-0.006451	0.096516	-1.174679
Cu	1.459679	0.076101	-0.072731
0	3.262159	-0.062624	0.618639
0	0.492473	0.033398	1.484936
С	3.714901	-0.009064	-0.589092
0	2.797725	0.072529	-1.486754
С	5.194599	-0.036703	-0.892713
С	5.845424	1.187870	-0.192040
Н	6.926729	1.170594	-0.366053
Н	5.449522	2.128194	-0.591251

Н	5.662415	1.165237	0.886157
С	5.781242	-1.346513	-0.299193
Н	5.595901	-1.406362	0.777228
Н	5.342699	-2.229137	-0.778387
Н	6.862817	-1.367954	-0.470428
С	5.425435	0.021865	-2.415030
Н	4.959291	-0.828894	-2.921811
Н	5.007641	0.936988	-2.845752
Н	6.501046	0.001183	-2.621521
С	0.633186	1.186521	2.135729
0	1.201560	2.155683	1.630042
С	0.026921	1.178493	3.554397
С	0.160759	2.586854	4.164051
Н	-0.377054	3.329062	3.565907
Н	-0.254675	2.588670	5.178523
Н	1.208559	2.897238	4.213219
С	0.807408	0.144993	4.407443
Н	0.721314	-0.858653	3.981316
Н	1.870283	0.406077	4.466800
Н	0.402966	0.129384	5.426303
С	-1.464012	0.767596	3.469597
Н	-1.902369	0.766369	4.474420
Н	-2.034232	1.472632	2.853254
Н	-1.572787	-0.232523	3.041104

TS_{A-B}

E=-3085.779783au

С	-4.090308	0.842259	-0.035689
С	-3.157623	1.865650	0.038082
С	-1.821875	1.607670	-0.301284
С	-1.443818	0.292086	-0.751748
С	-2.440009	-0.734724	-0.781115
С	-3.750920	-0.460284	-0.439905
Н	-3.469103	2.839528	0.391255
Н	-4.521144	-1.218367	-0.472744
С	-0.791712	2.636913	-0.206614
С	-1.096848	3.984748	-0.498833
С	0.537586	2.307358	0.231600
С	-0.120766	4.971436	-0.406306
Н	-2.090825	4.243478	-0.846579
С	1.515637	3.335014	0.293942
Н	0.540146	1.510522	1.142191
С	1.191993	4.650671	-0.007629
Н	-0.371226	5.996026	-0.661720

Н	2.518709	3.076547	0.613789
Н	1.940371	5.431681	0.072226
Ν	-5.489292	1.122336	0.342297
0	-6.300673	0.190515	0.274096
0	-5.768166	2.274843	0.699209
Ι	-1.893482	-2.684860	-1.430023
0	-0.251523	0.061603	-1.226325
Cu	1.331772	0.538418	-0.497724
0	3.141371	0.957268	-0.154604
0	1.313098	-0.955137	0.997057
С	3.592724	0.044293	-0.978160
0	2.715303	-0.545801	-1.669127
С	0.869002	-0.574168	2.126040
0	0.398169	0.600911	2.333289
С	5.074552	-0.273990	-1.015031
С	0.863737	-1.553339	3.315184
С	5.874894	1.047392	-1.126627
Н	5.649999	1.569218	-2.064079
Н	5.643734	1.718018	-0.293791
Н	6.948177	0.828077	-1.109573
С	5.423941	-0.986510	0.322667
Н	4.849331	-1.912150	0.434358
Н	6.490652	-1.236594	0.332577
Н	5.206863	-0.339584	1.178013
С	5.378040	-1.199271	-2.209547
Н	6.445334	-1.447014	-2.219953
Н	4.803712	-2.127780	-2.145120
Н	5.126378	-0.716459	-3.159692
С	1.589896	-0.879822	4.506478
Н	1.550208	-1.532509	5.386822
Н	2.644545	-0.693254	4.269794
Н	1.119236	0.075705	4.754367
С	1.563156	-2.872004	2.937819
Н	1.546071	-3.560145	3.791865
Н	1.068008	-3.354319	2.090045
Н	2.606532	-2.697491	2.654806
С	-0.615744	-1.821826	3.698679
Н	-0.661523	-2.488298	4.568325
Н	-1.125457	-0.886108	3.947855
Н	-1.154394	-2.302556	2.873329

В

E= -2738.998926au

C -3.767708 0.743786 0.577704

C	-2.810193	1./42130	0.398008
С	-1.534683	1.418374	-0.058422
С	-1.210102	0.047801	-0.300390
С	-2.213282	-0.938847	-0.114041
С	-3.486330	-0.601518	0.316756
Н	-3.094389	2.760721	0.631034
Н	-4.255250	-1.346519	0.465921
С	-0.505397	2.442332	-0.319271
С	-0.861035	3.805554	-0.480427
С	0.859216	2.145552	-0.456061
С	0.088730	4.782922	-0.764247
Н	-1.905694	4.088063	-0.418854
С	1.826535	3.099279	-0.764331
С	1.435669	4.437466	-0.909793
Н	-0.226213	5.813843	-0.886859
Н	2.872365	2.828300	-0.847088
Н	2.182550	5.194047	-1.126591
Ν	-5.105971	1.110123	1.062561
0	-5.936904	0.203004	1.210164
0	-5.329459	2.307807	1.295170
Ι	-1.735109	-2.981261	-0.515861
I O	-1.735109 -0.014377	-2.981261 -0.327209	-0.515861 -0.728188
I O Cu	-1.735109 -0.014377 1.543633	-2.981261 -0.327209 0.396001	-0.515861 -0.728188 -0.249253
I O Cu O	-1.735109 -0.014377 1.543633 3.330943	-2.981261 -0.327209 0.396001 0.826577	-0.515861 -0.728188 -0.249253 0.206153
I O Cu O C	-1.735109 -0.014377 1.543633 3.330943 3.650172	-2.981261 -0.327209 0.396001 0.826577 -0.435146	-0.515861 -0.728188 -0.249253 0.206153 0.327122
I O Cu O C O	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839
I Cu O C O C	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801
I Ou O C O C C C	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635
I Cu O C O C C H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037
I Ou O C O C C H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368
I O Cu O C C C H H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098
I Cu Cu C C C C H H H C	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.2511116	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860
I O Cu O C O C C H H H H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062 5.224748	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.251116 0.837458	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860 2.143527
I O Cu O C O C C H H H H H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062 5.224748 4.647553	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.251116 0.837458 -0.673192	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860 2.143527 2.882498
I O Cu O C O C C H H H H H H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062 5.224748 4.647553 6.356929	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.251116 0.837458 -0.673192 -0.501689	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860 2.143527 2.882498 2.441650
I O Cu O C O C C H H H C H H C	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062 5.224748 4.647553 6.356929 5.183548	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.251116 0.837458 -0.673192 -0.501689 -2.368962	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860 2.143527 2.882498 2.441650 0.740320
I O Cu O C C C H H H H H H H H H H H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062 5.224748 4.647553 6.356929 5.183548 4.478892	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.251116 0.837458 -0.673192 -0.501689 -2.368962 -2.819310	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860 2.143527 2.882498 2.441650 0.740320 1.445815
I O Cu O C C C H H H C H H H C H H	-1.735109 -0.014377 1.543633 3.330943 3.650172 2.706499 5.056542 6.047570 7.073324 5.873317 5.951111 5.334062 5.224748 4.647553 6.356929 5.183548 4.478892 4.980164	-2.981261 -0.327209 0.396001 0.826577 -0.435146 -1.251715 -0.833607 -0.212962 -0.465684 -0.604455 0.876381 -0.251116 0.837458 -0.673192 -0.501689 -2.368962 -2.819310 -2.792593	-0.515861 -0.728188 -0.249253 0.206153 0.327122 0.096839 0.726801 -0.293635 -0.004037 -1.302368 -0.322098 2.139860 2.143527 2.882498 2.441650 0.740320 1.445815 -0.248095

PivOH

E= -346.813834au

0	-1.529000	1.258732	-0.000035
С	-0.944306	0.193607	-0.000049

0	-1.625661	-0.997094	-0.000029
С	0.573590	-0.010128	-0.000009
С	0.972377	-0.810874	-1.267775
Η	2.058396	-0.957949	-1.280249
Н	0.487772	-1.791230	-1.284318
Η	0.693018	-0.270374	-2.179595
С	1.262367	1.367726	-0.000282
Н	0.980692	1.950001	0.882570
Η	2.350396	1.238002	-0.000229
Н	0.980744	1.949624	-0.883403
С	0.972294	-0.810319	1.268147
Н	0.487643	-1.790646	1.285109
Η	2.058305	-0.957440	1.280729
Н	0.692922	-0.269384	2.179704
Н	-2.570540	-0.773773	-0.000002

TS_{A-C}

E= -	-3085.752697a	u	
С	-3.995948	-1.091492	0.357965
С	-3.635612	-0.107810	1.267729
С	-2.269343	0.092435	1.501985
С	-1.295128	-0.669594	0.784012
С	-1.697549	-1.656400	-0.132992
С	-3.056402	-1.869489	-0.340402
Н	-4.398818	0.464586	1.777921
Н	-3.411341	-2.626030	-1.026393
С	-1.584996	1.062154	2.313926
С	-1.984431	2.357304	2.643573
С	-0.179036	0.650391	2.473685
С	-1.017618	3.309737	2.979353
Н	-3.024821	2.648332	2.539867
С	0.807603	1.705311	2.660323
С	0.365287	2.983007	2.936087
Н	-1.319890	4.323755	3.216368
Н	1.851438	1.419838	2.694443
Н	1.093165	3.758745	3.151502
N	-5.433554	-1.342628	0.112840
0	-5.733045	-2.225733	-0.699284
0	-6.248719	-0.650662	0.735335
Ι	-0.263501	-2.806866	-1.201468
0	-0.007837	-0.321001	1.057873
Н	-0.008823	-0.234488	3.099941
С	0.087207	3.876151	-2.133850
С	0.604411	2.597670	-1.491370

0	-0.180969	1.902426	-0.719796
0	1.781729	2.159576	-1.650496
Cu	1.173464	0.607815	-0.331984
0	2.584253	-0.570896	-0.286124
С	3.298968	-0.717658	0.805320
0	3.051315	-0.168056	1.885736
С	4.536210	-1.632846	0.615400
С	1.154895	4.467735	-3.073402
Н	0.778876	5.392996	-3.524842
Н	2.077459	4.693489	-2.530251
Н	1.406365	3.767144	-3.875787
С	-1.204659	3.539447	-2.922374
Н	-0.995976	2.838403	-3.738813
Н	-1.956477	3.090900	-2.266611
Н	-1.619153	4.455225	-3.358909
С	-0.246079	4.879616	-0.996611
Н	-0.977896	4.453547	-0.303757
Н	0.654671	5.143910	-0.430311
Н	-0.659639	5.798858	-1.426729
С	5.211048	-1.877897	1.977809
Н	4.530276	-2.385723	2.669094
Н	6.102242	-2.503419	1.844887
Н	5.509404	-0.934219	2.443404
С	5.516525	-0.906332	-0.342610
Н	5.040356	-0.709825	-1.307734
Н	5.843800	0.050056	0.082347
Н	6.405824	-1.526883	-0.508210
С	4.099350	-2.976253	-0.014344
Н	4.974118	-3.622905	-0.156087
Н	3.389678	-3.504464	0.633676
Н	3.623096	-2.812530	-0.984768

С

E= -752.828371au

С	-0.737471	2.258556	0.016343
С	0.651484	2.172782	0.134981
С	1.212775	0.897372	0.220747
С	0.373672	-0.254314	0.163573
С	-1.009887	-0.142999	0.034440
С	-1.572580	1.133661	-0.034936
Н	1.246720	3.075382	0.163903
Н	-2.640341	1.276677	-0.126566
С	2.568576	0.405187	0.273121
С	3.798482	0.964831	-0.033379

С	2.451530	-1.074025	0.558259
С	4.886833	0.114852	-0.307253
Н	3.904209	2.037951	-0.160018
С	3.508283	-1.904205	-0.095851
С	4.697057	-1.303550	-0.412961
Н	5.852589	0.539797	-0.556315
Н	3.349449	-2.972347	-0.194979
Н	5.518251	-1.906095	-0.788815
N	-1.360423	3.594318	-0.057979
0	-2.592561	3.654946	-0.162845
0	-0.611114	4.579698	-0.011584
Ι	-2.228003	-1.888090	-0.057559
0	1.066051	-1.423580	0.219485
Н	2.504697	-1.240235	1.656338

Cu(PivO)₂

E=-2332.957469au

Cu	0.000001	-0.000053	-0.000765
0	-1.654026	-1.069854	0.000074
0	1.653979	1.069803	0.000123
С	-2.328793	0.026083	-0.000253
0	-1.638983	1.108473	-0.000824
С	-3.847662	0.012378	0.000236
С	-4.318474	-0.755354	-1.263643
Н	-5.412107	-0.822913	-1.265428
Н	-4.008250	-0.237279	-2.178472
Н	-3.903531	-1.767326	-1.280392
С	-4.317274	-0.747670	1.269299
Н	-3.902582	-1.759644	1.291675
Н	-4.005956	-0.224107	2.180623
Н	-5.410918	-0.814972	1.272633
С	-4.399733	1.450122	-0.003770
Н	-4.064435	2.005660	0.877549
Н	-4.065467	2.000308	-0.888847
Н	-5.495311	1.424493	-0.003088
С	2.328794	-0.026107	-0.000090
0	1.639038	-1.108528	-0.000762
С	3.847661	-0.012324	0.000322
С	4.317456	0.750117	1.267840
Н	4.006398	0.228229	2.180214
Н	5.411092	0.817558	1.270825
Н	3.902629	1.762071	1.288438
С	4.318212	0.753070	-1.265112
Н	4.007743	0.233307	-2.178899

Н	3.903337	1.765043	-1.283616
Н	5.411848	0.820566	-1.267269
С	4.399800	-1.450047	-0.001164
Н	5.495377	-1.424363	-0.000791
Н	4.064762	-2.003956	0.881284
Н	4.065329	-2.001900	-0.885119

$TS_{C\text{-}D}$

E= -752.790753au C -0.770249 2.250856 0.001125

С	0.622246	2.185331	0.030180
С	1.200155	0.914980	0.048578
С	0.368441	-0.235126	0.032375
С	-1.021641	-0.152425	0.003847
С	-1.598596	1.117047	-0.011696
Н	1.206026	3.095757	0.039579
Н	-2.671081	1.251232	-0.033106
С	2.560012	0.412362	0.061742
С	3.834125	0.982747	-0.016948
С	2.434597	-1.007873	0.154027
С	4.941341	0.132892	-0.101464
Н	3.962430	2.059526	-0.043431
С	3.530421	-1.869268	-0.070986
С	4.785276	-1.271324	-0.151052
Н	5.937000	0.557283	-0.168060
Н	3.392938	-2.942387	-0.120941
Н	5.663753	-1.896662	-0.269313
N	-1.413840	3.582838	-0.015722
0	-2.649882	3.627125	-0.040208
0	-0.675225	4.575964	-0.004846
Ι	-2.218891	-1.911997	-0.019461
0	1.103507	-1.393619	0.036374
Н	2.463080	-1.105740	1.927824

D

E=-752.301378au				
С	-0.738136	2.250305	-0.000047	
С	0.654603	2.173667	0.000012	
С	1.221875	0.899451	0.000035	
С	0.380424	-0.242179	-0.000007	
С	-1.008969	-0.150144	-0.000072	
С	-1.576016	1.123475	-0.000087	
Н	1.245557	3.079571	0.000038	
Н	-2.647551	1.266397	-0.000129	

С	2.579703	0.377431	0.000092
С	3.863864	0.939670	0.000146
С	2.440575	-1.025389	0.000083
С	4.964537	0.079581	0.000194
Н	4.002230	2.015514	0.000154
С	3.521118	-1.901182	0.000128
С	4.794382	-1.319077	0.000186
Н	5.967223	0.492758	0.000239
Н	3.378758	-2.974986	0.000120
Н	5.669109	-1.960708	0.000223
N	-1.371251	3.587278	-0.000071
0	-2.607264	3.641602	0.000142
0	-0.624546	4.574579	0.000218
Ι	-2.219868	-1.901030	-0.000136
0	1.112891	-1.404750	0.000024

Н·

E= -0.500273au

Н	0.000000	0.000000	0.000000

A'

E=-2	2739.616198au		
С	3.488930	1.437972	0.541206
С	2.291897	2.113962	0.301942
С	1.172329	1.401848	-0.121924
С	1.228859	-0.025196	-0.281471
С	2.479044	-0.661154	-0.048182
С	3.594396	0.052661	0.359741
Н	2.260721	3.189434	0.422328
Н	4.542365	-0.432497	0.547668
С	-0.103224	2.095950	-0.437033
С	-0.631810	3.096694	0.406331
С	-0.789672	1.811508	-1.655451
С	-1.778958	3.803662	0.043741
Н	-0.131465	3.313237	1.344205
С	-1.938162	2.544949	-2.015533
Н	-0.318868	1.156172	-2.385076
С	-2.437268	3.530140	-1.165824
Н	-2.166535	4.570100	0.706689
Н	-2.427015	2.339081	-2.962269
Н	-3.327717	4.085887	-1.437207
N	4.662581	2.192774	0.979521
0	5.718727	1.570338	1.170709
0	4.537934	3.418795	1.138896

I	2.605410	-2.776865	-0.316448
0	0.166739	-0.720778	-0.622222
Cu	-1.520845	0.042807	-0.438498
0	-3.365217	0.521129	-0.091220
С	-3.612089	-0.669954	0.355130
0	-2.626472	-1.479795	0.340078
С	-4.994039	-1.041468	0.861288
С	-5.022053	-2.515622	1.306895
Н	-4.299898	-2.701734	2.107643
Н	-6.022449	-2.770116	1.674275
Н	-4.776591	-3.185297	0.476842
С	-6.008603	-0.800475	-0.287893
Н	-7.021411	-1.021476	0.066696
Н	-5.974635	0.239036	-0.627064
Н	-5.798480	-1.453190	-1.143005
С	-5.331242	-0.106030	2.053672
Н	-4.630320	-0.255611	2.882897
Н	-5.291313	0.944120	1.749437
Н	-6.340395	-0.328322	2.417728

TS A'-B'

E= -2739.575457au

С	-3.116064	1.502036	1.005215
С	-1.949465	2.129868	0.574613
С	-1.002118	1.425221	-0.173094
С	-1.235175	0.039655	-0.486151
С	-2.449823	-0.547623	-0.037118
С	-3.383413	0.162374	0.699465
Н	-1.786843	3.166749	0.838888
Н	-4.301976	-0.289371	1.047735
С	0.193943	2.115939	-0.717816
С	0.043265	3.411889	-1.252514
С	1.478793	1.498310	-0.774468
С	1.109444	4.072165	-1.866359
Н	-0.932231	3.885844	-1.226430
С	2.529152	2.172069	-1.441678
Н	2.128303	0.976772	0.358544
С	2.358445	3.448450	-1.977994
Н	0.958106	5.064974	-2.278009
Н	3.506607	1.698586	-1.499605
Н	3.183401	3.954740	-2.468397
N	-4.088607	2.259171	1.799178
0	-5.119472	1.675557	2.166742
0	-3.828269	3.444750	2.058749
I	-2.817008	-2.600832	-0.517454
----	-----------	-----------	-----------
0	-0.384400	-0.669923	-1.204742
Cu	1.388613	-0.508355	-0.889395
0	3.120949	-1.050138	-0.369224
С	3.565458	-0.463754	0.683845
0	2.989898	0.568378	1.182213
С	4.834361	-1.015559	1.336853
С	5.183897	-0.223670	2.610710
Н	4.380957	-0.286626	3.351634
Н	6.097331	-0.633516	3.055461
Н	5.350485	0.834768	2.389767
С	5.982190	-0.899878	0.296692
Н	6.899856	-1.321426	0.721136
Н	5.737167	-1.445731	-0.618838
Н	6.178750	0.147594	0.039709
С	4.591518	-2.509525	1.676908
Н	3.781901	-2.622798	2.407177
Н	4.332744	-3.078397	0.779499
Н	5.501244	-2.936770	2.112452

B'

E= -2739.582418 6au

С	-3.338081	1.425363	0.881489
С	-2.172657	2.079101	0.488194
С	-1.157143	1.401930	-0.195877
С	-1.315867	-0.012415	-0.441765
С	-2.538926	-0.624688	-0.043163
С	-3.542715	0.068238	0.609042
Н	-2.069816	3.125924	0.739302
Н	-4.461429	-0.407758	0.921966
С	0.036938	2.150714	-0.684781
С	-0.087620	3.527601	-0.979039
С	1.298749	1.536080	-0.897313
С	0.991216	4.278621	-1.449919
Н	-1.051326	4.013052	-0.871590
С	2.366360	2.299728	-1.399215
Н	2.768735	1.149437	0.654726
С	2.228966	3.669328	-1.665296
Н	0.854495	5.332962	-1.668426
Н	3.323940	1.822485	-1.603957
Н	3.068339	4.241146	-2.048972
Ν	-4.370597	2.170321	1.602987
0	-5.401864	1.564480	1.935667
0	-4.162292	3.371052	1.845062

I	-2.797260	-2.713078	-0.451982
0	-0.396629	-0.747002	-1.033052
Cu	1.370679	-0.387381	-0.773617
0	3.160611	-0.963340	-0.291525
С	3.868894	-0.416184	0.580707
0	3.561421	0.762737	1.107893
С	5.156214	-1.034871	1.105483
С	5.064534	-1.134297	2.653222
Н	4.239273	-1.785791	2.961623
Н	5.995645	-1.563647	3.037046
Н	4.921169	-0.150700	3.108418
С	6.332320	-0.095591	0.711969
Н	7.267536	-0.521143	1.090228
Н	6.418247	-0.002467	-0.376512
Н	6.204712	0.901995	1.141289
С	5.356907	-2.431197	0.486885
Н	4.533869	-3.104800	0.745150
Н	5.419663	-2.379645	-0.604081
Н	6.287732	-2.864319	0.866713

Wheland Im

E= -3085.772804au

С	4.294603	1.354149	-0.288747
С	3.273201	2.218367	0.093777
С	1.987260	1.708452	0.284334
С	1.735434	0.296820	0.142955
С	2.816039	-0.541294	-0.272094
С	4.082674	-0.018178	-0.481444
Н	3.483040	3.273729	0.210544
Н	4.912398	-0.640474	-0.787767
С	0.861168	2.559600	0.685050
С	0.965065	3.443851	1.772341
С	-0.383402	2.476069	-0.012475
С	-0.131411	4.210926	2.171012
Н	1.896749	3.498825	2.324351
С	-1.476214	3.282036	0.389222
С	-1.356534	4.127110	1.486647
Н	-0.037345	4.871237	3.026873
Н	-2.396589	3.235787	-0.176833
Н	-2.199018	4.730033	1.805329
N	5.645225	1.902113	-0.515324
0	6.534766	1.115994	-0.863987
0	5.807670	3.117476	-0.338984
I	2.466593	-2.620768	-0.525864

0	0.588087	-0.212702	0.524773
Н	-0.363503	2.134780	-1.052899
С	-4.909410	1.003350	-1.438813
С	-3.705873	0.836121	-0.479624
0	-2.533464	0.917267	-1.092558
0	-3.827734	0.643507	0.729840
Cu	-1.032241	0.335235	-0.179352
0	-1.494188	-1.418357	-0.546981
С	-1.589359	-2.527107	0.194049
С	-1.958263	-2.533281	1.690834
0	-1.497632	-3.578411	-0.436858
С	-1.239159	-3.733947	2.350980
Н	-1.466419	-4.662802	1.821272
Н	-0.152337	-3.593972	2.344471
Н	-1.566748	-3.832227	3.392150
С	-1.602857	-1.235466	2.439874
Н	-0.528851	-1.033673	2.409122
Н	-2.160122	-0.379532	2.046758
Н	-1.893786	-1.347070	3.491256
С	-3.499434	-2.755507	1.748007
Н	-3.811381	-2.853811	2.794375
Н	-4.032521	-1.905201	1.311601
Н	-3.778653	-3.669715	1.214232
С	-4.945014	-0.240490	-2.365474
Н	-4.020246	-0.325568	-2.942869
Н	-5.070627	-1.160613	-1.784066
Н	-5.789120	-0.157923	-3.060640
С	-4.725876	2.282126	-2.290965
Н	-4.685678	3.178603	-1.658654
Н	-3.807770	2.232208	-2.882896
Н	-5.575102	2.396422	-2.974747
С	-6.206888	1.093754	-0.613870
Н	-6.191142	1.959107	0.057143
Н	-7.066691	1.191795	-1.287045
Н	-6.344082	0.201230	0.002804

10. Copies of ¹H NMR and ¹³C NMR

131685-c

131689-C

131702-2

131687-2C

131728-2C

131697-c

S58

131729-2C

S60

131718-2

131718-2C

45203-4C

S83

45219-c

153961

153961-C

181940

153941-A

153941

wy111221-1

S93

S99

S103

