Trichlorophenyl Formate: Highly Reactive and Easily Accessible Crystalline CO Surrogate for Palladium-Catalyzed Carbonylation of Aryl/Aleknyl Halides and Triflates

Tsuyoshi Ueda, ${ }^{\dagger, \dagger}$ Hideyuki Konishi, ${ }^{\dagger}$ and Kei Manabe* ${ }^{\star} \dagger$
\dagger School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
\ddagger Process Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan

Email: manabe@u-shizuoka-ken.ac.jp

Supporting Information Table of Contents

S2 General method and materials
S3 Representative procedure of the synthesis of phenyl formates (Table 1)
S3 General procedure of decarbonylation of phenyl formates (Table 1)
S3 Representative procedure of the synthesis of alkenyl triflates ($\mathbf{2 b}$ and $\mathbf{2 z}$)
S4 Representative procedure of room-temperature carbonylation (Method A, Table 2)
S5 Representative procedure of the carbonylation of aryl bromides (Method B, Table 3)
S5 Transformation of 2,4,6-trichlorophenyl ester (3a) (Scheme 2)
S9 Analytical data of phenyl formates ($\mathbf{1 b}-\mathbf{g}$)
S11
Analytical data of carbonylation products ($\mathbf{6}-\mathbf{1 7}, \mathbf{3 a}-\mathbf{z}$)
S22 References
S23 NMR spectra of obtained compounds ($\mathbf{1 b}-\mathbf{g}, \mathbf{2 b}, \mathbf{2 z}, \mathbf{3 a}-\mathbf{z}, \mathbf{8}-\mathbf{1 7}$)

1. General method and materials

General. All reactions were performed in oven-dried or flame-dried glassware under argon atmosphere. Reactions were monitored by TLC on Merck silica gel 60 F254 plates visualized by UV lump at 254 nm . Column chromatography was performed on Merck silica gel 60 and preparative TLC was performed on Merck silica gel 60 F254 0.5 mm plates. NMR spectra were measured on a JEOL AL-400 NMR spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ spectra and 100 MHz for ${ }^{13} \mathrm{C}$ spectra. For ${ }^{1} \mathrm{H}$ NMR, tetramethylsilane (TMS) $(\delta=0)$ in CDCl_{3} served as an internal standard. For ${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}(\delta=77.0)$ served as an internal standard. Infrared spectra were measured on a SHIMADZU IR Prestige- 21 spectrometer (ATR). High-resolution mass spectra (HRMS) were measured on a JEOL JMS-T100TD time-of-flight mass spectrometer (DART) and JMS-T100GC gas chromatography mass spectrometer. Melting point was measured using a YAZAWA MICRO MELTING POINT BY-1.

Materials. Commercially obtained chemicals including Pd catalysts and ligands were purchased from commercial supplier and used as received. All solvents, triethylamine, and tributylamine were purified by distillation prior to use. Spectral data of $\mathbf{1 8 b} \mathbf{- d}, \mathbf{2 2}$ were identical to those of commercially available compounds, respectively.

2. Representative procedure of the synthesis of phenyl formates (Table 1, entry 1)

Formic acid ($19 \mathrm{~mL}, 500 \mathrm{mmol}, 5.0$ equiv) was added to acetic anhydride ($38 \mathrm{~mL}, 400 \mathrm{mmol}, 4.0$ equiv) at rt . The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h and cooled to rt . The resulting solution was poured to the flask containing phenol $(9.4 \mathrm{~g}, 100 \mathrm{mmol})$ and $\mathrm{AcONa}(4.1 \mathrm{~g}, 50 \mathrm{mmol}, 0.5$ equiv). The mixture was stirred for 4 h in water bath and then diluted with toluene $(150 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ three times, dried over MgSO_{4}, filtered, and concentrated to afford the desired product $\mathbf{1 a}(8.7 \mathrm{~g}, 71 \mathrm{mmol}$, 71%) as a colorless oil. This product was used for carbonylation reaction without further purification.

Phenyl formate (1a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, 2 \mathrm{H}, J=8.3,7.8,2.4 \mathrm{~Hz}), 7.25(\mathrm{tt}, 1 \mathrm{H}, J=7.8,1.9$ Hz), 7.10 (ddd, $2 \mathrm{H}, J=8.3,2.4,1.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,149.8,129.6,126.3$, and 121.0.

3. General procedure of decarbonylation of phenyl formates (Table 1)

$\mathrm{NEt}_{3}(69 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1$ equiv) was added to a solution of phenyl formates ($\mathbf{1} \mathbf{a}-\mathbf{g}, 0.50 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$. The reaction was carried out at rt . The conversion of $\mathbf{1} \mathbf{a}-\mathbf{g}$ was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ at the suitable interval.

4. Representative procedure of the synthesis of alkenyl triflates

The solution of β-tetralone ($3.0 \mathrm{~g}, 21 \mathrm{mmol}$) in THF (90 mL) was cooled to $-20^{\circ} \mathrm{C} .1 .0 \mathrm{M} t$-BuOK in THF ($27 \mathrm{~mL}, 27 \mathrm{mmol}, 1.3$ equiv) was added dropwise to the solution over 10 min . The mixture was
warmed to $0^{\circ} \mathrm{C}$, stirred for 1 h , and then cooled to $-20^{\circ} \mathrm{C} . \mathrm{PhNTf}_{2}(9.5 \mathrm{~g}, 27 \mathrm{mmol}, 1.3$ equiv) was added to the solution and the mixture was stirred for 1 h , then warmed to $0{ }^{\circ} \mathrm{C}$, and stirred for 4 h . The mixture was diluted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by silica gel column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 200/1) to afford $\mathbf{2 b}(4.9 \mathrm{~g}, 18 \mathrm{mmol}, 86 \%)$ as a colorless oil.

3,4-Dihydronaphthalen-2-yl trifluoromethanesulfonate (2b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H})$, $3.05(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,132.9,131.1$, $128.4,127.5,127.3,127.0,118.6\left(\mathrm{q},{ }^{l} J_{C F}=319.9 \mathrm{~Hz}\right), 118.5,28.5$, and 26.5 ; IR (ATR) $1665,1416,1202$, $1136,1063,986,895,824,752$, and $610 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: 279.0297$; found 279.0291.

1H-Inden-2-yl trifluoromethanesulfonate (2z)

$\mathbf{2 z}$ was obtained from 2 -indanone as a colorless oil. Yield: 73\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,140.1,137.3,127.2,126.1,123.8,122.1,119.5,118.6$ $\left(\mathrm{q},{ }^{1} J_{C F}=320.7 \mathrm{~Hz}\right.$), and 37.7; IR (ATR) 1618, 1423, 1244, 1206, 1136, 1103, 1090, 907, 835, 750, and $608 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: 265.0141$; found 265.0147.

5. Representative procedure of room-temperature carbonylation (Method A, Table 2, entry 13)

$\mathrm{Pd}(\mathrm{OAc})_{2}(3.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$, x antphos $(17.1 \mathrm{mg}, 0.029 \mathrm{mmol}, 6.0 \mathrm{~mol} \%)$, and $\mathbf{1 f}(221 \mathrm{mg}$, $0.98 \mathrm{mmol}, 2.0$ equiv) were added to a $10-\mathrm{mL}$ test tube. The test tube was evacuated and backfilled with argon three times. Then, a degassed solution of iodobenzene (2a) ($100 \mathrm{mg}, 0.490 \mathrm{mmol}$) in $\mathrm{PhCF}_{3}(0.5$ mL) was added to the test tube under flowing argon. The mixture was stirred for 5 min . Right after the addition of degassed $\mathrm{NEt}_{3}(136 \mu \mathrm{~L}, 0.98 \mathrm{mmol}, 2.0$ equiv) to the mixture, the test tube was quickly sealed by a plastic screw cap and the mixture was stirred for 17 h at rt . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered, and concentrated. The obtained residue was purified by PTLC (SiO_{2}, hexane/EtOAc 10/1) to afford the $\mathbf{3 a}(148 \mathrm{mg}, 0.49 \mathrm{mmol},>99 \%$) as white crystal.

6. Representative procedure of the carbonylation of aryl bromides (Method B, Table 3, entry 6)

$\mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$, $x a n t p h o s(168 \mathrm{mg}, 0.29 \mathrm{mmol}, 6.0 \mathrm{~mol} \%)$, and 2bromonaphtalene ($\mathbf{2 c}$) $(1.00 \mathrm{~g}, 4.83 \mathrm{mmol})$ were added to a $50-\mathrm{mL}$ flask. The flask was evacuated and backfilled with argon three times. Then, a degassed solution of $\mathrm{NBu}_{3}(2.3 \mathrm{~mL}, 9.7 \mathrm{mmol}, 2.0$ equiv $)$ in toluene (5 mL) was added to the flask equipped with argon balloon. The mixture was warmed to $100{ }^{\circ} \mathrm{C}$ and stirred for 5 min . The degassed solution of $\mathbf{1 f}(1.3 \mathrm{~g}, 5.8 \mathrm{mmol}, 1.2$ equiv) in toluene (9 mL) was added to the mixture over 3 h with syringe pump. After additional stirring at $100{ }^{\circ} \mathrm{C}$ for 1 h , the mixture was cooled to rt and concentrated. The obtained residue was purified by silica gel column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc $\left.100 / 1\right)$ to afford $\mathbf{3 c}(1.5 \mathrm{~g}, 4.3 \mathrm{mmol}, 89 \%)$ as a white crystal.

7. Transformation of 2,4,6-trichlorophenyl ester (3a) (Scheme 2)

7.1. Synthesis of benzoic acid (22)

To a solution of $\mathbf{3 a}(100 \mathrm{mg}, 0.332 \mathrm{mmol})$ in THF (1 mL) was added 2.5 M aq. $\mathrm{NaOH}(0.5 \mathrm{~mL})$. The mixture was warmed to $60^{\circ} \mathrm{C}$, stirred for 3 h , and cooled to rt . After the addition of $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated. The obtained residue was purified by PTLC (SiO_{2}, hexane/EtOAc 1/1) to afford 22 (38 $\mathrm{mg}, 0.31 \mathrm{mmol}, 94 \%$) as a white crystal (m.p. $122^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.09(\mathrm{brs}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,133.8,130.2$, 129.3, and 128.5.

7.2. Representative procedure of esterification

$\mathrm{K}_{3} \mathrm{PO}_{4}(141 \mathrm{mg}, 0.66 \mathrm{mmol}, 2.0$ equiv) was added to a solution of $\mathbf{3 a}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ and n-octanol ($79 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.5$ equiv) in DMF (1 mL). The mixture was warmed to $100^{\circ} \mathrm{C}$, stirred for 24 h , and cooled to rt. The mixture was diluted with EtOAc, filterd, and concetrated. The obtained residue was purified by PTLC $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 10/1) to afford $19 \mathrm{a}(65 \mathrm{mg}, 0.28 \mathrm{mmol}, 84 \%)$ as a colorless oil.

n-Octyl benzoate (19a) ${ }^{2}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.32(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7$, 132.8, 130.5, 129.5, 128.3, 65.1, 31.8, 29.24, 29.18, 28.7, 26.0, 22.6, and 14.0.

1-Phenylethyl benzoate (19b) ${ }^{3}$

19b was obtained from 3a and 1-phenylethyl alcohol as a colorless oil. The reaction was conducted at $80^{\circ} \mathrm{C}$ for 24 h . Yield: 84%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.36$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,141.7,132.9,130.5,129.6,128.5,128.3,127.8,126.0,72.9$, and 22.4 .

7.3. Representative procedure of thioesterification

$\mathrm{K}_{3} \mathrm{PO}_{4}(106 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.5$ equiv) was added to a solution of $\mathbf{3 a}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ and 1-dodecyl mercaptan ($103 \mu \mathrm{~L}, 0.43 \mathrm{mmol}, 1.3$ equiv) in DMF (1 mL). The mixture was warmed to $60^{\circ} \mathrm{C}$, stirred for 12 h , and cooled to rt . The mixture was directly purified by PTLC $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 20/1) to afford $21 \mathbf{a}$ ($96 \mathrm{mg}, 0.31 \mathrm{mmol}, 94 \%$) as a colorless oil.

Dodecyl benzothioate (21a) ${ }^{4}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.0,137.3,133.1,128.5,127.1,31.9,29.61,29.60,29.56,29.54$, 29.47, 29.3, 29.1, 29.0, 28.9, 22.7, and 14.1.

Benzyl benzothioate (21b) ${ }^{5}$

21b was obtained from 3a and benzyl mercaptan as a colorless oil. The reaction time was 4 h . Yield: 95\%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.98-7.96 (m, 2H), 7.58-7.54 (m, 1H), 7.46-7.42 (m, 2H), 7.39-7.37 (m, $2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,137.5$, $136.8,133.5,129.0,128.7,128.6,128.5,127.3,127.2$, and 33.4.

7.4. Representative procedure of amidation

Morpholine ($44 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.5$ equiv) and DMAP ($2.0 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.05$ equiv) were added to a solution of $\mathbf{3 a}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(92 \mu \mathrm{~L}, 0.66 \mathrm{mmol}, 2.0$ equiv) in THF (1 mL). The mixture was warmed to $45^{\circ} \mathrm{C}$, stirred for 13 h , and cooled to rt . The mixture was concentrated and directly purified by PTLC $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 1/1) to afford $18 \mathrm{a}(62 \mathrm{mg}, 0.33 \mathrm{mmol}, 98 \%)$ as a white crystal (m.p. $73^{\circ} \mathrm{C}$).

Morpholino(phenyl)methanone (18a) ${ }^{6}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41$ (brs, 5 H), 3.72 (brs, 8 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,135.2$, 129.7, 128.4, 127.9, 127.0, and 66.8.

Benzamide (18b)

18b was obtained from 3a and 3 equiv of $0.5 \mathrm{M} \mathrm{NH}_{3} /$ dioxane as a white solid (m.p. $125^{\circ} \mathrm{C}$). The reaction time was 13 h . Yield: 98%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.4,7.6 \mathrm{~Hz}$, 2 H), 6.29 (brs, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7$, 133.4, 131.9, 128.6, and 127.3.

N -tert-Butylbenzamide (18c)

$\mathbf{1 8 c}$ was obtained from $\mathbf{3 a}$ and 2 equiv of tert-butylamine as a white solid (m.p. $136^{\circ} \mathrm{C}$). The reaction was conducted at $60^{\circ} \mathrm{C}$ for 21 h . Yield: 99%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{brs}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,135.9,131.0,128.4,126.6,51.5$, and 28.8 .

N-benzylbenzamide (18d)

18d was obtained from 3a and benzylamine as a white solid (m.p. $104^{\circ} \mathrm{C}$). The reaction time was 13 h . Yield: 97\%.
${ }^{1}{ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.82(b r s, 1 \mathrm{H})$, 4.57 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,138.2,134.3,131.4,128.6,128.4,127.7$, 127.4, 127.3, 126.9, and 43.9.

Ethyl-2-benzamidoacetate (18e) ${ }^{7}$
18e was obtained from 3a and glycine ethyl ester hydrochloride as a white solid (m.p. $61^{\circ} \mathrm{C}$). The reaction time was 13 h . Yield: 97%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.0,6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.79(\mathrm{br}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0$, $167.5,133.6,131.6,128.5,127.0,61.5,41.8$, and 14.0 .

7.5. Synthesis of N-methoxyl- N-methylbenzamide (20) ${ }^{8}$

$\mathrm{K}_{3} \mathrm{PO}_{4}$ ($352 \mathrm{mg}, 1.66 \mathrm{mmol}, 5$ equiv) and N, O-dimethylhydroxylamine hydrochloride ($81 \mathrm{mg}, 0.83 \mathrm{mmol}$, 2.5 equiv) was added to a solution of $\mathbf{3 a}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{DMF}(1 \mathrm{~mL})$. The mixture was warmed to $80^{\circ} \mathrm{C}$, stirred for 5 h , and cooled to room temperature. The mixture was diluted with EtOAc, filtered, and concentrated. The obtained residue was purified by PTLC (SiO_{2}, hexane/EtOAc 4/1) to afford $\mathbf{2 0}$ (48 $\mathrm{mg}, 0.29 \mathrm{mmol}, 87 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,134.1,130.5,128.1,128.0,61.0$, and 33.8.

8. Analytical data of phenyl formates ($1 \mathrm{~b}-\mathrm{g}$)

4-Phenylphenyl formate ($\mathbf{1 b})^{9}$
1b was obtained from 4-phenylphenol as a white crystal (m.p. $58^{\circ} \mathrm{C}$). 8 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 10$ equiv of HCOOH , and 1 equiv of AcONa were used. Yield: 96%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.18 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,149.2,140.1,139.6,128.8,128.4,127.5,127.1$, and 121.4; IR (ATR) 1726, 1599, 1518, 1483, 1217, 1184, 1169, 1098, 858, 750, and $685 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{2}$: 199.0754; found 199.0753.

4-Fluorophenyl formate (1c) ${ }^{10}$
1c was obtained from 4-fluorophenol as a colorless oil. Yield: 66%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5(\mathrm{~d}$, $\left.{ }^{1} J_{C F}=244.7 \mathrm{~Hz}\right), 159.1,145.6\left(\mathrm{~d},{ }^{4} J_{C F}=3.3 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d},{ }^{3} J_{C F}=8.8 \mathrm{~Hz}\right), 116.3\left(\mathrm{~d},{ }^{2} J_{C F}=23.2 \mathrm{~Hz}\right)$; IR (ATR) $1763,1736,1499,1180,1090,862,793$, and $704 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{FO}_{2}$: 141.0346; found 141.0356.

4-Chlorophenyl formate (1d) ${ }^{9}$
1d was obtained from 4-chlorophenol as a colorless oil. Yield: 95\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,148.2,131.7,129.6$, and 122.5 ; IR (ATR) $1763,1741,1485,1190,1163$, $1105,1082,860,777,611$, and $513 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}: 157.0051$; found 157.0057.

4-Trifluoromethylphenyl formate (1e) ${ }^{10}$

1e was obtained from 4-trifluoromethylphenol as a colorless oil. Yield: 91\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,152.3,128.7\left(\mathrm{q},{ }^{2} J_{C F}=33.0 \mathrm{~Hz}\right), 127.1\left(\mathrm{q},{ }^{3} J_{C F}=3.7 \mathrm{~Hz}\right), 123.8\left(\mathrm{q},{ }^{1} J_{C F}=\right.$ 272.0 Hz), and 121.8; IR (ATR) 1770, 1744, 1612, 1512, 1323, 1202, 1167, 1120, 1099, 1059, 1016, 870, 737,594 , and $571 \mathrm{~cm}^{-1} ;$ HRMS (CI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{2}$: 191.0314; found 191.0320.

2,4,6-Trichlorophenyl formate (1f) ${ }^{11}$
1f was obtained from 2,4,6-trichlorophenol as a pale yellow crystal (m.p. $68{ }^{\circ} \mathrm{C}$). 8 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 10$ equiv of HCOOH , and 1 equiv of AcONa were used. Yield: 98%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,141.9$, $132.5,129.2$, and 128.7; IR (ATR) 3078, 1732, 1562, 1447, 1418, 1385, 1368, 1227, 1084, 1055, 849, 818, 804, 687, and $561 \mathrm{~cm}^{-1} ;$ HRMS (CI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{Cl}_{3} \mathrm{O}_{2}: 224.9271$; found 224.9279.

2,6-Difluorophenyl formate (1 g)

1g was obtained from 2,6-difluorophenol as a colorless oil. Yield: 53\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.7,155.0\left(\mathrm{dd},{ }^{1,3} J_{C F}=251.2,4.1 \mathrm{~Hz}\right), 126.0\left(\mathrm{t},{ }^{2} J_{C F}=15.7 \mathrm{~Hz}\right), 126.9\left(\mathrm{t},{ }^{3} J_{C F}=9.0 \mathrm{~Hz}\right)$, and $112.2\left(\mathrm{dd},{ }^{2,4} J_{C F}=17.3,5.0 \mathrm{~Hz}\right)$; IR (ATR) 1748, 1612, 1493, 1477, 1292, 1248, 1196, 1076, 1011, 770, and $694 \mathrm{~cm}^{-1} ;$ HRMS $(\mathrm{CI})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{O}_{2}: 159.0252$; found 159.0259 .

9. Analytical data of carbonylation products

Phenyl benzoate (6) ${ }^{1}$

6 was obtained from $\mathbf{1 a}$ and $\mathbf{2 a}$ as a white crystal (m.p. $68^{\circ} \mathrm{C}$) by method A. Yield: 10%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{ddd}, J=7.3,2.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{tt}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (ddd, $J=7.8,7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{ddd}, J=7.3,7.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{tt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (ddd, $J=7.8,1.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,150.9,133.5,130.1,129.5,129.4$, $128.5,125.8$, and 121.7.

Phenyl 3,4-dihydronaphthalene-2-carboxylate (7) ${ }^{12}$
7 was obtained from $\mathbf{1 a}$ and $\mathbf{2 b}$ as a white crystal (m.p. $55^{\circ} \mathrm{C}$) by method A. Yield: 30%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 7 \mathrm{H}), 2.93(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,151.0,138.2,137.1,132.3,129.9$, 129.4, 128.7, 128.6, 127.7, 126.8, 125.6, 121.7, 27.5, and 22.3; IR (ATR) 1721, 1626, 1566, 1481, 1450, 1260, 1186, 1161, 1109, 1049, 734, and $689 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}: 251.1066$; found 251.1074 .

4-Phenylphenyl benzoate (8)

$\mathbf{8}$ was obtained from $\mathbf{1 b}$ and $\mathbf{2 a}$ as a white crystal (m.p. $139^{\circ} \mathrm{C}$) by method A. Yield: 5%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2$, $150.4,140.4,139.0,133.6,130.2,129.6,128.8,128.6,128.2,127.3,127.1$, and 122.0 ; IR (ATR) 1730, 1597, 1485, 1450, 1402, 1263, 1230, 1217, 1167, 1063, 878, 756, 700, and $687 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2}$: 275.1067; found 275.1071.

1,1'-Biphenyl-4-yl 3,4-dihydronaphthalene-2-carboxylate (9)
9 was obtained from $\mathbf{1 b}$ and $\mathbf{2 b}$ as a white crystal (m.p. $113^{\circ} \mathrm{C}$) by method A. Yield: 17%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 7 \mathrm{H}), 2.95(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,150.5,140.4,138.8,138.4,137.1,132.3,129.9,128.8,128.6,128.2,127.8,127.3,127.1$, 126.8, 122.0, 27.6, and 22.3 (One aromatic carbon signal is missing.); IR (ATR) 1732, 1624, 1564, 1447, $1379,1275,1238,1200,1182,1167,1134,1109,1022,959,906,854,817$, and $729 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$: 327.1380; found 327.1386.

4-Fluorophenyl benzoate (10)
$\mathbf{1 0}$ was obtained from $\mathbf{1 c}$ and $\mathbf{2 a}$ as a white crystal (m.p. $49^{\circ} \mathrm{C}$) by method A. Yield: 30%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{tt}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.20-7.15 (m, 2H), 7.14-7.08 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,160.3\left(\mathrm{~d},{ }^{1} J_{C F}=243.8 \mathrm{~Hz}\right.$), 146.7, 133.7, 130.2, 129.3, 128.6, $123.1\left(\mathrm{~d},{ }^{3} J_{C F}=8.2 \mathrm{~Hz}\right), 116.1\left(\mathrm{~d},{ }^{2} J_{C F}=23.9 \mathrm{~Hz}\right)$; IR (ATR) 1730, $1599,1499,1450,1267,1240,1184,1061,1024,1012,876,818,763$, and $698 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}_{2}$: 217.0659; found 217.0662

4-Fluorophenyl 3,4-dihydronaphthalene-2-carboxylate (11)
11 was obtained from $\mathbf{1 c}$ and $\mathbf{2 b}$ as a colorless oil by method A. Yield: 35%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.71(\mathrm{td}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,160.1\left(\mathrm{~d},{ }^{1} J_{C F}=243.8 \mathrm{~Hz}\right), 146.8(\mathrm{~d}$, $\left.{ }^{4} J_{C F}=2.5 \mathrm{~Hz}\right), 138.5,137.1,132.2,130.0,128.8,128.3,127.8,126.8,123.0\left(\mathrm{~d},{ }^{3} J_{C F}=8.2 \mathrm{~Hz}\right), 116.0(\mathrm{~d}$, ${ }^{2} J_{C F}=23.1 \mathrm{~Hz}$), 27.5, and 22.3; IR (ATR) $1717,1624,1501,1275,1260,1204,1173,1148,1110,1047$, $968,831,758,746$, and $718 \mathrm{~cm}^{-1} ; \mathrm{HRMS}(\mathrm{TOF})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FO}_{2}:$ 269.0972; found 269.0980.

4-Chlorophenyl benzoate (12)
$\mathbf{1 2}$ was obtained from $\mathbf{1 d}$ and $\mathbf{2 a}$ as a white crystal (m.p. $72{ }^{\circ} \mathrm{C}$) by method A. Yield: 81%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{tt}, 1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}$, $J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.9,149.4,133.7,131.2,130.2,129.5,129.1,128.6$, and 123.1; IR (ATR) 1730, 1485, 1450, 1261, $1215,1200,1159,1078,1059,1024,1013,1001,876,806,799,702$, and $683 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClO}_{2}$: 233.0364; found 233.0360.

4-Chlorophenyl 3,4-dihydronaphthalene-2-carboxylate (13)
$\mathbf{1 3}$ was obtained from $\mathbf{1 d}$ and $\mathbf{2 b}$ as a white crystal (m.p. $67^{\circ} \mathrm{C}$) by method A. Yield: 87%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$, $2.92(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{td}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,149.5,138.6$, $137.1,132.2,130.9,130.0,129.4,128.8,128.2,127.7,126.8,123.1,27.5$, and 22.2 ; IR (ATR) 1732, 1719 , $1618,1481,1258,1159,1085,1045,1012,877,770$, and $716 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{2}$: 285.0677; found 285.0673.

4-Trifluoromethylphenyl benzoate (14)

14 was obtained from 1e and 2a as a white crystal (m.p. $96^{\circ} \mathrm{C}$) by method A. Yield: 94%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,153.5,133.9$, $130.2,128.9,128.7,128.1\left(\mathrm{q},{ }^{2} J_{C F}=33.0 \mathrm{~Hz}\right), 126.8\left(\mathrm{q},{ }^{3} J_{C F}=3.2 \mathrm{~Hz}\right), 123.9\left(\mathrm{q},{ }^{1} J_{C F}=272.0 \mathrm{~Hz}\right)$, and 122.2; IR (ATR) 1732, 1610, 1599, 1516, 1452, 1333, 1261, 1225, 1207, 1157, 1115, 1099, 1051, 881, 702, and $683 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}: 267.0627$; found 267.0623.

4-Trifluoromethylphenyl 3,4-dihydronaphthalene-2-carboxylate (15)
$\mathbf{1 5}$ was obtained from $\mathbf{1 e}$ and $\mathbf{2 b}$ as a white crystal (m.p. $103{ }^{\circ} \mathrm{C}$) by method A. Yield: 91%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~s} 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 6 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,153.6,139.0,137.2,132.1,130.2$, $128.9,128.0,127.9\left(\mathrm{q},{ }^{2} J_{C F}=33.1 \mathrm{~Hz}\right), 127.8,126.9,126.7\left(\mathrm{q},{ }^{3} J_{C F}=4.1 \mathrm{~Hz}\right), 123.9\left(\mathrm{q},{ }^{1} J_{C F}=272.0 \mathrm{~Hz}\right)$, 122.2, 27.5, and 22.2; IR (ATR) 1724, 1622, 1611, 1327, 1260, 1215, 1163, 1101, 1066, 1042, 1016, 984, 953, 880, 862, 762, and $716 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}: 319.0940$; found 319.0931.

2,6-Difluorophenyl benzoate (16)

16 was obtained from 1 g and $\mathbf{2 a}$ as a colorless oil by method A. Yield: 99%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,155.5\left(\mathrm{dd},{ }^{1,3} J_{C F}=\right.$ $250.4,4.1 \mathrm{~Hz}), 134.1,130.5,128.7,128.0,127.5\left(\mathrm{t},{ }^{2} J_{C F}=14.9 \mathrm{~Hz}\right), 126.4\left(\mathrm{t},{ }^{3} J_{C F}=9.1 \mathrm{~Hz}\right)$, and 112.1 $\left(\mathrm{dd},{ }^{2,4} J_{C F}=17.4,4.9 \mathrm{~Hz}\right)$; IR (ATR) $1749,1605,1501,1479,1452,1292,1258,1246,1202,1179,1076$, $1045,1011,772,702,685,520$ and $513 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}: 235.0565$; found 235.0569 .

2,6-Difluorophenyl 3,4-dihydronaphthalene-2-carboxylate (17)
17 was obtained from $\mathbf{1 g}$ and $\mathbf{2 b}$ as a colorless oil by method A. Yield: 94\%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{td}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,155.6\left(\mathrm{dd},{ }^{1,3} J_{C F}=250.5\right.$, $4.2 \mathrm{~Hz}), 139.7,137.2,132.1,130.2,129.0,127.8,127.6\left(\mathrm{t},{ }^{2} J_{C F}=15.7 \mathrm{~Hz}\right), 126.9,126.8,126.1\left(\mathrm{t},{ }^{3} J_{C F}=\right.$ $9.1 \mathrm{~Hz}), 112.0\left(\mathrm{dd},{ }^{2,4} J_{C F}=17.3,5.7 \mathrm{~Hz}\right), 27.4$, and 22.3; IR (ATR) $1730,1622,1599,1501,1477,1292$, $1275,1260,1246,1200,1165,1155,1109,1011,959,770,752$, and $714 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}$: 287.0878; found 287.0869.

2,4,6-Trichlorophenyl benzoate (3a)
3a was obtained from $\mathbf{1 f}$ and 2 a as a white crystal (m.p. $55^{\circ} \mathrm{C}$) by method A. Yield: $>99 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=$ $8.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,143.2,134.2,132.0,130.5,129.8$, $128.7,128.6$, and 127.8 ; IR (ATR) 1753, 1447, 1258, 1227, 1045, 1018, 862, 696, 509, and $503 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}: 300.9584$; found 300.9592 .

2,4,6-Trichlorophenyl 3,4-dihydronaphthalene-2-carboxylate (3b)
$\mathbf{3 b}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 b}$ as a white crystal (m.p. $73^{\circ} \mathrm{C}$) by method A. Yield: $>99 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.5,143.3,139.9,137.2,132.0,131.7,130.3,129.8$,
129.0, 128.5, 127.8, 126.9, 126.7, 27.4, and 22.2; IR (ATR) 1732, 1624, 1562, 1447, 1379, 1274, 1238, $1200,1184,1169,1020,957,854,756,731$, and $714 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{2}$: 352.9897 ; found 352.9887 .

2,4,6-Trichlorophenyl 2-naphthoate (3c)
3c was obtained from $\mathbf{1 f}$ and $2 \mathbf{c}$ as a white crystal (m.p. $115^{\circ} \mathrm{C}$) by method B. Yield: 90%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=8.8,2.0,1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.1,143.3,136.1,132.6,132.4,132.0,130.5,129.8,129.5,129.0,128.6,127.8,127.0,125.4$, and 125.0; IR (ATR) 1746, 1562, 1447, 1277, 1219, 1184, 1124, 1040, 947, 908, 856, 818, 758, and $731 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}: 350.9741$; found 350.9742 .

2,4,6-Trichlorophenyl 4-methoxybenzoate (3d)
3d was obtained from $\mathbf{1 f}$ and $\mathbf{2 d}$ as a colorless oil by method A. Yield: 82%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,162.6,143.4,132.7,131.8,129.9,128.5,120.0,114.0$, and 55.5; IR (ATR) 1744, 1605, 1510, 1449, 1258, 1227, 1167, 1138, 1043, 1024, 1003, 843, 818, 756, 689, and $610 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{3}: 330.9690$; found 330.9688 .

2,4,6-Trichlorophenyl 4-chlorobenzoate (3e)
3e was obtained from $\mathbf{1 f}$ and $\mathbf{2 e}$ as a colorless oil by method A. Yield: $>99 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,143.0,140.9,132.2,131.8,129.7,129.1,128.6$, and 126.2 ; IR (ATR) 1746, $1591,1566,1447,1402,1387,1256,1223,1175,1142,1090,1076,1011,845,820$, and $746 \mathrm{~cm}^{-1} ; \mathrm{HRMS}$ (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}: 334.9195$; found 334.9192 .

2,4,6-Trichlorophenyl 4-bromobenzoate ($\mathbf{3 f}$)
3f was obtained from $1 f$ and $2 f$ as a white crystal (m.p. $74{ }^{\circ} \mathrm{C}$) by method A. Yield: $>99 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 162.3,143.0,132.23,132.18,132.0,129.7,128.7$, and 126.7 (One aromatic carbon signal is missing.); IR (ATR) 1745, 1587, 1564, 1449, 1387, 1258, 1225, 1175, 1140, 1043, 1007, 820, and $743 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{BrCl}_{3} \mathrm{O}_{2}: 378.8690$; found 378.8683 .

2,4,6-Trichlorophenyl 4-cyanobenzoate ($\mathbf{3 g}$)
$\mathbf{3 g}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 g}$ as a white crystal (m.p. $106^{\circ} \mathrm{C}$) by method A. Yield: 94%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,142.6,138.4,132.5,131.6,130.9,129.5,128.7,117.65$, and 117.57; IR (ATR) 2232, 1751, 1560, 1447, 1258, 1236, 1082, 1055, 1018, 854, 756, and $682 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}_{2}: 325.9537$; found 325.9528 .

2,4,6-Trichlorophenyl 4-acetylbenzoate (3h)
3h was obtained from 1f and $\mathbf{2 h}$ as a white crystal (m.p. $129^{\circ} \mathrm{C}$) by method A. Yield: $>99 \%$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,162.1,142.9,141.2,132.3,131.5,130.8,129.6,128.7,128.4$, and 26.9; IR (ATR) 1746, 1686, 1566, 1450, 1389, 1229, 1082, 1051, 1011, 856, 758, and $689 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{3}: 342.9690$; found 342.9697.

2,4,6-Trichlorophenyl 4-formylbenzoate (3i)

$\mathbf{3 i}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 i}$ as a white crystal (m.p. $93^{\circ} \mathrm{C}$) by method A. Yield: 99%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.3,162.0,142.8,140.0,132.6,132.4,131.1,129.7,128.7$ and 128.0; IR (ATR) $1757,1705,1564,1449,1387,1227,1200,1140,1045,1013,854,820$, and $746 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{3}$: 328.9534; found 328.9536 .

2,4,6-Trichlorophenyl 4-ethoxycarbonylbenzoate (3j)
$\mathbf{3 j}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2} \mathbf{j}$ as a white crystal (m.p. $99^{\circ} \mathrm{C}$) by method A. Yield: 85%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,162.2,143.0,135.5,132.3$, $131.4,130.4,129.8,129.7,128.7,61.6$, and 14.2; IR (ATR) 1746, 1717, 1566, 1447, 1267, 1254, 1229, $1105,1045,1012,849,880$, and $725 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{4}: 372.9796$; found 372.9800 .

2,4,6-Trichlorophenyl 4-methylbenzoate (3k)

$\mathbf{3 k}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 k}$ as a white crystal (m.p. $68^{\circ} \mathrm{C}$) by method B. Yield: 81%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,145.3,143.3,131.9,130.6,129.9,129.5,128.6,125.1$, and 21.8; IR (ATR) 1742, 1611, 1564, 1447, 1387, 1260, 1225, 1179, 1042, 1015, 854, 818, and $741 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}: 314.9741$; found 314.9746.

2,4,6-Trichlorophenyl 2-chlorobenzoate (3m)

$\mathbf{3 m}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 m}$ as a white crystal (m.p. $57^{\circ} \mathrm{C}$) by method A. Reaction temperature was $45^{\circ} \mathrm{C}$. Yield: 96%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,142.8,135.1,133.8,132.3,132.2,131.5,129.7,128.6,127.5$,
and 126.8; IR (ATR) 1753, 1589, 1564, 1445, 1387, 1219, 1130, 1086, 1016, 856, 820, and $740 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}: 334.9195$; found 334.9196.

2,4,6-Trichlorophenyl 2-methylbenzoate (3n)
3n was obtained from $1 \mathbf{f}$ and $\mathbf{2 n}$ as a colorless oil by mthod A. Reaction temperature was $45^{\circ} \mathrm{C}$. Yield: 82\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}$, $2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,143.3,141.8,133.3,132.0,131.9,131.5,129.9$, 128.6, 127.1, 126.0, and 21.7; IR (ATR) 1751, 1562, 1447, 1385, 1287, 1244, 1219, 1130, 1011, 858, 818, 804, 791, and $731 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}: 314.9741$; found 314.9748 .

Bis(2,4,6-trichlorophenyl) terephthalate (3o)
30 was obtained from $\mathbf{1 f}$ and $\mathbf{2 o}$ or $\mathbf{2 0 a}$ as a white crystal (m.p. $179^{\circ} \mathrm{C}$). Yield: 75% from $\mathbf{2 o}$ by method A (2.5 equiv of $\mathbf{1 f}$ and 4 equiv of NBu_{3} were used in the presence of $5 \mathrm{~mol} \%$ of $\operatorname{Pd}(\mathrm{OAc})_{2}$ and $10 \mathrm{~mol} \%$ of xantphos). Yield: 92% from $20 a$ by method B (3 equiv of $\mathbf{1 f}$ and 3 equiv of NEt_{3} were used in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $10 \mathrm{~mol} \%$ of xantphos).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 4 \mathrm{H}), 7.45(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,142.9$, $132.8,132.4,130.8,129.6$, and 128.7 ; IR (ATR) $1751,1562,1447,1254,1227,1136,1049,1011,853$, 820 and $708 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{O}_{4}: 522.8627$; found 522.8636.

2,4,6-Trichlorophenyl 1-naphthoate(3p)
3p was obtained from $\mathbf{1 f}$ and 2p as a white crystal (m.p. $94{ }^{\circ} \mathrm{C}$) by method A. Reaction temperature was $45^{\circ} \mathrm{C}$. Yield: 99\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=7.6,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 163.2$, 143.2, 134.9, 133.8, 132.0, 131.8, 131.7, 129.9, 128.7, 128.6, 128.5, 126.6, 125.5, 124.5, and 124.2; IR (ATR) 3071, 1740, 1560, 1447, 1229, 1182, 1099, 1072, 966, 862, 804, and $768 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}: 350.9741$; found 350.9741 .

2,4,6-Trichlorophenyl picolinate ($\mathbf{3 q}$)
$\mathbf{3 q}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 q}$ or $\mathbf{2 q a}$ as a white crystal (m.p. $121^{\circ} \mathrm{C}$). Yield: 88% from $\mathbf{2 q a}$ by method A. Yield: $>99 \%$ from $2 q$ by method A (The reaction temperature was $45^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90-8.87(\mathrm{~m}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.61 (ddd, $J=7.2,4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,150.4,145.9$, 143.1, 137.2, 132.2, 129.5, 128.6, 127.9, and 126.2; IR (ATR) 1746, 1564, 1450, 1437, 1288, 1233, 1080, 1067, 1043, 739, and $694 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}_{2}: 301.9537$; found 301.9545 .

2,4,6-Trichlorophenyl nicotinate (3r)

3r was obtained from $\mathbf{1 f}$ and $\mathbf{2 r}$ as a white crystal (m.p. $47^{\circ} \mathrm{C}$) by method B. Yield: 86%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ (ddd, $J=8.4$, $2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,154.6$, 151.6, 142.7, 137.8, 132.4, 129.6, 128.7, 124.1, and 123.6; IR (ATR) 1751, 1587, 1562, 1450, 1420, 1267, 1229, 1061, 1016, 862, 725, and $696 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}_{2}: 301.9537$; found 301.9543 .

2,4,6-Trichlorophenyl pyrimidine-2-carboxylate (3s)
3s was obtained from $1 \mathbf{f}$ and 2 s as a colorless oil by method A. Yield: 74%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,158.2,155.0,142.9,132.6,129.4,128.8,128.0$, and 123.9; IR (ATR) 1771, $1562,1447,1304,1234,1109,1090,1063,856,820,766,752,685$, and $629 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: 302.9489; found 302.9483.

2,4,6-Trichlorophenyl pyrimidine-5-carboxylate (3t)
3t was obtained from $\mathbf{1 f}$ and $\mathbf{2 t}$ as a white crystal (m.p. $75^{\circ} \mathrm{C}$) by method B. Yield: $\mathbf{7 4 \%}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~s}, 2 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.3,160.1,158.6,142.2,132.8,129.5,128.8$, and 122.5 ; IR (ATR) 1761, 1584, 1562, 1450, 1435, 1269, 1233, 1121, 1062, 1020, 862, 818, and $710 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: 302.9489 ; found 302.9481 .

2,4,6-Trichlorophenyl quinoline-3-carboxylate (3u)
3u was obtained from $\mathbf{1 f}$ and $\mathbf{2 u}$ as a white crystal (m.p. $143^{\circ} \mathrm{C}$) by method B. Yield: 90%.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{ddd}, J=8.8,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (ddd, $J=8.4,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,150.3,149.9,142.8,140.1,132.6,132.4,129.7,129.6,129.3$, $128.7,127.8,126.6$, and 120.8 ; IR (ATR) $1749,1618,1562,1449,1287,1221,1123,966,860,789$, and $760 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}_{2}$: 351.9693; found 351.9702.

2,4,6-Trichlorophenyl isoquinoline-4-carboxylate (3v)
$\mathbf{3 v}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 v}$ as a white crystal (m.p. $156^{\circ} \mathrm{C}$) by method B. Yield: 76%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46 \quad(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.5,158.2,148.0,142.9,134.0,132.9,132.3,129.8,128.7,128.5,128.1,124.7$, and 118.3 (One aromatic carbon signal is missing.); IR (ATR) 1744, 1562, 1375, 1225, 1213, 1157, 1121, 1096, 980, $957,856,770$, and $748 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}_{2}: 351.9693$; found 351.9702 .

2,4,6-Trichlorophenyl thiophene-3-carboxylate (3w)
$\mathbf{3 w}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 w}$ or $\mathbf{2 w a}$ as a white crystal (m.p. $44^{\circ} \mathrm{C}$). Yield: 98% from $\mathbf{2 w}$ by method A. Yield: 84% from 2 wa by method B.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{dd}, J=2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H})$, $7.39(\mathrm{dd}, J=4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,142.9,135.2,132.0,130.9,129.8$, $128.6,128.2$, and 126.7; IR (ATR) 1746, 1562, 1449, 1396, 1387, 1229, 1177, 1045, 854, 816, 802, and $733 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{~S}: 306.9149$; found 306.9149.

Bis(2,4,6-trichlorophenyl) thiophene-2,5-dicarboxylate (3x)
$\mathbf{3 x}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 x}$ as a white crystal (m.p. $205^{\circ} \mathrm{C}$) by method A (3 equiv of $\mathbf{1 f}$ and 3 equiv of NEt_{3} were used in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $10 \mathrm{~mol} \%$ of xantphos). Yield: 76%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,142.4$, 137.5, 135.4, 132.7, 129.7, and 128.7; IR (ATR) 1753, 1740, 1566, 1449, 1260, 1217, 1126, 1015, 997, 843, 818, 733, and $719 \mathrm{~cm}^{-1} ;$ HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{Cl}_{6} \mathrm{O}_{4} \mathrm{~S}: 528.8191$; found 528.8200 .

2,4,6-Trichlorophenyl cinnamate (3y)

$\mathbf{3 y}(E / Z=97 / 3)$ was obtained from $1 \mathbf{f}$ and $\mathbf{2 y}(E / Z=87 / 13)$ as a colorless oil by method A. Yield: 88%.
E-form: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,148.3,143.1,133.7,131.8$, 131.1, 129.7, 129.0, 128.50, 128.45, 115.2.
Z-form: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ inter alia $7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$.
E / Z-mixture: IR (ATR) 1740, 1632, 1445, 1217, 1194, 1103, 957, 854, 758, 731, and $702 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$: 326.9741; found 326.9739 .

2,4,6-Trichlorophenyl 1 H -indene-2-carboxylate (3z)
$\mathbf{3 z}$ was obtained from $\mathbf{1 f}$ and $\mathbf{2 z}$ as a white crystal (m.p. $121^{\circ} \mathrm{C}$) by method A. Yield: 97%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ 7.33 (m, 2H), $7.39(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,145.2,144.8$, 143.1, 142.2, 134.2, 131.8, 129.9, 128.54, 128.47, 127.1, 124.4, 124.0, and 38.4; IR (ATR) 1724, 1560, 1447, 1387, 1335, 1229, 1173, 1130, 1011, 850, 756, and $714 \mathrm{~cm}^{-1}$; HRMS (TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}: 338.9741$; found 338.9751 .

10. References

1) Ueda, T.; Konishi, H.; Manabe, K. Org. Lett. 2012, 14, 3100.
2) Oda, Y.; Hirano, K.; Satoh, T.; Kuwabata, S.; Miura, M. Tetrahedron Lett. 2011, 52, 5392.
3) Baba, H.; Moriyama, K.; Togo, H. Tetrahedron Lett. 2011, 52, 4303.
4) Naik, S.; Kavala, V.; Gopinath, R.: Patel, B. K. ARKIVOK 2006, 11, 21.
5) Magens, S.; Plietker, B. Chem. Eur. J. 2011, 17, 8807.
6) Ohshima, T.; Iwasaki, T.; Maegawa, Y.; Yoshiyama, A.; Mashima, K. J. Am. Chem. Soc. 2008, 130, 2944.
7) Mandal, B.; Saha, A.; Palakurthy, N. B.; Thalluri, K.; Nadimpally, K. C. Tetrahedron Lett. 2011, 52, 2579.
8) Woo, J. C. S.; Fenster, E.; Dake, G. R. J. Org. Chem. 2004, 69, 8984.
9) Katafuchi, Y.; Fujihara, T.; Iwai, T.; Terao, J.; Tsuji, Y. Adv. Synth. Catal. 2011, 353, 475.
10) Ochiai, M.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. J. Am. Chem. Soc. 2010, 132, 9236.
11) van Es, A.; Stevens, W. Recl. Trav. Chim. Pay. B. 1965, 84, 1247.
12) Ueda, T.; Konishi, H.; Manabe, K. Tetrahedron. Lett. 2012, DOI: http://dx.doi.org/10.1016 /j.tetlet.2012.07.057

11. NMR spectra of obtained compounds ($1 \mathrm{~b}-\mathrm{g}, 2 \mathrm{~b}, 2 \mathrm{z}, 3 \mathrm{a}-\mathrm{z}, 8-17$)

F:¥JACS-Carbon ylation NMR¥TU-735-1301BCM-E1 4FT.als

F.JAOS-Carbon ylation NMR¥TU-

TU-735-1 30
Wed Jun 13 13:39:50 2012
Wed Jun 1
130
BCM
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
10500.00 Hz
32768

32768
27118.64 Hz
${ }_{256}^{256}$
1.2083 sec
1.7920 sec
$1 \mathrm{H}_{23.9 \mathrm{C}}$
CDCL3.
77.00 ppm
1.20
1.20 Hz
26

F:\#Carbon ylation(TL) NMRFTU-7171 NONE1 OFT.als
TU-717

F: FOarbonylation(TL) NMR~TU-717-1301 BCM.E7 FT.als

130
BOM
100.40 MHz
125.00 KHz
10500.00 Hz
${ }_{32768}{ }^{3} 125$
2718.64 Hz
128
1.2083 sec
1.2083 sec
1.7920 sec
1.7920 sec
5.50 usec

1 H
ODCL3 ${ }^{23.70}$
77.00 ppm
1.20 Hz
${ }_{27}$

F:¥JACS-Carbonylation NMR¥TU-737-1301 BCM_E59-FT.als

BCM
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
10500.00
32768
32768
27118.64 H
128
128 18.64
1.2083 sec
17920 sec
1.7920 sec
5.50 usec
1 H
$1 \mathrm{H}_{24.7}$
ODCL3
1.20 Hz
1.20 H
26

F:¥JACS-Carbonylation NMR $\neq T \mathrm{TU}-7391$ NONE54-FT.als

DFILE
OOMMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SQANS
ACQRTM
PD
PW
IRNUO
OTEMP
SLVNT
EXREF
BF
RGAIN
F: $¥ J A C S$-Carbon wation NMR $¥$ TU-
TU-739
Wed Jun 13 21:21:23 2012
NON
399.65 MHz
124.00 KHz
10500.00 Hz

16384
${ }_{8}^{7992.01 ~ H z}$
2.0500 sec
4.9500 sec
4.9500 sec
6.20 usec

1 H
$1 \mathrm{H}_{23.6}$
0.00 ppm
0.23
0.00 ppm
0.12 Hz

13

F:¥JAOS-Carbonylation NMR¥TU-739-1301BCM_E61 FT.als

F:¥JACS-Carbon ylation NMR¥TU-
TU-739-130
Wed Jun 13 22:42:58 2012
Wed Jun 13 22:42:58 2012
13 C
BCM 100.40 MHz
125.00 KHz 125.00 KHz
10500.00 Hz 32768
27118.64 Hz 27118.64 Hz
128 1.2083 sec .7920 sec
5.50 usec
1 H
$\mathrm{CDCL}^{24.2}$
77.00 ppm
1.20 Hz

28

F: \ddagger JAOS-Carbon ylation NMRFTU-7341 NON_E4 FT.als

DFILE
COMNT
DATIM
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBSET
OBFIN
POINT
POINT
FREQU
SCANS
ACARTM
PD
PWI
IRNUO
IRNUC
OTEMP
SLVNT
SLVNT
EXREF
BF
RGAN
F:¥JAOS-Carbonylation NMRFTU-
Tue Jun 12 21:31:05 2012
1 H
NON
399.65 MHz
124.00 KHz
10500.00 Hz
${ }^{19938.01 ~ H z}$
2.8500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H}^{6.20 \text { usec }}$
1 H
ODCL3 ${ }^{22.8 \mathrm{C}}$
0.00 ppm
0.12 Hz

F:¥JACS-Carbonylation NMR¥TU-734-1301 BCM.E13-FT.als

F: $¥ J$ JAOS-Carb on ylation NMR
TU-738

OMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU SCAANS
PWM
IRNUO
OTEMP
SLVNT EXREF
BF
F: $\ddagger J$ JAOS-Carbon ylation NMR $¥ T U$
TU-738
Wed Jun 13 21:12:05 2012 1 H
NON
399.65 MHz
124.00 KHz
10500.00 Hz
10500.00 H
16384
${ }_{7992.01}{ }^{16384} \mathrm{~Hz}$
792.01 Hz
8
2.0500 sec
2.0500 sec
4.9500 sec
4.9500 sec
6.20 usec
ODCL3
0.00 ppm
0.12 Hz
12

F:¥JACS-Carbonylation NMR $¥ T U-738-1301$ BCME60FT.als

F: $¥ J A O S$-Carbonylation NMRFTU-
Wed Jun 13 22:25:21 2012
130
BCM
100.40 MHz 125.00 KHz
1050000 Hz 10500.00 Hz 32768
27118.64 Hz 27118.64 Hz
128 1.2083 sec 1.7920 sec
5.50 usec

1 H
23.8 C
77.00 ppm
1.20 Hz

28
F:¥JACS-Carbon ylation NMR $¥$ TU-6291 NON_E29-FT.als

F:¥JAOS-Carbonylation NMR $¥ T \mathrm{TU}-1$ Wed May 23 23:29:11 2012 1 H
NON 399.65 MHz 124.00 KHz
10500.00 Hz 10500.00 Hz
16384 ${ }_{7992.01} \mathrm{~Hz}$ 2.0500 sec 4.9500 sec
6.20 usec

1 H
${ }^{24.7}{ }^{\circ}$ 0.00 ppm
0.12 Hz

13

2b

F:¥JACS-Carbonylation NMR¥TU-629-1 301 BOMEE3OFT.als

F:¥JAOS-Carbonylation NMR $¥ T \mathrm{~T}$ - 7941 NONEE OFT.als

F: \ddagger JAOS-Carbon ylation NMR \quad TUU-
TU-794 26 12:08:37 2012
${ }_{1} 1 \mathrm{H}$
399.65 MHz
124.00 KHz
10500.00 Hz

16384

7992.01 Hz
7922.01 Hz
8
20500 sec
2.0500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H}^{6.20 \mathrm{use}}$
ODCL3 ${ }^{24.1}$
0.00 ppm
0.12 Hz
${ }_{14}^{0.12 \mathrm{~Hz}}$

$2 z$

F. $¥$ JACS-Carbon wation NMR¥TU-

TU-794-130
Tue Jun 26 13:38:49 2012
BCM
100.40 MHz
125.00 KHz
1050000 Hz
10500.00 Hz
32768

32768
27118.64 Hz
128
1.2083 sec
17920 sec
1.7920 sec
$1 \mathrm{H} \quad 5.50$ use
${ }^{24.5}$
77.00 ppm
1.20 Hz

26

F: \ddagger JAOS-Carbonylation NMR¥TU-7561 NON E3 FT.als

F:¥JAOS-Carbonylation NMR¥TU-756-1301 BCM.E4FT.als

F: $\ddagger \mathrm{JAOSS}$-Oarbon ylation NMR $¥ T \mathrm{TU}-7431$ NONE 6 FT.als

F:¥JAOS-Carbonylation NMR¥TU-
Fri Jun 15 11:02:11 2012
1 H
NON
399.65 MHz
124.00 KHz
10500.00 Hz

16384
7992.01 Hz
19.02
2.8500 sec
2.0500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H}^{6.20 \mathrm{use}}$
$\mathrm{CDCL}^{23.1}$
0.00 ppm
0.12 Hz

11
${ }^{0.012} \mathrm{~Hz}$

3b

F: $¥ J$ JACS-Carbon ylation NMR $¥$ TU-743-1 301 BCM.E7 FT.als

F: $¥ J A C S$-Carb on ylation NMR $¥$ TU-841-1301BCM.E2 FT.als

F:¥JACS-Carbonylation NMR¥TU-
TU-841-13C
Sun
130
BCM
$\quad 100.40 \mathrm{MHz}$
125.00 KHz
100.40 MHz
125.00 KHz
10500.00 Hz
10500.00 Hz

32768
27118.64 Hz
27118.64 Hz
128
1.2083 sec
1.7920 sec
1.7920 sec
5.50 usec

1 H

ODCL3
77.00 ppm
$\underset{26}{1.20 \mathrm{~Hz}}$
U-776 Carbonylation NMR¥TU-7761 NONE19.FT.als
(

F:¥JACS-Carbonylation NMR¥TU-776-1301 BCMEE33-FT.als

DFILE
OMNT
DATIM
obnuc
EXMOD
OBFRQ
OBFRQ
OBSET
OBFIN
OBFIN
POINT
POINT
FREQU
FREQU
SCANS
ADQTM
ABQTM
PD
PW
PW
IRNUC
OTEMP
SLUNT
EXREF
SLVNT
EXREF
BF
RGAIN
F: $¥ J A O S$-Oarbon ylation NMR $¥ T U-$
Fri Jun 22 19:08:43 2012
130
BCM
$\quad 100.40 \mathrm{MHz}$
125.00 KHz
10500.00 Hz

32768
27118.64
128
27118.64 Hz
128

128
1.2083 sec
1.7920 sec
1.7920 sec
$1 \mathrm{H}^{5.50 \mathrm{usec}}$
24.7 c
$\quad 77.00 \mathrm{ppm}$
${ }_{27}^{1.20 \mathrm{~Hz}}$
F:¥JACS-Carbonylation NMRFTU-7741 NON_E8 FT.als

DFILE
OOMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SOANS
ADQTM
PD
PW
IRNUC
OTEMP
SLVNT
EXREF
BF
RGAIN

$3 e$

F:¥JACS-Carbonylation NMR¥TU-774-1301 BCM.E1 1 FT.als

COMNT
DATMM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SOANS
ACQTM
PD
PW
IRNUO
OTEMP
SLMNT
EXREF
BF
${ }_{\mathrm{RG}}^{\mathrm{BF}} \mathrm{A} \mathrm{N}$

F: $\ddagger \mathrm{JACS}$-Carb onylation NMRFTU-
TU-774-1 3C $\quad 1012$
Thu Jun 21 21:15:01 2012 130
BCM
100.40 MHz
125.00 KHz
$102.00 . \mathrm{KHz}$
10500.00 Hz
32768
27118.64 Hz
278
128
1.2083 sec
1.7920 sec
5.50 usec

1 H
24.9
CDCL3
77.00 ppm ${ }_{26} .20$

F:¥JACS-Carbon ylation NMR¥TU-7791 NON.E7 FT.als

DFILE
COMNT
COMNT
DATIM
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
OBFIN
POINT
POINT
FREQU
FREQU
SCANS
ACQTM
PD
PD
PW
PWN
IRNUG
OTEMP
SLINT
CTEMP
SLVNT
EXREF
EXREF
BF
RGin
RF
F: \ddagger JACS-Oarbon ylation NMR $¥ T U-$ Fri Jun 22 10:40:58 2012
1 H
NON
399.65 MHz
124.00 KHz
124.00 KHz
10500.00 Hz
10500.00 Hz
16384

16384
7992.01 Hz
1992.01 Hz
8.0500 sec
2.0500 sec
4.9500 sec
6.20 usec

1 H
1 H
ODCL3 ${ }^{24.70}$
0.00 ppm
0.12 Hz
${ }_{13} 13$

F: \ddagger JACS-Carbon ylation NMR $¥$ TU-779-13C1 BCM_E8-FT.als

F:¥JACS-Carbonylation NMR $¥ T U-808-1301$ BCMEE19.FT.als

F: \ddagger JJAOS-Carbonylation NMR \quad TTU-: Fri Jun 29 22:29:09 2012 130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
10500.00 Hz
32768

32768
27118.64 Hz
128
1.2083 sec
17920 sec
1.7920 sec
5.50 usec
$1 \mathrm{H}^{5.50 \mathrm{us}}$
$1 \mathrm{H}^{24.7}$
ODCL3 ${ }^{24.7}$
77.00 ppm
${ }_{26}^{1.20 \mathrm{~Hz}}$

F:¥JAOS-Carbonylation NMR¥TU-809-1301 BCM-E20-FT.als
(

F: $¥ J A O S$-Carbon ylation NMRFTU-:
TU-809-13C
Fri Jun 29 22:47:39 2012
Fri Ju
130
BCM
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
${ }_{32768}$
27118.64 Hz
128
1.2083 sec
1.7920 sec
$1 \mathrm{H} \quad 5.50$ useo
ODOL3 ${ }^{24.5}$
ODCL3
77.00 ppm
1.20 Hz
1.20 Hz
28

F: $¥ J A C S$-Carbonylation NMR $¥ T U-782-1301$ BCMEE21 FT.als

F:¥JAOS-Carbonylation NMMR $¥ T U-$
TU-782-130
Thu Jun 21 23:04:27 2012
130
$8 C M$
100.40 MHz
125.00 KHz
10500.00 Hz
32768
27118.64 Hz
27118.64 Hz
128
1.2083 se
1.2083 sec
1.7920 sec
1H 5.50 usec
24.7 c
ODCL3
77.00 ppm
1.20 Hz
1.20 Hz
26

F:¥JACS-Carbonylation NMR \ddagger TU-864-1 3C1 BCM_E4-FT.als
(10)

F:¥JAOS-Carbonylation NMR $¥ T \mathrm{FU}-805-1301$ BOM-E27-FT.als

F:¥JACS-Carb on ylation NMR¥TU-806-1301 BCM.E28 FT.als TU-806-130
(130

F: ¥JACS-Carbon ylation NMR $¥ T \mathrm{~T}-$
Fri Jun 29 13:59:50 2012
Fri Jun
130
BCM
100.40 MHz
102.00 KHz
1050000 Hz
10500.00 Hz
32768

32768
2718.64 Hz
128
128
128
1.2083 sec
1.72020 sec
5.50 usec
${ }^{H} \quad 5.50$ usec
${ }^{1} \mathrm{H}_{24.9}$
$\mathrm{ODCL}_{77.00}$
77.00 ppm
1.20 Hz
1.20 H
28

F:¥JACS-Carbonylation NMR¥TU-787-1301BCME8 FT.als

F:¥JAOSS-Carbonylation NMRFTU-
TU-787-13C
Sat Jun 23 16:37:52 2012
Sat
130
BCM 100.40 MHz
125.00 KHz
1050000 Hz
125.00 KHz
10500.00 Hz
32768

32768
27118.64
27118.64 Hz
128
1.2083 sec
1.7920 sec
1.7920 sec
5.50 usec
$1 \mathrm{H}_{25.5}$ o
ODCL3 ${ }^{25.5}$
77.00 ppm
1.20 Hz
${ }_{28}$

F:¥JACS-Carbonylation NMR¥TU-8021 NON-E3-FT.als

F:¥JACS-Carbonylation NMR $¥ T U-802-1301$ BCMET FT.als
(U-802-130

F:¥JACS-Carb on ylation NMR $¥$ TU-:
TU-802-130
Thu Jun 28 10:29:37 2012
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
10500.00 Hz
10327

32768
27118.64
27118.64 Hz
128
1.2083 sec
1.2083 sec
1.7920 sec
$1 \mathrm{H} \quad 5.50$ usec
1 H
$\mathrm{CDCL}^{25.2}$
77.00 ppm
1.20 Hz

26

(1)

$3 q$

F:¥JACS-Carbonylation NMRFTU-777-1 301 BCM.E1 0.FT.als

F:¥JACS-Carbon ylation NMR $\neq T$ Fri Jun 22 15:1 4:40 2012 130
BOM
100.40 MHz
125.00 KHz
10500.00 Hz
10500.00 Hz
32768
27118.64 Hz

1024
1
1.2085
1.2083 sec
1.7920 sec
5.50 usec
$1 \mathrm{H}^{5.50 \mathrm{us}}$
24.5

ODCL3
77.00 pP

77.00 ppm
1.20 Hz

${ }_{26}^{1.20 \mathrm{~Hz}}$
F:¥JAOS-Carbon ylation NMR¥TU-8631 NON_E7 FT.als

DFILE
COMNT
DATIM
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBSET
OBFIN
POINT
POINT
FREQU
FREQU
SOANS
ACQTM
PD
PD
PW
IRN
IRNUC
CTEMP
SLMNT
CTEMP
SLVMTT
EXREF
BF
RGAN
F:¥JAOS-Carbonylation NMR¥TU-
Wed Jul 18 19:54:01 2012
1 H
NON
399.65 MHz
124.00 KHz
124.00 KHz
10500.00 Hz
10500.00 Hz
16384
${ }_{7} 7992.01 \mathrm{~Hz}$
8
8
8
2.0500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H}_{25.5 \mathrm{c}}$
ODCL ${ }^{25.50}$
0.00 ppm
0.12 Hz
${ }_{13}^{0.12 \mathrm{~Hz}}$

F:¥JACS-Carbonylation NMR $¥ T U-863-13 C 1$ BCM_E8 FT.als

F: \ddagger JACS-Carbonylation NMR $¥$ TU-: Wed Jul 18 20:04:58 2012 130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
32768

32768
27118.64 Hz
128
1.2083 sec
1.7920 sec
$1 \mathrm{H}^{5.50 \mathrm{us}}$
$1 \mathrm{H}_{25.8 \mathrm{c}}$
ODCL3
77.00 ppm
1.20 Hz
1.20 Hz

27

F:¥JAOS-Carbonylation NMR¥TU-
TU-790 25 11:31:35 2012
${ }_{1} 1 \mathrm{H}$
399.65 MHz
124.00 KHz
10500.00 Hz
10500.00 Hz
16384
${ }_{7992.01}{ }^{16384} \mathrm{~Hz}$
8
8.0500 sec
2.0500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H}^{6.20 \mathrm{us}}$
ODOL3
0.00 ppm
${ }_{15}^{0.12 \mathrm{~Hz}}$

3s
PPM

5.0	4.0	3.0	2.0	1.0	0.0

F: $¥ J$ ACS - Carbonylation NMR羊TU-790-1 301 BCM-E28-FT.als
U-790-13C

FIJACS-Carbonylation NMR¥TU-F:¥JADS-Car
TU-790-13C
Mon
Mon Jun 25 14:24:57 2012
130
BCM
100.40 MHz
125.00 KHz
${ }^{10500.00}$
27118.64 Hz
128

128
1.2083 sec
1.7920 sec
5.50 useo

1 H
${ }^{\text {ODCL3 }} 25.5$
77.00 ppm
1.20
26
F:JAOS-Carbon ylation NMR $¥ T \mathrm{TU}-866$ FT.als

F:¥JAOS-Carbonylation NMR¥TU-:
TU-866 23 15:07:19 2012
Mon Jul
1 H
NON
399.65 MHz
124.00 KHz
124.00 KHz
10500.00 Hz
10500.00 Hz
16384
16384
7992.01

7992.01 Hz
8
20500 sec

2.0500 sec
4.9500 sec
$1 \mathrm{H}_{24.7 \circ}$
ODCL3
0.00 ppm
0.12 Hz
${ }_{13}^{0.12 \mathrm{~Hz}}$

F:¥JAOS-Carbonylation NMR $¥$ TU-866-1 3C-FT.als
(

F: \ddagger JAOS-Carbonylation NMRF¥TU-:
TU-866-13C
Mon Jul 23 17:58:34 2012
Mon
130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
${ }_{\substack{10500.00 \\ 32768}} \mathrm{~Hz}$
${ }_{27118.64 \mathrm{~Hz}}^{32768}$
2718.64 Hz
1.2083
1.2083 sec
1.7920 sec

1 H
ODCL3 ${ }^{27.2}$
77.00 ppm 1.20 Hz
28
F:¥JACS-Carbonylation NMR \ddagger TU-8681 NON_E5 FT.als
ABQTM
PD
PW
PW
EXREF
BF
EF
RG AIN

DFILE
DAMMN
DATIM
OBNUG
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS

IRNUC
CTEMP
CTEMP
SLVNT
F: $¥ J A O S$-Carbonylation NMR $¥ T U-$
Mon Jul 23 19:39:31 2012
NON
399.65 MHz
124.00 KHz
10500.00 Hz
16384

16384
7992.01 Hz
7992.01 Hz
8.0500 sec
2.0500 sec
4.9500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H} \quad 6.20 \mathrm{usec}$
ODCL3
0.00 ppm
0.12 Hz
${ }_{12}^{0.12 \mathrm{~Hz}}$

3u

F:¥JACS-Carbon ylation NMR $¥ T \mathrm{~T}$-868-1301 BCM.E6 FT.als

26
F:¥JAOS-Carbon ylation NMR前U-8691 NON.E1 FT.als
TU-869

$\begin{array}{llll}10.0 & 9.0 & 8.0 & 7.0\end{array}$	6.0	5.0	4.0	3.0	2.0	1.0	0.0

DFILE
DOMMT
DATIM
OBNUC
EXMOD
EXMOD
OBFRQ
OBSET
OBSET
OBFIN
POINT
POINT
FREQU
SCANS
SCANS
ACQTM
PD
PW/
IRNUO
IRNUC
OTEMP
CTEMP
SLMNT
SLMNT
EXREF
BF
RGAMN

F:¥JACS-Carbon ylation NMR¥TU-
TU-869
1 H
399.65 MHz
124.00 KHz
1050000 Hz
10500.00 Hz
16384

16384
7992.01 Hz
7992.01 Hz
8
2.0500 se
2.0500 sec
4.9500 sec
6.20 usec

1 H
ODOL3 ${ }^{26.5}$
0.00 ppm
0.12 Hz

F: \ddagger JAOS-Carbonylation NMR $¥ T U-869-1301$ BCM-E2 FT.als
(
F: $¥ J A O S$-Carbon ylation NMR $¥$ TU-:
TU-869-130
Tue Jul 24 08:25:28 2012
130
$B C M$
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz
32768
32768
27118.64 Hz
27118.64 Hz
128
1.2083 se
1.2083 sec
1.7920 sec
1 H 5.50 usec
27.7
${ }_{77.00 \mathrm{ppm}}$
77.00 pp
1.20 Hz
26

DFILE
DATIM
DATIM
OBNUC
OENNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
POINT
FREQU
FREQU
SCANS

ABQT
PD
PW

IRNUC
CTEMP
OTEMP
SLVNT
EXREF
RGAIN
F: $¥ J A C S$-Carbon ylation NMR $¥ T U-$
Fri Jun 22 10:24:02 2012
1 H
NON
399.65 MHz
12400 KHz
124.00 KHz
10500.00 Hz
${ }_{10500.00 \mathrm{~Hz}}^{16384}$
7992.01 Hz
2.0500 sec
4.9500 sec
$1 \mathrm{H}^{6.20 \mathrm{usec}}$
$\mathrm{cDCL}^{24.7}$
0.00 ppm
0.12 H
0

3w

F:¥JAOS-Carbonylation NMR¥TU-778-13C1 BCME6FT.als

F: $\because=\mathrm{JAOS}-\mathrm{Carb}$ on ylation NMR NTU-
TU-778-130
Fri Jun 22 10:33:01 2012
Fri
130
100.40 MHz
125.00 KHz
105.00 KHz
10500.00 Hz

32768
27118.64
27118.64 Hz
128
1.2083 sec
$\begin{array}{r}1.7920 \mathrm{sec} \\ \hline\end{array}$
$1 \mathrm{H}^{5.50 \text { usec }}$
$1 \mathrm{H}_{25.5}$
ODCL3
77.00 ppm
1.20 Hz
${ }_{27} .20 \mathrm{~Hz}$

F: $¥$ JACSS-Carbonylation NMRFTU-7811 NONEE34FT.als

F:¥JACS-Carbon yation NMR $¥ T \mathrm{TU}-781$ - 1301 BCME 35 FT.als

F: $¥ J A C S$-Carbon ylation NMRFTU-
Fri Jun 22 19:23:33 2012
130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
${ }_{32768}$
27118.64 Hz
128

128
12093
1780
1.2083 sec
1.7920 sec
5.50 usec

1 H
$1 \mathrm{H} 24.7 \circ$
ODCL3
77.00 ppm
1.20 Hz
1.20 Hz

28

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
POINT
FREQU
FREQU
SCANS
ACQTM
PD
PD
PW
PNUO
IRNUO
CTEMP
CTEMP
SLMNT
EXREF
BF
RG
BF
RG AIN
F: $¥ J A O D S$-Carbon ylation NMR $¥ T \mathrm{TU}-$
Sun Jun 24 17:49:06 2012
$1{ }^{1} \mathrm{~N}$
399.65 MHz
124.00 KHz
124.00 KHz
10500.00 Hz
10500.00 Hz
16384

16384

7992.01 Hz
7992.01 Hz
2.0500 sec
2.0500 sec
4.9500 sec
6.20 usec
$1 \mathrm{H}^{6.20 \mathrm{usec}}$
ODOL3 ${ }^{26.1}$
0.00 ppm
0.12 Hz
$\underset{9}{0.12 \mathrm{~Hz}}$

3y
PPM
0.0

F:¥JACS-Carbonylation NMR¥TU-788-1 301 BCM-E5-FT.als
TU-788-130

DFILE
COMNT
DATIM
obnuc
OBNUC
EXMOD
OPFRO
OBFRQ
OBSET
OBSET
OBFIN
POINT
OBFIN
POINT
FREQU
FREQU
SCANS SCANS
AD
PD
PW
PW
IRNUG
OTEMP CTEMP
SLVNT
EXREF SLVNT
EXREF
BF
BF
RGAIN

F: \ddagger JAOSS-Carbon ylation NMR¥TU-
TU-788-130
Sun Jun 24 18:1 4:02 2012
13 C
BCM
100.40 MHz
125.00 KHz
10500.00 Hz

32768
27118.64 Hz
${ }_{2}^{27118.64 \mathrm{~Hz}} 128$
1.2083 sec
1.7920 sec
1.750 sec
$1 \mathrm{H} \quad 5.50$ usec
1 H
$\mathrm{CDCL}^{25.5}$
77.00 ppm
1.20 Hz

26

F: $\ddagger \mathrm{J}$ JOCS-Carbonylation NMRFTU-804-1 3C1 BCM.E13-FT.als

F:¥JAOS-Carb onylation NMR¥TU-8791 NONEE20FT.als

DFILE
COMNT
COMNT
DATIM
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
PRINT
FREQU
SCANS
SCANS
ADQTM
PD
PWI
IRNUO
IRNUC
CTEMP
CTEMP
SLMNT
EXREF
EXREF
BF
RGAIN
F: $¥=J A O S$-Carbonylation NMRFTTU-:
Mon Jul 30 14:25:08 2012
NON
399.65 MHz
12400 KHz
124.00 KHz
10500.00 Hz
10500.00 Hz
7992.01 Hz
2.0500 sec
4.9500 sec
$1 \mathrm{H}^{6.20 \text { usec }}$
ODCL3 ${ }^{29.7}$
0.00 ppm
0.12 Hz

8

10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0

F: \ddagger JACS-Carb on ylation NMR¥TU-879-13C1BCMEE21 FT.als
(

F: \ddagger JAOS-Carbon ylation NMR $¥$ TU-: Mon Jul 30 14:34:28 2012
130
BCM
100.40 MHz
125.00 KHz
1050000 Hz
10500.00 Hz
32768

32768
27118.64 Hz
128
128
1.2083 sec
1.7920 sec
5.50 usec

1H 30.4 c
ODCL3
77.00 ppm
1.20 Hz
1.20 Hz
27
F: $¥ J$ JACS-Carbon ylation NMR $¥$ TU- 7421 NONE9 FT.als

F:キJAOS-Carbonylation NMR¥TU-
TU-742
Thu Jun 14 21:16:58 2012
NON
399.65 MHz
12400 KHz
124.00 KHz
10500.00 Hz
10500.00 Hz

16384
7992.01
192.01 Hz
2.0500 sec
2.0500 sec
4.9500 sec
4.9500 sec
6.20 usec

1 H
22.9 C
0.00 ppm
0.12 Hz
${ }_{13}$

F:¥JAOS-Carbon ylation NMR¥TU-742-13C1 BCM.E13-FT.als

F: \ddagger JADS-Carb on ylation NMRFTTU-
TU-742-13C
Thu Jun 14 22:24:18 2012
130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
32768

32768
27118.64 Hz
512
512
12083
1.7820
1.2083 sec
1.7920 sec
1.7920 sec
5.50 usec
$1 \mathrm{H} \quad 23.9 \mathrm{c}$

ODOL3
77.00 ppm
1020

77.00 ppm
${ }_{26}^{1.20 \mathrm{~Hz}}$
F:¥JACS-Carbon ylation NMR $¥$ TU- $762-21$ NON_E9 FT.als
TU-762-2
\qquad

F:¥JACSS-Carbon ylation NMR¥TU-762-2-1301 BCME1 2 FT.als TU-762-2-13C
(

$$
\begin{gathered}
125.00 \mathrm{KHz} \\
10500.00 \mathrm{~Hz} \\
32768
\end{gathered}
$$

$$
\begin{gathered}
32768 \\
27118.64 \mathrm{H}
\end{gathered}
$$

$$
\begin{gathered}
27118.64 \mathrm{~Hz} \\
128
\end{gathered}
$$

$$
1.2083 \mathrm{sec}
$$

1 H

$$
\begin{array}{r}
1.7920 \text { sec } \\
\quad 5.50 \text { usec } \\
\hline
\end{array}
$$

$\mathrm{ODCL}^{23.3}$
77.00 ppm
1.20
26
F: $¥ J$ ACSS-Carbon ylation NMR $¥ T U-7631$ NONEE2 FT.als

$$
\begin{aligned}
& 10500.00 \mathrm{~Hz} \\
& 16384
\end{aligned}
$$

$$
\begin{gathered}
16384 \\
7992.01 \mathrm{H}
\end{gathered}
$$

$$
\begin{gathered}
7992.01 \mathrm{~Hz} \\
8 \\
2.0500 \mathrm{sec}
\end{gathered}
$$

$$
\begin{aligned}
& 2.0500 \mathrm{sec} \\
& 4.9500 \mathrm{sec}
\end{aligned}
$$

ODCL3

$$
\begin{array}{r}
\quad \begin{array}{r}
4.950 \mathrm{sec} \\
1 \mathrm{H} \\
6.20 \mathrm{usec}
\end{array}
\end{array}
$$

$$
22.50
$$

$$
\begin{aligned}
& \mathrm{xL3} \\
& 0.00 \mathrm{ppm} \\
& 0.12 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{gathered}
0.00 \mathrm{ppr} \\
0.12 \mathrm{~Hz} \\
10
\end{gathered}
$$

12

F: \ddagger JACS-Carbon ylation NMR $¥$ TU-763-13C1 BCM-E6 FT.als

F: \ddagger JACS-Carbonylation NMRF¥TU-TU-763-13C 6: 18 16:39:03 2012 Mon
130
BCM 100.40 MHz 125.00 KHz
10500.00 Hz 10500.00 Hz
32768 327118.64 Hz 128
128
1.2083 sec
1.7920 sec
1.7920 sec

1H 5.50 usec
1 H
odel3 ${ }^{23.1}$
77.00 ppm 1.20 Hz

F: \ddagger JACS-Carbon ylation NMR¥TU-744-1301 BCMEE1 1 FT.als

F:¥JACS-Carb on ylation NMR $¥$ TU-
TU-744-130
Fri Jun 15 11:59:37 2012
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
10500.00 Hz
10327
32768
27118.64 H
${ }_{256}^{27118.64 \mathrm{~Hz}}$
1.2083 sec
1.2083 sec
1.7920 sec
$1 \mathrm{H}^{5.50 \text { usec }}$
22.8 c
ODCL3
77.00 ppm
1.20 Hz
26

GAIN

F:¥JACS-Carbonylation NMRFTU-7641 NONEE11 FT.als
TU-764

F: JJACS-Carbonylation NMR¥TU-
TU-764-130
Mon Jun 18 18:02:22 2012 130
BCM
100.40 MHz
125.00 KHz
10500.00 Hz
10500.00 Hz
${ }_{272768}^{371864}$
27118.64
128
1.2083 sec
1.7920 sec
$1 \mathrm{H}^{5.50 \mathrm{us}}$
$1 \mathrm{H}_{22.9 \mathrm{c}}$
${ }_{77.00 \mathrm{pP}} \mathrm{ODOL}^{22.9 \mathrm{C}}$
1.20 Hz
${ }_{26}$

F: $\ddagger \mathrm{JACS}$-Carbonylation NMR¥TU-765-1301 BCM.E25-FT.als

F\#JACS-Carbonylation NMR¥TU-
Mon Jun 18 20:20:53 2012
Mon
130
BCM
BCM
$\quad 100.40 \mathrm{MH}$
100.40 MHz
125.00 KHz
125.00 KHz
10500.00 Hz

32768
${ }_{27118.64 \mathrm{~Hz}}$
128
1.2083
1.280
1.2083 sec
1.7920 sec
5.50 usec

1H
23.1 C

DCL3
77.00 ppm
1.20 Hz
${ }^{1.26}$

F:キCarbonylation(TL) NMR \ddagger TU-721-13C1 BCME 3 FT.als

