Trichlorophenyl Formate: Highly Reactive and Easily Accessible Crystalline CO Surrogate for Palladium-Catalyzed Carbonylation of Aryl/Aleknyl Halides and Triflates

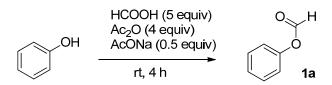
Tsuyoshi Ueda,^{†,‡} Hideyuki Konishi,[†] and Kei Manabe*,[†]

†School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

‡Process Technology Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka, Kanagawa 254-0014, Japan

Email: manabe@u-shizuoka-ken.ac.jp

Supporting Information Table of Contents

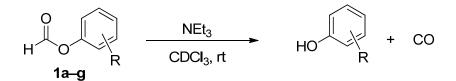

S2	General method and materials
S3	Representative procedure of the synthesis of phenyl formates (Table 1)
S3	General procedure of decarbonylation of phenyl formates (Table 1)
S3	Representative procedure of the synthesis of alkenyl triflates (2b and 2z)
S4	Representative procedure of room-temperature carbonylation (Method A, Table 2)
S5	Representative procedure of the carbonylation of aryl bromides (Method B, Table 3)
S5	Transformation of 2,4,6-trichlorophenyl ester (3a) (Scheme 2)
S9	Analytical data of phenyl formates (1b-g)
S11	Analytical data of carbonylation products (6-17, 3a-z)
S22	References
S23	NMR spectra of obtained compounds (1b-g, 2b, 2z, 3a-z, 8-17)

1. General method and materials

General. All reactions were performed in oven-dried or flame-dried glassware under argon atmosphere. Reactions were monitored by TLC on Merck silica gel 60 F254 plates visualized by UV lump at 254 nm. Column chromatography was performed on Merck silica gel 60 and preparative TLC was performed on Merck silica gel 60 F254 0.5 mm plates. NMR spectra were measured on a JEOL AL-400 NMR spectrometer at 400 MHz for ¹H spectra and 100 MHz for ¹³C spectra. For ¹H NMR, tetramethylsilane (TMS) ($\delta = 0$) in CDCl₃ served as an internal standard. For ¹³C NMR, CDCl₃ ($\delta = 77.0$) served as an internal standard. Infrared spectra were measured on a SHIMADZU IR Prestige-21 spectrometer (ATR). High-resolution mass spectra (HRMS) were measured on a JEOL JMS-T100TD time-of-flight mass spectrometer (DART) and JMS-T100GC gas chromatography mass spectrometer. Melting point was measured using a YAZAWA MICRO MELTING POINT BY-1.

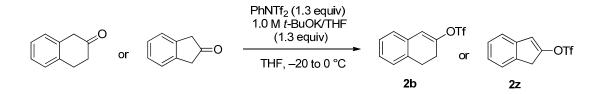
Materials. Commercially obtained chemicals including Pd catalysts and ligands were purchased from commercial supplier and used as received. All solvents, triethylamine, and tributylamine were purified by distillation prior to use. Spectral data of **18b–d**, **22** were identical to those of commercially available compounds, respectively.

2. Representative procedure of the synthesis of phenyl formates (Table 1, entry 1)



Formic acid (19 mL, 500 mmol, 5.0 equiv) was added to acetic anhydride (38 mL, 400 mmol, 4.0 equiv) at rt. The mixture was stirred at 60 °C for 1 h and cooled to rt. The resulting solution was poured to the flask containing phenol (9.4 g, 100 mmol) and AcONa (4.1 g, 50 mmol, 0.5 equiv). The mixture was stirred for 4 h in water bath and then diluted with toluene (150 mL), washed with H₂O (100 mL) three times, dried over MgSO₄, filtered, and concentrated to afford the desired product **1a** (8.7 g, 71 mmol, 71%) as a colorless oil. This product was used for carbonylation reaction without further purification.

Phenyl formate $(1a)^1$


¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.39 (ddd, 2H, J = 8.3, 7.8, 2.4 Hz), 7.25 (tt, 1H, J = 7.8, 1.9Hz), 7.10 (ddd, 2H, J = 8.3, 2.4, 1.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 149.8, 129.6, 126.3, and 121.0.

3. General procedure of decarbonylation of phenyl formates (Table 1)

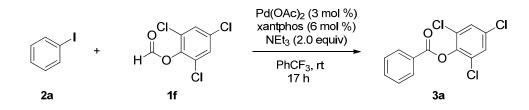
NEt₃ (69 μ L, 0.50 mmol, 1 equiv) was added to a solution of phenyl formates (**1a–g**, 0.50 mmol) in $CDCl_3$ (1 mL). The reaction was carried out at rt. The conversion of 1a-g was analyzed by ¹H-NMR at the suitable interval.

4. Representative procedure of the synthesis of alkenyl triflates

The solution of β -tetralone (3.0 g, 21 mmol) in THF (90 mL) was cooled to -20 °C. 1.0 M *t*-BuOK in THF (27 mL, 27 mmol, 1.3 equiv) was added dropwise to the solution over 10 min. The mixture was

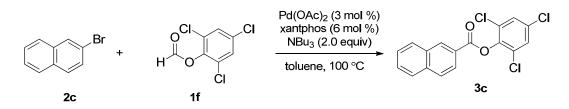
warmed to 0 °C, stirred for 1 h, and then cooled to -20 °C. PhNTf₂ (9.5 g, 27 mmol, 1.3 equiv) was added to the solution and the mixture was stirred for 1 h, then warmed to 0 °C, and stirred for 4 h. The mixture was diluted with EtOAc, washed with H₂O and brine, dried over MgSO₄, filtered, and concentrated. The obtained residue was purified by silica gel column chromatography (SiO₂, hexane/EtOAc 200/1) to afford **2b** (4.9 g, 18 mmol, 86%) as a colorless oil.

3,4-Dihydronaphthalen-2-yl trifluoromethanesulfonate (2b)


¹H NMR (400 MHz, CDCl₃) δ 7.21-7.18 (m, 2H), 7.15-7.13 (m, 1H), 7.08-7.05 (m, 1H), 6.48 (s, 1H), 3.05 (t, *J* = 8.4 Hz, 2H), 2.69 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 132.9, 131.1, 128.4, 127.5, 127.3, 127.0, 118.6 (q, ^{*I*}*J*_{CF} = 319.9 Hz), 118.5, 28.5, and 26.5; IR (ATR) 1665, 1416, 1202, 1136, 1063, 986, 895, 824, 752, and 610 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₁H₉F₃O₃S: 279.0297; found 279.0291.

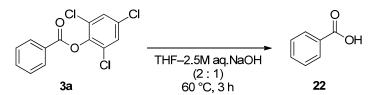
1H-Inden-2-yl trifluoromethanesulfonate (2z)

2z was obtained from 2-indanone as a colorless oil. Yield: 73%.


¹H NMR (400 MHz, CDCl₃) δ 7.38 (m, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.28-7.24 (m, 1H), 6.69 (s, 1H), 3.66 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 140.1, 137.3, 127.2, 126.1, 123.8, 122.1, 119.5, 118.6 (q, ^{*I*}*J*_{*CF*} = 320.7 Hz), and 37.7; IR (ATR) 1618, 1423, 1244, 1206, 1136, 1103, 1090, 907, 835, 750, and 608 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₀H₇F₃O₃S: 265.0141; found 265.0147.

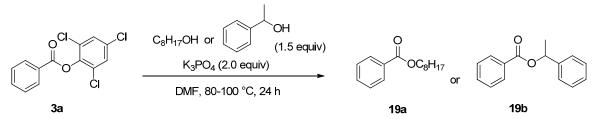
5. Representative procedure of room-temperature carbonylation (Method A, Table 2, entry 13)

Pd(OAc)₂ (3.3 mg, 0.015 mmol, 3.0 mol %), xantphos (17.1 mg, 0.029 mmol, 6.0 mol %), and **1f** (221 mg, 0.98 mmol, 2.0 equiv) were added to a 10-mL test tube. The test tube was evacuated and backfilled with argon three times. Then, a degassed solution of iodobenzene (**2a**) (100 mg, 0.490 mmol) in PhCF₃ (0.5 mL) was added to the test tube under flowing argon. The mixture was stirred for 5 min. Right after the addition of degassed NEt₃ (136 μ L, 0.98 mmol, 2.0 equiv) to the mixture, the test tube was quickly sealed by a plastic screw cap and the mixture was stirred for 17 h at rt. The reaction mixture was diluted with Et₂O, filtered, and concentrated. The obtained residue was purified by PTLC (SiO₂, hexane/EtOAc 10/1) to afford the **3a** (148 mg, 0.49 mmol, >99%) as white crystal.


6. Representative procedure of the carbonylation of aryl bromides (Method B, Table 3, entry 6)

Pd(OAc)₂ (33 mg, 0.15 mmol, 3.0 mol %), xantphos (168 mg, 0.29 mmol, 6.0 mol %), and 2bromonaphtalene (**2c**) (1.00 g, 4.83 mmol) were added to a 50-mL flask. The flask was evacuated and backfilled with argon three times. Then, a degassed solution of NBu₃ (2.3 mL, 9.7 mmol, 2.0 equiv) in toluene (5 mL) was added to the flask equipped with argon balloon. The mixture was warmed to 100 °C and stirred for 5 min. The degassed solution of **1f** (1.3 g, 5.8 mmol, 1.2 equiv) in toluene (9 mL) was added to the mixture over 3 h with syringe pump. After additional stirring at 100 °C for 1 h, the mixture was cooled to rt and concentrated. The obtained residue was purified by silica gel column chromatography (SiO₂, hexane/EtOAc 100/1) to afford **3c** (1.5 g, 4.3 mmol, 89%) as a white crystal.

7. Transformation of 2,4,6-trichlorophenyl ester (3a) (Scheme 2)


7.1. Synthesis of benzoic acid (22)

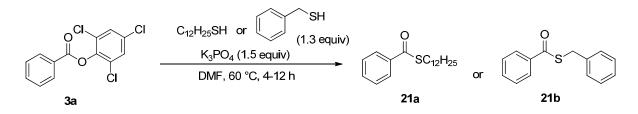
To a solution of **3a** (100 mg, 0.332 mmol) in THF (1 mL) was added 2.5 M aq. NaOH (0.5 mL). The mixture was warmed to 60 °C, stirred for 3 h, and cooled to rt. After the addition of 1 M aq. HCl, the mixture was extracted with CH_2Cl_2 twice. The combined organic layer was dried over MgSO₄, filtered, and concentrated. The obtained residue was purified by PTLC (SiO₂, hexane/EtOAc 1/1) to afford **22** (38 mg, 0.31 mmol, 94%) as a white crystal (m.p. 122 °C).

¹H NMR (400 MHz, CDCl₃) δ 11.09 (brs, 1H), 8.12 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 133.8, 130.2, 129.3, and 128.5.

7.2. Representative procedure of esterification

 K_3PO_4 (141 mg, 0.66 mmol, 2.0 equiv) was added to a solution of **3a** (100 mg, 0.33 mmol) and *n*-octanol (79 µL, 0.50 mmol, 1.5 equiv) in DMF (1 mL). The mixture was warmed to 100 °C, stirred for 24 h, and cooled to rt. The mixture was diluted with EtOAc, filterd, and concetrated. The obtained residue was purified by PTLC (SiO₂, hexane/EtOAc 10/1) to afford **19a** (65 mg, 0.28 mmol, 84%) as a colorless oil.

n-Octyl benzoate $(19a)^2$


¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 4.32 (t, *J* = 6.9 Hz, 2H), 1.80-1.73 (m, 2H), 1.48-1.41 (m, 2H), 1.34-1.28 (m, 8H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 132.8, 130.5, 129.5, 128.3, 65.1, 31.8, 29.24, 29.18, 28.7, 26.0, 22.6, and 14.0.

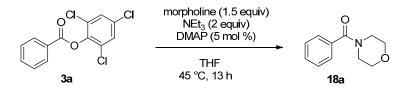
1-Phenylethyl benzoate (19b)³

19b was obtained from **3a** and 1-phenylethyl alcohol as a colorless oil. The reaction was conducted at 80 °C for 24 h. Yield: 84%.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.44-7.41 (m, 4H), 7.36 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 6.13 (q, J = 6.6 Hz, 1H), 1.67 (d, J = 6.6 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 141.7, 132.9, 130.5, 129.6, 128.5, 128.3, 127.8, 126.0, 72.9, and 22.4.

7.3. Representative procedure of thioesterification

 K_3PO_4 (106 mg, 0.50 mmol, 1.5 equiv) was added to a solution of **3a** (100 mg, 0.33 mmol) and 1-dodecyl mercaptan (103 µL, 0.43 mmol, 1.3 equiv) in DMF (1 mL). The mixture was warmed to 60 °C, stirred for 12 h, and cooled to rt. The mixture was directly purified by PTLC (SiO₂, hexane/EtOAc 20/1) to afford **21a** (96 mg, 0.31 mmol, 94%) as a colorless oil.


Dodecyl benzothioate (21a)⁴

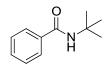
¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 3.06 (t, *J* = 7.6 Hz, 2H), 1.72-1.65 (m, 2H), 1.49-1.35 (m, 2H), 1.35-1.20 (m, 16H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 137.3, 133.1, 128.5, 127.1, 31.9, 29.61, 29.60, 29.56, 29.54, 29.47, 29.3, 29.1, 29.0, 28.9, 22.7, and 14.1.

Benzyl benzothioate (21b)⁵

21b was obtained from **3a** and benzyl mercaptan as a colorless oil. The reaction time was 4 h. Yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.96 (m, 2H), 7.58-7.54 (m, 1H), 7.46-7.42 (m, 2H), 7.39-7.37 (m, 2H), 7.33-7.30 (m, 2H), 7.27-7.24 (m, 1H), 4.32 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 137.5, 136.8, 133.5, 129.0, 128.7, 128.6, 128.5, 127.3, 127.2, and 33.4.

7.4. Representative procedure of amidation

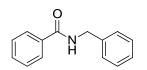
Morpholine (44 μ L, 0.50 mmol, 1.5 equiv) and DMAP (2.0 mg, 0.017 mmol, 0.05 equiv) were added to a solution of **3a** (100 mg, 0.33 mmol) and NEt₃ (92 μ L, 0.66 mmol, 2.0 equiv) in THF (1 mL). The mixture was warmed to 45 °C, stirred for 13 h, and cooled to rt. The mixture was concentrated and directly purified by PTLC (SiO₂, hexane/EtOAc 1/1) to afford **18a** (62 mg, 0.33 mmol, 98%) as a white crystal (m.p. 73 °C).


Morpholino(phenyl)methanone (18a)⁶

¹H NMR (400 MHz, CDCl₃) δ 7.41 (brs, 5H), 3.72 (brs, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 135.2, 129.7, 128.4, 127.9, 127.0, and 66.8.

Benzamide (18b)

18b was obtained from **3a** and 3 equiv of 0.5 M NH₃/dioxane as a white solid (m.p. 125 °C). The reaction time was 13 h. Yield: 98%.


¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.44 (dd, *J* = 8.4, 7.6 Hz, 2H), 6.29 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 133.4, 131.9, 128.6, and 127.3.

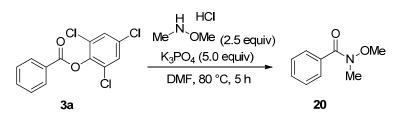
N-tert-Butylbenzamide (18c)

18c was obtained from **3a** and 2 equiv of *tert*-butylamine as a white solid (m.p. 136 °C). The reaction was conducted at 60 °C for 21 h. Yield: 99%.

¹H NMR (400 MHz, CDCl₃) δ 7.73-7.69 (m, 2H), 7.48-7.35 (m, 3H), 6.01 (brs, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 135.9, 131.0, 128.4, 126.6, 51.5, and 28.8.

N-benzylbenzamide (18d)

18d was obtained from **3a** and benzylamine as a white solid (m.p. 104 °C). The reaction time was 13 h. Yield: 97%.


¹H NMR (400 MHz, CDCl₃) δ 7.80-7.75 (m, 2H), 7.48-7.43 (m, 1H), 7.38-7.21 (m, 7H), 6.82 (brs, 1H), 4.57 (d, *J* = 5.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 138.2, 134.3, 131.4, 128.6, 128.4, 127.7, 127.4, 127.3, 126.9, and 43.9.

Ethyl-2-benzamidoacetate (18e)⁷

18e was obtained from **3a** and glycine ethyl ester hydrochloride as a white solid (m.p. 61 $^{\circ}$ C). The reaction time was 13 h. Yield: 97%.

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.49 (t, *J* = 6.8 Hz, 1H), 7.41 (dd, *J* = 8.0, 6.8 Hz, 2H), 6.79 (br, 1H), 4.28-4.20 (m, 4H), 1.31 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 167.5, 133.6, 131.6, 128.5, 127.0, 61.5, 41.8, and 14.0.

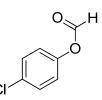
7.5. Synthesis of *N*-methoxyl-*N*-methylbenzamide (20)⁸

 K_3PO_4 (352 mg, 1.66 mmol, 5 equiv) and *N*,*O*-dimethylhydroxylamine hydrochloride (81 mg, 0.83 mmol, 2.5 equiv) was added to a solution of **3a** (100 mg, 0.33 mmol) in DMF (1 mL). The mixture was warmed to 80 °C, stirred for 5 h, and cooled to room temperature. The mixture was diluted with EtOAc, filtered, and concentrated. The obtained residue was purified by PTLC (SiO₂, hexane/EtOAc 4/1) to afford **20** (48 mg, 0.29 mmol, 87%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (m, 2H), 7.46-7.35 (m, 3H), 3.55 (s, 3H), 3.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 134.1, 130.5, 128.1, 128.0, 61.0, and 33.8.

8. Analytical data of phenyl formates (1b-g)

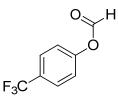
4-Phenylphenyl formate (1b)⁹


1b was obtained from 4-phenylphenol as a white crystal (m.p. 58 °C). 8 equiv of Ac_2O , 10 equiv of HCOOH, and 1 equiv of AcONa were used. Yield: 96%.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.63-7.54 (m, 5H), 7.46-7.42 (m, 2H), 7.38-7.33 (m, 1H), 7.22-7.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 149.2, 140.1, 139.6, 128.8, 128.4, 127.5, 127.1, and 121.4; IR (ATR) 1726, 1599, 1518, 1483, 1217, 1184, 1169, 1098, 858, 750, and 685 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₁₀O₂: 199.0754; found 199.0753.

4-Fluorophenyl formate (1c)¹⁰

1c was obtained from 4-fluorophenol as a colorless oil. Yield: 66%.


¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.14-7.04 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5 (d, ¹*J*_{*CF*} = 244.7 Hz), 159.1, 145.6 (d, ⁴*J*_{*CF*} = 3.3 Hz), 122.6 (d, ³*J*_{*CF*} = 8.8 Hz), 116.3 (d, ²*J*_{*CF*} = 23.2 Hz); IR (ATR) 1763, 1736, 1499, 1180, 1090, 862, 793, and 704 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₇H₅FO₂: 141.0346; found 141.0356.

4-Chlorophenyl formate (1d)⁹

1d was obtained from 4-chlorophenol as a colorless oil. Yield: 95%.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.35 (d, *J* = 8.8 Hz, 2H), 7.07 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 148.2, 131.7, 129.6, and 122.5; IR (ATR) 1763, 1741, 1485, 1190, 1163, 1105, 1082, 860, 777, 611, and 513 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₇H₅ClO₂: 157.0051; found 157.0057.

4-Trifluoromethylphenyl formate (1e)¹⁰

1e was obtained from 4-trifluoromethylphenol as a colorless oil. Yield: 91%.

¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.68 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 152.3, 128.7 (q, ² J_{CF} = 33.0 Hz), 127.1 (q, ³ J_{CF} = 3.7 Hz), 123.8 (q, ¹ J_{CF} = 272.0 Hz), and 121.8; IR (ATR) 1770, 1744, 1612, 1512, 1323, 1202, 1167, 1120, 1099, 1059, 1016, 870, 737, 594, and 571 cm⁻¹; HRMS (CI) [M+H]⁺ calcd for C₈H₅F₃O₂: 191.0314; found 191.0320.

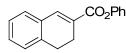
2,4,6-Trichlorophenyl formate (1f)¹¹

1f was obtained from 2,4,6-trichlorophenol as a pale yellow crystal (m.p. 68 °C). 8 equiv of Ac₂O, 10 equiv of HCOOH, and 1 equiv of AcONa were used. Yield: 98%.

¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.40 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 141.9, 132.5, 129.2, and 128.7; IR (ATR) 3078, 1732, 1562, 1447, 1418, 1385, 1368, 1227, 1084, 1055, 849, 818, 804, 687, and 561 cm⁻¹; HRMS (CI) [M+H]⁺ calcd for C₇H₃Cl₃O₂: 224.9271; found 224.9279.

2,6-Difluorophenyl formate (1g)

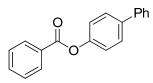
1g was obtained from 2,6-difluorophenol as a colorless oil. Yield: 53%.


¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.26-7.16 (m, 1H), 7.03-6.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 155.0 (dd, ^{1, 3}*J*_{CF} = 251.2, 4.1 Hz), 126.0 (t, ²*J*_{CF} = 15.7 Hz), 126.9 (t, ³*J*_{CF} = 9.0 Hz), and 112.2 (dd, ^{2,4}*J*_{CF} = 17.3, 5.0 Hz); IR (ATR) 1748, 1612, 1493, 1477, 1292, 1248, 1196, 1076, 1011, 770, and 694 cm⁻¹; HRMS (CI) [M+H]⁺ calcd for C₇H₄F₂O₂: 159.0252; found 159.0259.

9. Analytical data of carbonylation products

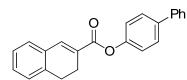
Phenyl benzoate (6)¹

6 was obtained from 1a and 2a as a white crystal (m.p. 68 °C) by method A. Yield: 10%.


¹H NMR (400 MHz, CDCl₃) δ 8.21 (ddd, J = 7.3, 2.0, 1.0 Hz, 2H), 7.62 (tt, J = 7.3, 2.0 Hz, 1H), 7.50 (ddd, J = 7.8, 7.8, 1.0 Hz, 2H), 7.42 (ddd, J = 7.3, 7.3, 1.0 Hz, 2H), 7.26 (tt, J = 7.8, 1.4 Hz, 1H), 7.21 (ddd, J = 7.8, 1.4, 1.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 150.9, 133.5, 130.1, 129.5, 129.4, 128.5, 125.8, and 121.7.

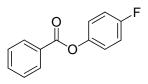
Phenyl 3,4-dihydronaphthalene-2-carboxylate (7)¹²

7 was obtained from 1a and 2b as a white crystal (m.p. 55 °C) by method A. Yield: 30%.


¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.30-7.15 (m, 7H), 2.93 (t, *J* = 8.3 Hz, 2H), 2.72 (t, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 151.0, 138.2, 137.1, 132.3, 129.9, 129.4, 128.7, 128.6, 127.7, 126.8, 125.6, 121.7, 27.5, and 22.3; IR (ATR) 1721, 1626, 1566, 1481, 1450, 1260, 1186, 1161, 1109, 1049, 734, and 689 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₇H₁₅O₂: 251.1066; found 251.1074.

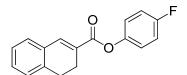
4-Phenylphenyl benzoate (8)

8 was obtained from 1b and 2a as a white crystal (m.p. 139 °C) by method A. Yield: 5%.


¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 7.6 Hz, 2H), 7.66-7.55 (m, 5H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37-7.32 (m, 1H), 7.29 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 150.4, 140.4, 139.0, 133.6, 130.2, 129.6, 128.8, 128.6, 128.2, 127.3, 127.1, and 122.0; IR (ATR) 1730, 1597, 1485, 1450, 1402, 1263, 1230, 1217, 1167, 1063, 878, 756, 700, and 687 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₉H₁₄O₂: 275.1067; found 275.1071.

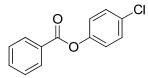
1,1'-Biphenyl-4-yl 3,4-dihydronaphthalene-2-carboxylate (9)

9 was obtained from 1b and 2b as a white crystal (m.p. 113 °C) by method A. Yield: 17%.


¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 7.2 Hz, 2H), 7.37-7.20 (m, 7H), 2.95 (t, J = 8.4 Hz, 2H), 2.75 (t, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 150.5, 140.4, 138.8, 138.4, 137.1, 132.3, 129.9, 128.8, 128.6, 128.2, 127.8, 127.3, 127.1, 126.8, 122.0, 27.6, and 22.3 (One aromatic carbon signal is missing.); IR (ATR) 1732, 1624, 1564, 1447, 1379, 1275, 1238, 1200, 1182, 1167, 1134, 1109, 1022, 959, 906, 854, 817, and 729 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₂₃H₁₈O₂: 327.1380; found 327.1386.

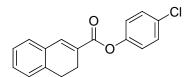
4-Fluorophenyl benzoate (10)

10 was obtained from 1c and 2a as a white crystal (m.p. 49 °C) by method A. Yield: 30%.


¹H NMR (400 MHz, CDCl₃) δ 8.21-8.18 (m, 2H), 7.64 (tt, *J* = 7.6, 2.0 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.20-7.15 (m, 2H), 7.14-7.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 160.3 (d, ^{*I*}*J*_{*CF*} = 243.8 Hz), 146.7, 133.7, 130.2, 129.3, 128.6, 123.1 (d, ^{*3*}*J*_{*CF*} = 8.2 Hz), 116.1 (d, ^{*2*}*J*_{*CF*} = 23.9 Hz); IR (ATR) 1730, 1599, 1499, 1450, 1267, 1240, 1184, 1061, 1024, 1012, 876, 818, 763, and 698 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₉FO₂: 217.0659; found 217.0662.

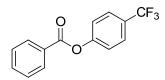
4-Fluorophenyl 3,4-dihydronaphthalene-2-carboxylate (11)

11 was obtained from 1c and 2b as a colorless oil by method A. Yield: 35%.


¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.29-7.19 (m, 4H), 7.16-7.05 (m, 4H), 2.93 (t, *J* = 8.4 Hz, 2H), 2.71 (td, *J* = 8.4, 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 160.1 (d, ^{*I*}*J*_{*CF*} = 243.8 Hz), 146.8 (d, ^{*4*}*J*_{*CF*} = 2.5 Hz), 138.5, 137.1, 132.2, 130.0, 128.8, 128.3, 127.8, 126.8, 123.0 (d, ^{*3*}*J*_{*CF*} = 8.2 Hz), 116.0 (d, ^{*2*}*J*_{*CF*} = 23.1 Hz), 27.5, and 22.3; IR (ATR) 1717, 1624, 1501, 1275, 1260, 1204, 1173, 1148, 1110, 1047, 968, 831, 758, 746, and 718 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₇H₁₃FO₂: 269.0972; found 269.0980.

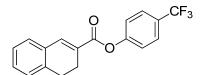
4-Chlorophenyl benzoate (12)

12 was obtained from 1d and 2a as a white crystal (m.p. 72 °C) by method A. Yield: 81%.


¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 7.6, 1.6 Hz, 2H), 7.63 (tt, 1H, J = 8.0, 1.6 Hz, 1H), 7.50 (dd, J = 8.0, 7.6 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 149.4, 133.7, 131.2, 130.2, 129.5, 129.1, 128.6, and 123.1; IR (ATR) 1730, 1485, 1450, 1261, 1215, 1200, 1159, 1078, 1059, 1024, 1013, 1001, 876, 806, 799, 702, and 683 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₉ClO₂: 233.0364; found 233.0360.

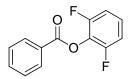
4-Chlorophenyl 3,4-dihydronaphthalene-2-carboxylate (13)

13 was obtained from 1d and 2b as a white crystal (m.p. 67 °C) by method A. Yield: 87%.


¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.37-7.33 (m, 2H), 7.30-7.18 (m, 4H), 7.13-7.09 (m, 2H), 2.92 (t, *J* = 8.4 Hz, 2H), 2.70 (td, *J* = 8.4, 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 149.5, 138.6, 137.1, 132.2, 130.9, 130.0, 129.4, 128.8, 128.2, 127.7, 126.8, 123.1, 27.5, and 22.2; IR (ATR) 1732, 1719, 1618, 1481, 1258, 1159, 1085, 1045, 1012, 877, 770, and 716 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₇H₁₃ClO₂: 285.0677; found 285.0673.

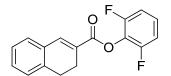
4-Trifluoromethylphenyl benzoate (14)

14 was obtained from 1e and 2a as a white crystal (m.p. 96 °C) by method A. Yield: 94%.


¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 8.4, 1.2 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.66-7.62 (m, 1H), 7.51 (t, J = 8.0 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 153.5, 133.9, 130.2, 128.9, 128.7, 128.1 (q, ² J_{CF} = 33.0 Hz), 126.8 (q, ³ J_{CF} = 3.2 Hz), 123.9 (q, ¹ J_{CF} = 272.0 Hz), and 122.2; IR (ATR) 1732, 1610, 1599, 1516, 1452, 1333, 1261, 1225, 1207, 1157, 1115, 1099, 1051, 881, 702, and 683 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₄H₉F₃O₂: 267.0627; found 267.0623.

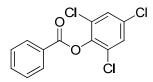
4-Trifluoromethylphenyl 3,4-dihydronaphthalene-2-carboxylate (15)

15 was obtained from 1e and 2b as a white crystal (m.p. 103 °C) by method A. Yield: 91%.

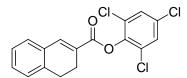

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.31-7.19 (m, 6H), 2.94 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 153.6, 139.0, 137.2, 132.1, 130.2, 128.9, 128.0, 127.9 (q, ² $_{J_{CF}}$ = 33.1 Hz), 127.8, 126.9, 126.7 (q, ³ $_{J_{CF}}$ = 4.1 Hz), 123.9 (q, ¹ $_{J_{CF}}$ = 272.0 Hz), 122.2, 27.5, and 22.2; IR (ATR) 1724, 1622, 1611, 1327, 1260, 1215, 1163, 1101, 1066, 1042, 1016, 984, 953, 880, 862, 762, and 716 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₈H₁₃F₃O₂: 319.0940; found 319.0931.

2,6-Difluorophenyl benzoate (16)

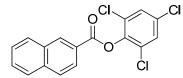
16 was obtained from 1g and 2a as a colorless oil by method A. Yield: 99%.


¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 8.4, 1.2 Hz, 2H), 7.65 (tt, J = 7.6, 1.2 Hz, 1H), 7.52 (t, J = 8.4 Hz, 2H), 7.24-7.16 (m, 1H), 7.04-6.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 155.5 (dd, ^{*l*}, ³ J_{CF} = 250.4, 4.1 Hz), 134.1, 130.5, 128.7, 128.0, 127.5 (t, ² J_{CF} = 14.9 Hz), 126.4 (t, ³ J_{CF} = 9.1 Hz), and 112.1 (dd, ², ⁴ J_{CF} = 17.4, 4.9 Hz); IR (ATR) 1749, 1605, 1501, 1479, 1452, 1292, 1258, 1246, 1202, 1179, 1076, 1045, 1011, 772, 702, 685, 520 and 513 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₈F₂O₂: 235.0565; found 235.0569.

2,6-Difluorophenyl 3,4-dihydronaphthalene-2-carboxylate (17)

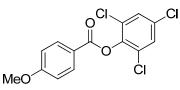

17 was obtained from 1g and 2b as a colorless oil by method A. Yield: 94%.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.30-7.15 (m, 5H), 7.00 (t, J = 8.0 Hz, 2H), 2.95 (t, J = 8.4 Hz, 2H), 2.74 (td, J = 8.4, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 155.6 (dd, ^{*l*}, ^{*i*} $_{J_{CF}} = 250.5$, 4.2 Hz), 139.7, 137.2, 132.1, 130.2, 129.0, 127.8, 127.6 (t, ^{*2*} $_{J_{CF}} = 15.7$ Hz), 126.9, 126.8, 126.1 (t, ³ $_{J_{CF}} = 9.1$ Hz), 112.0 (dd, ^{2, 4} $_{J_{CF}} = 17.3$, 5.7 Hz), 27.4, and 22.3; IR (ATR) 1730, 1622, 1599, 1501, 1477, 1292, 1275, 1260, 1246, 1200, 1165, 1155, 1109, 1011, 959, 770, 752, and 714 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₇H₁₂F₂O₂: 287.0878; found 287.0869.


2,4,6-Trichlorophenyl benzoate (3a)

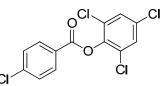
3a was obtained from **1f** and **2a** as a white crystal (m.p. 55 °C) by method A. Yield: >99%. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, J = 8.0, 1.2 Hz, 2H), 7.66 (tt, J = 7.2, 1.2 Hz, 1H), 7.53 (dd, J = 8.0, 7.2 Hz, 2H), 7.41 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 143.2, 134.2, 132.0, 130.5, 129.8, 128.7, 128.6, and 127.8; IR (ATR) 1753, 1447, 1258, 1227, 1045, 1018, 862, 696, 509, and 503 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₇Cl₃O₂: 300.9584; found 300.9592.

2,4,6-Trichlorophenyl 3,4-dihydronaphthalene-2-carboxylate (3b)


3b was obtained from **1f** and **2b** as a white crystal (m.p. 73 °C) by method A. Yield: >99%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.38 (s, 2H), 7.31-7.19 (m, 4H), 2.96 (t, *J* = 7.6 Hz, 2H), 2.75 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 143.3, 139.9, 137.2, 132.0, 131.7, 130.3, 129.8, 129.0, 128.5, 127.8, 126.9, 126.7, 27.4, and 22.2; IR (ATR) 1732, 1624, 1562, 1447, 1379, 1274, 1238, 1200, 1184, 1169, 1020, 957, 854, 756, 731, and 714 cm⁻¹; HRMS (TOF) $[M+H]^+$ calcd for $C_{17}H_{11}Cl_3O_2$: 352.9897; found 352.9887.

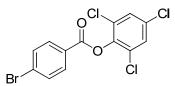
2,4,6-Trichlorophenyl 2-naphthoate (3c)

3c was obtained from 1f and 2c as a white crystal (m.p. 115 °C) by method B. Yield: 90%.


¹H NMR (400 MHz, CDCl₃) δ 8.84 (s, 1H), 8.19 (dd, J = 8.8, 2.0, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.64-7.54 (m, 2H), 7.40 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 143.3, 136.1, 132.6, 132.4, 132.0, 130.5, 129.8, 129.5, 129.0, 128.6, 127.8, 127.0, 125.4, and 125.0; IR (ATR) 1746, 1562, 1447, 1277, 1219, 1184, 1124, 1040, 947, 908, 856, 818, 758, and 731 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₇H₉Cl₃O₂: 350.9741; found 350.9742.

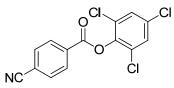
2,4,6-Trichlorophenyl 4-methoxybenzoate (3d)

3d was obtained from 1f and 2d as a colorless oil by method A. Yield: 82%.


¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.8 Hz, 2H), 7.40 (s, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 162.6, 143.4, 132.7, 131.8, 129.9, 128.5, 120.0, 114.0, and 55.5; IR (ATR) 1744, 1605, 1510, 1449, 1258, 1227, 1167, 1138, 1043, 1024, 1003, 843, 818, 756, 689, and 610 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₄H₉Cl₃O₃: 330.9690; found 330.9688.

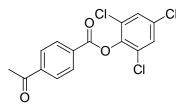
2,4,6-Trichlorophenyl 4-chlorobenzoate (3e)

3e was obtained from 1f and 2e as a colorless oil by method A. Yield: >99%.


¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 6.8 Hz, 2H), 7.50 (d, *J* = 6.8 Hz, 2H), 7.41 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 143.0, 140.9, 132.2, 131.8, 129.7, 129.1, 128.6, and 126.2; IR (ATR) 1746, 1591, 1566, 1447, 1402, 1387, 1256, 1223, 1175, 1142, 1090, 1076, 1011, 845, 820, and 746 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₆Cl₄O₂: 334.9195; found 334.9192.

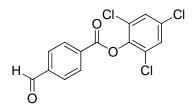
2,4,6-Trichlorophenyl 4-bromobenzoate (3f)

3f was obtained from **1f** and **2f** as a white crystal (m.p. 74 °C) by method A. Yield: >99%.


¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.0, 1.2 Hz, 2H), 7.68 (dd, J = 8.0, 1.2 Hz, 2H), 7.41 (d, J = 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 143.0, 132.23, 132.18, 132.0, 129.7, 128.7, and 126.7 (One aromatic carbon signal is missing.); IR (ATR) 1745, 1587, 1564, 1449, 1387, 1258, 1225, 1175, 1140, 1043, 1007, 820, and 743 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₃H₆BrCl₃O₂: 378.8690; found 378.8683.

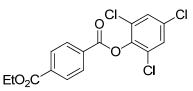
2,4,6-Trichlorophenyl 4-cyanobenzoate (3g)

3g was obtained from 1f and 2g as a white crystal (m.p. 106 °C) by method A. Yield: 94%.


¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.44 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 142.6, 138.4, 132.5, 131.6, 130.9, 129.5, 128.7, 117.65, and 117.57; IR (ATR) 2232, 1751, 1560, 1447, 1258, 1236, 1082, 1055, 1018, 854, 756, and 682 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₄H₆Cl₃NO₂: 325.9537; found 325.9528.

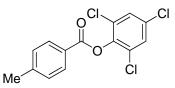
2,4,6-Trichlorophenyl 4-acetylbenzoate (3h)

3h was obtained from 1f and 2h as a white crystal (m.p. 129 °C) by method A. Yield: >99%.


¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.0 Hz, 2H), 8.10 (d, *J* = 8.0 Hz, 2H), 7.43 (s, 2H), 2.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 162.1, 142.9, 141.2, 132.3, 131.5, 130.8, 129.6, 128.7, 128.4, and 26.9; IR (ATR) 1746, 1686, 1566, 1450, 1389, 1229, 1082, 1051, 1011, 856, 758, and 689 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₅H₉Cl₃O₃: 342.9690; found 342.9697.

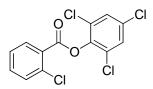
2,4,6-Trichlorophenyl 4-formylbenzoate (3i)

3i was obtained from 1f and 2i as a white crystal (m.p. 93 °C) by method A. Yield: 99%.


¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 8.40 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 8.0 Hz, 2H), 7.43 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 162.0, 142.8, 140.0, 132.6, 132.4, 131.1, 129.7, 128.7 and 128.0; IR (ATR) 1757, 1705, 1564, 1449, 1387, 1227, 1200, 1140, 1045, 1013, 854, 820, and 746 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₄H₇Cl₃O₃: 328.9534; found 328.9536.

2,4,6-Trichlorophenyl 4-ethoxycarbonylbenzoate (3j)

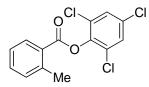
3j was obtained from 1f and 2j as a white crystal (m.p. 99 °C) by method A. Yield: 85%.


¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.4 Hz, 2H), 8.20 (d, *J* = 8.4 Hz, 2H), 7.43 (s, 2H), 4.44 (q, *J* = 6.8 Hz, 2H), 1.43 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 162.2, 143.0, 135.5, 132.3, 131.4, 130.4, 129.8, 129.7, 128.7, 61.6, and 14.2; IR (ATR) 1746, 1717, 1566, 1447, 1267, 1254, 1229, 1105, 1045, 1012, 849, 880, and 725 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₆H₁₁Cl₃O₄: 372.9796; found 372.9800.

2,4,6-Trichlorophenyl 4-methylbenzoate (3k)

3k was obtained from 1f and 2k as a white crystal (m.p. 68 °C) by method B. Yield: 81%.

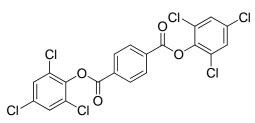
¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.41 (s, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 145.3, 143.3, 131.9, 130.6, 129.9, 129.5, 128.6, 125.1, and 21.8; IR (ATR) 1742, 1611, 1564, 1447, 1387, 1260, 1225, 1179, 1042, 1015, 854, 818, and 741 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₄H₉Cl₃O₂: 314.9741; found 314.9746.



2,4,6-Trichlorophenyl 2-chlorobenzoate (3m)

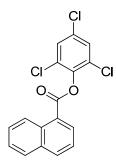
3m was obtained from **1f** and **2m** as a white crystal (m.p. 57 °C) by method A. Reaction temperature was 45 °C. Yield: 96%.

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.0 Hz, 1H), 7.55-7.52 (m, 2H), 7.43 (s, 2H), 7.42-7.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 142.8, 135.1, 133.8, 132.3, 132.2, 131.5, 129.7, 128.6, 127.5,


and 126.8; IR (ATR) 1753, 1589, 1564, 1445, 1387, 1219, 1130, 1086, 1016, 856, 820, and 740 cm⁻¹; HRMS (TOF) $[M+H]^+$ calcd for $C_{13}H_6Cl_4O_2$: 334.9195; found 334.9196.

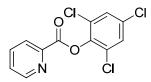
2,4,6-Trichlorophenyl 2-methylbenzoate (3n)

3n was obtained from **1f** and **2n** as a colorless oil by mthod A. Reaction temperature was 45 °C. Yield: 82%.


¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.2 Hz, 1H), 7.52-7.49 (m, 1H), 7.42 (s, 2H), 7.40-7.36 (m, 2H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 143.3, 141.8, 133.3, 132.0, 131.9, 131.5, 129.9, 128.6, 127.1, 126.0, and 21.7; IR (ATR) 1751, 1562, 1447, 1385, 1287, 1244, 1219, 1130, 1011, 858, 818, 804, 791, and 731 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₄H₉Cl₃O₂: 314.9741; found 314.9748.

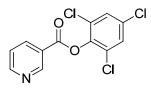
Bis(2,4,6-trichlorophenyl) terephthalate (30)

30 was obtained from **1f** and **20** or **20a** as a white crystal (m.p. 179 °C). Yield: 75% from **20** by method A (2.5 equiv of **1f** and 4 equiv of NBu₃ were used in the presence of 5 mol % of Pd(OAc)₂ and 10 mol % of xantphos). Yield: 92% from **20a** by method B (3 equiv of **1f** and 3 equiv of NEt₃ were used in the presence of 5 mol % of Pd(OAc)₂ and 10 mol % of xantphos).


¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 4H), 7.45 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 142.9, 132.8, 132.4, 130.8, 129.6, and 128.7; IR (ATR) 1751, 1562, 1447, 1254, 1227, 1136, 1049, 1011, 853, 820 and 708 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₂₀H₈Cl₆O₄: 522.8627; found 522.8636.

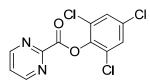
2,4,6-Trichlorophenyl 1-naphthoate(3p)

3p was obtained from **1f** and **2p** as a white crystal (m.p. 94 °C) by method A. Reaction temperature was 45 °C. Yield: 99%.


¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, *J* = 9.2 Hz, 1H), 8.56 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.65 (ddd, *J* = 7.6, 6.8, 1.6 Hz, 1H), 7.59-7.53 (m, 2H), 7.43 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 143.2, 134.9, 133.8, 132.0, 131.8, 131.7, 129.9, 128.7, 128.6, 128.5, 126.6, 125.5, 124.5, and 124.2; IR (ATR) 3071, 1740, 1560, 1447, 1229, 1182, 1099, 1072, 966, 862, 804, and 768 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₇H₉Cl₃O₂: 350.9741; found 350.9741.

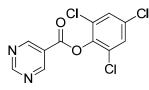
2,4,6-Trichlorophenyl picolinate (3q)

3q was obtained from **1f** and **2q** or **2qa** as a white crystal (m.p. 121 °C). Yield: 88% from **2qa** by method A. Yield: >99% from **2q** by method A (The reaction temperature was 45 °C).


¹H NMR (400 MHz, CDCl₃) δ 8.90-8.87 (m, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 7.95 (td, *J* = 8.0, 1.6 Hz, 1H), 7.61 (ddd, *J* = 7.2, 4.4, 1.6 Hz, 1H), 7.43 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 150.4, 145.9, 143.1, 137.2, 132.2, 129.5, 128.6, 127.9, and 126.2; IR (ATR) 1746, 1564, 1450, 1437, 1288, 1233, 1080, 1067, 1043, 739, and 694 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₂H₆Cl₃NO₂: 301.9537; found 301.9545.

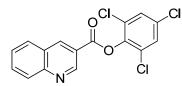
2,4,6-Trichlorophenyl nicotinate (3r)

3r was obtained from 1f and 2r as a white crystal (m.p. 47 °C) by method B. Yield: 86%.


¹H NMR (400 MHz, CDCl₃) δ 9.44 (d, J = 2.0 Hz, 1H), 8.91 (dd, J = 4.8, 1.2 Hz, 1H), 8.48 (ddd, J = 8.4, 2.0, 1.2 Hz, 1H), 7.50 (dd, J = 8.4, 4.8 Hz, 1H), 7.44 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 154.6, 151.6, 142.7, 137.8, 132.4, 129.6, 128.7, 124.1, and 123.6; IR (ATR) 1751, 1587, 1562, 1450, 1420, 1267, 1229, 1061, 1016, 862, 725, and 696 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₂H₆Cl₃NO₂: 301.9537; found 301.9543.

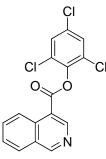
2,4,6-Trichlorophenyl pyrimidine-2-carboxylate (3s)

3s was obtained from 1f and 2s as a colorless oil by method A. Yield: 74%.


¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, J = 4.8 Hz, 2H), 7.62 (d, J = 4.8 Hz, 1H), 7.45 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 158.2, 155.0, 142.9, 132.6, 129.4, 128.8, 128.0, and 123.9; IR (ATR) 1771, 1562, 1447, 1304, 1234, 1109, 1090, 1063, 856, 820, 766, 752, 685, and 629 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₁H₅Cl₃N₂O₂: 302.9489; found 302.9483.

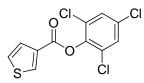
2,4,6-Trichlorophenyl pyrimidine-5-carboxylate (3t)

3t was obtained from 1f and 2t as a white crystal (m.p. 75 °C) by method B. Yield: 74%.


¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 2H), 9.50 (s, 1H), 7.46 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 160.1, 158.6, 142.2, 132.8, 129.5, 128.8, and 122.5; IR (ATR) 1761, 1584, 1562, 1450, 1435, 1269, 1233, 1121, 1062, 1020, 862, 818, and 710 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₁H₅Cl₃N₂O₂: 302.9489; found 302.9481.

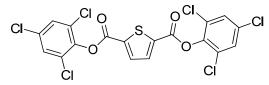
2,4,6-Trichlorophenyl quinoline-3-carboxylate (3u)

3u was obtained from **1f** and **2u** as a white crystal (m.p. 143 °C) by method B. Yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (d, J = 2.4 Hz, 1H), 9.07 (d, J = 2.0 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.90 (ddd, J = 8.8, 8.0, 1.2 Hz, 1H), 7.67 (ddd, J = 8.4, 8.0, 1.2 Hz, 1H), 7.43 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 150.3, 149.9, 142.8, 140.1, 132.6, 132.4, 129.7, 129.6, 129.3,

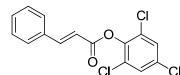

128.7, 127.8, 126.6, and 120.8; IR (ATR) 1749, 1618, 1562, 1449, 1287, 1221, 1123, 966, 860, 789, and 760 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₆H₈Cl₃NO₂: 351.9693; found 351.9702.

2,4,6-Trichlorophenyl isoquinoline-4-carboxylate (3v)

3v was obtained from 1f and 2v as a white crystal (m.p. 156 °C) by method B. Yield: 76%.


¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 9.48 (s, 1H), 8.96 (d, *J* = 8.8 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.89 (dd, *J* = 8.4, 7.6 Hz, 1H), 7.73 (dd, *J* = 8.8, 7.6 Hz, 1H), 7.46 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 158.2, 148.0, 142.9, 134.0, 132.9, 132.3, 129.8, 128.7, 128.5, 128.1, 124.7, and 118.3 (One aromatic carbon signal is missing.); IR (ATR) 1744, 1562, 1375, 1225, 1213, 1157, 1121, 1096, 980, 957, 856, 770, and 748 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₆H₈Cl₃NO₂: 351.9693; found 351.9702.

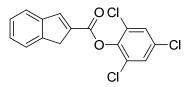
2,4,6-Trichlorophenyl thiophene-3-carboxylate (3w)


3w was obtained from **1f** and **2w** or **2wa** as a white crystal (m.p. 44 °C). Yield: 98% from **2w** by method A. Yield: 84% from **2wa** by method B.

¹H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 2.8, 1.2 Hz, 1H), 7.69 (dd, J = 4.8, 1.2 Hz, 1H), 7.40 (s, 2H), 7.39 (dd, J = 4.8, 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 142.9, 135.2, 132.0, 130.9, 129.8, 128.6, 128.2, and 126.7; IR (ATR) 1746, 1562, 1449, 1396, 1387, 1229, 1177, 1045, 854, 816, 802, and 733 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₁H₅Cl₃O₂S: 306.9149; found 306.9149.

Bis(2,4,6-trichlorophenyl) thiophene-2,5-dicarboxylate (3x)

3x was obtained from **1f** and **2x** as a white crystal (m.p. 205 °C) by method A (3 equiv of **1f** and 3 equiv of NEt₃ were used in the presence of 5 mol % of Pd(OAc)₂ and 10 mol % of xantphos). Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 2H), 7.44 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 142.4, 137.5, 135.4, 132.7, 129.7, and 128.7; IR (ATR) 1753, 1740, 1566, 1449, 1260, 1217, 1126, 1015, 997, 843, 818, 733, and 719 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₈H₆Cl₆O₄S: 528.8191; found 528.8200.



2,4,6-Trichlorophenyl cinnamate (3y)

3y (*E*/*Z* = 97/3) was obtained from **1f** and **2**y (*E*/*Z* = 87/13) as a colorless oil by method A. Yield: 88%. *E*-form: ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 16.0 Hz, 1H), 7.60-7.56 (m, 2H), 7.46-7.32 (m, 3H), 7.36 (s, 2H), 6.66 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 148.3, 143.1, 133.7, 131.8, 131.1, 129.7, 129.0, 128.50, 128.45, 115.2.

Z-form: ¹H NMR (400 MHz, CDCl₃) δ *inter alia* 7.73-7.70 (m, 2H), 6.24 (d, J = 12.8 Hz, 1H).

E/Z-mixture: IR (ATR) 1740, 1632, 1445, 1217, 1194, 1103, 957, 854, 758, 731, and 702 cm⁻¹; HRMS (TOF) $[M+H]^+$ calcd for C₁₅H₉Cl₃O₂: 326.9741; found 326.9739.

2,4,6-Trichlorophenyl 1*H*-indene-2-carboxylate (3z)

3z was obtained from 1f and 2z as a white crystal (m.p. 121 °C) by method A. Yield: 97%.

¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.59 (dd, J = 6.4, 2.0 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.42-7.33 (m, 2H), 7.39 (s, 2H), 3.85 (d, J = 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 145.2, 144.8, 143.1, 142.2, 134.2, 131.8, 129.9, 128.54, 128.47, 127.1, 124.4, 124.0, and 38.4; IR (ATR) 1724, 1560, 1447, 1387, 1335, 1229, 1173, 1130, 1011, 850, 756, and 714 cm⁻¹; HRMS (TOF) [M+H]⁺ calcd for C₁₆H₉Cl₃O₂: 338.9741; found 338.9751.

10. References

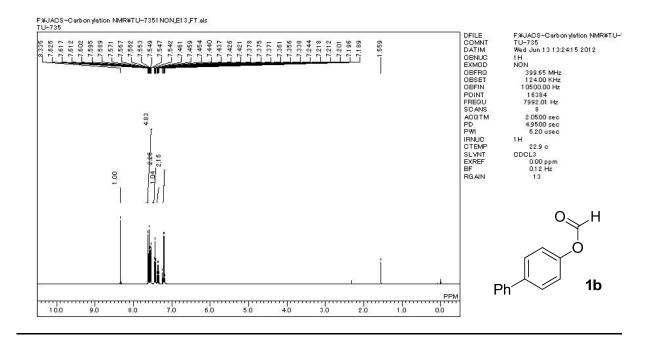
1) Ueda, T.; Konishi, H.; Manabe, K. Org. Lett. 2012, 14, 3100.

- 2) Oda, Y.; Hirano, K.; Satoh, T.; Kuwabata, S.; Miura, M. Tetrahedron Lett. 2011, 52, 5392.
- 3) Baba, H.; Moriyama, K.; Togo, H. Tetrahedron Lett. 2011, 52, 4303.
- 4) Naik, S.; Kavala, V.; Gopinath, R.: Patel, B. K. ARKIVOK 2006, 11, 21.
- 5) Magens, S.; Plietker, B. Chem. Eur. J. 2011, 17, 8807.

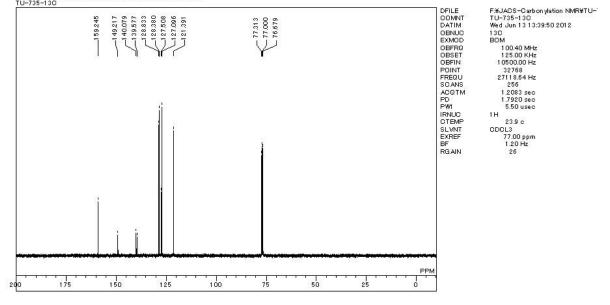
6) Ohshima, T.; Iwasaki, T.; Maegawa, Y.; Yoshiyama, A.; Mashima, K. J. Am. Chem. Soc. 2008, 130, 2944.

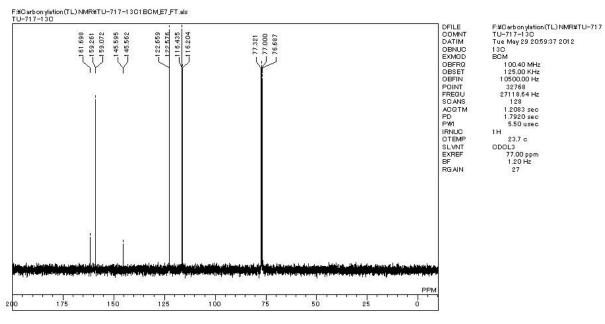
7) Mandal, B.; Saha, A.; Palakurthy, N. B.; Thalluri, K.; Nadimpally, K. C. *Tetrahedron Lett.* **2011**, *52*, 2579.

8) Woo, J. C. S.; Fenster, E.; Dake, G. R. J. Org. Chem. 2004, 69, 8984.

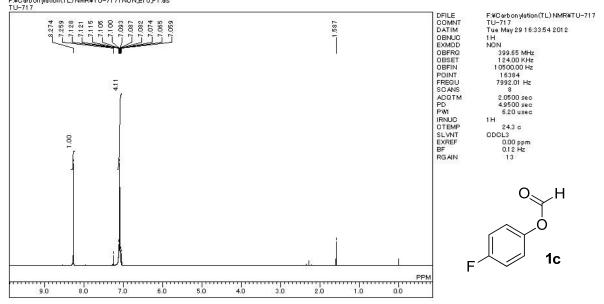

9) Katafuchi, Y.; Fujihara, T.; Iwai, T.; Terao, J.; Tsuji, Y. Adv. Synth. Catal. 2011, 353, 475.

10) Ochiai, M.; Yoshimura, A.; Miyamoto, K.; Hayashi, S.; Nakanishi, W. J. Am. Chem. Soc. 2010, 132, 9236.

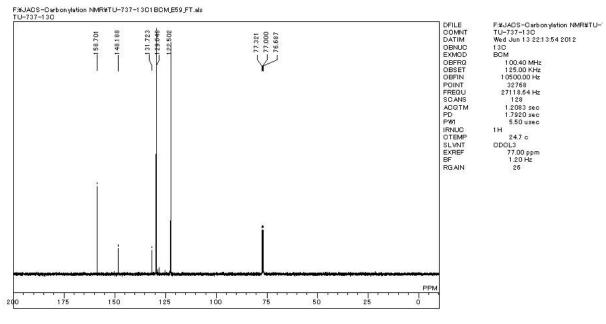

11) van Es, A.; Stevens, W. Recl. Trav. Chim. Pay. B. 1965, 84, 1247.

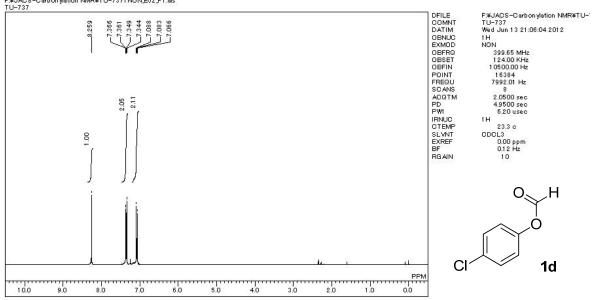

12) Ueda, T.; Konishi, H.; Manabe, K. *Tetrahedron. Lett.* **2012**, DOI: http://dx.doi.org/10.1016 /j.tetlet.2012.07.057

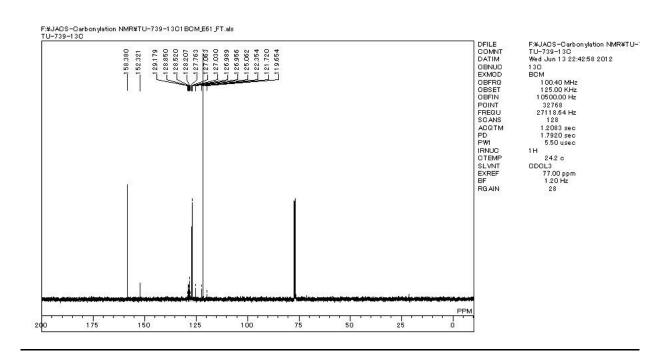
11. NMR spectra of obtained compounds (1b-g, 2b, 2z, 3a-z, 8-17)

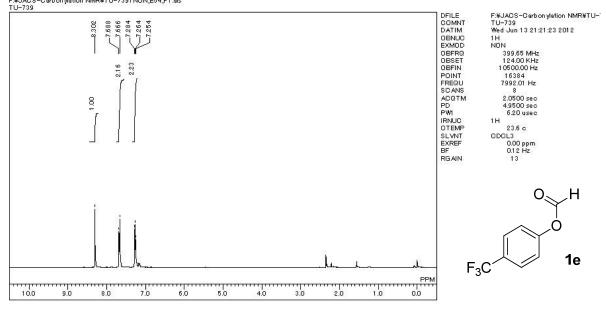


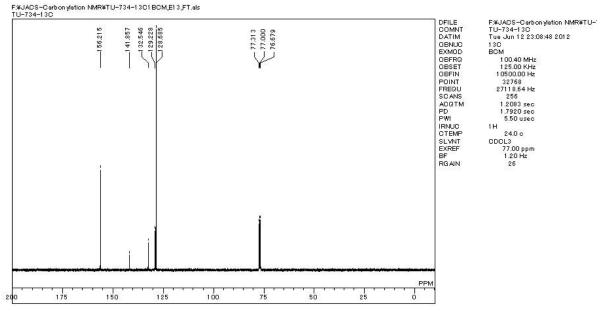
F:¥JACS-Carbonylation NMR¥TU-735-13C1 BCM_E14_FT.als TU-735-13C

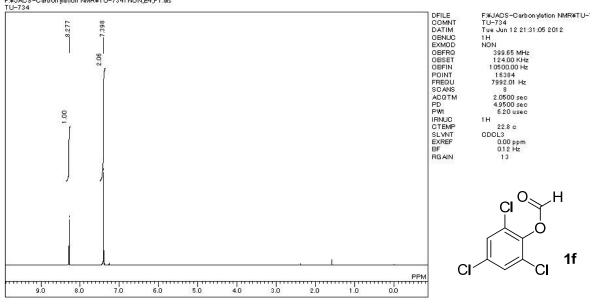


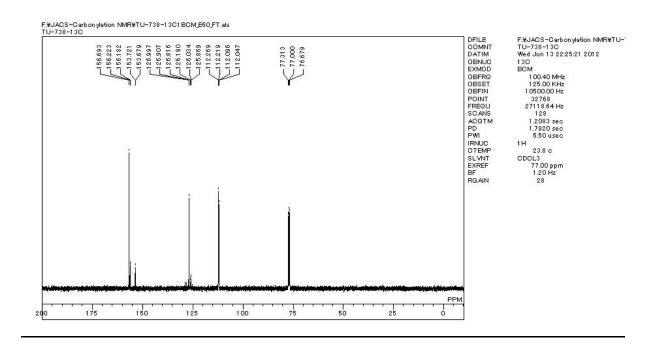


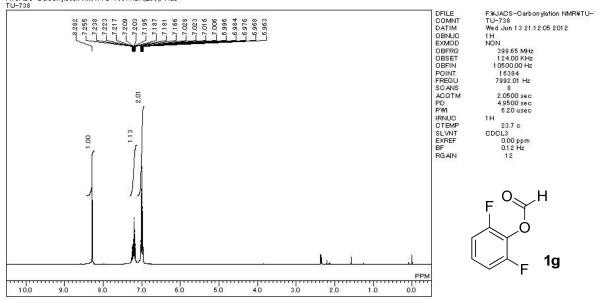


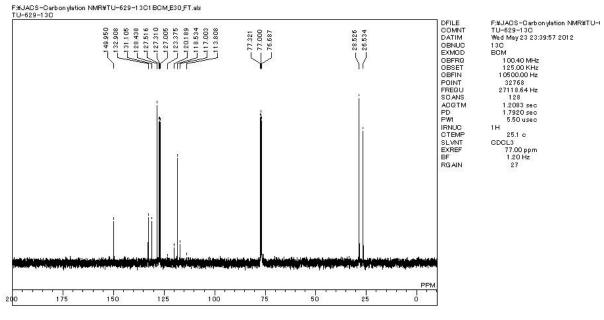

F:#Carbonylation(TL) NMR¥TU-7171 NON_E10_FT.als TU-717

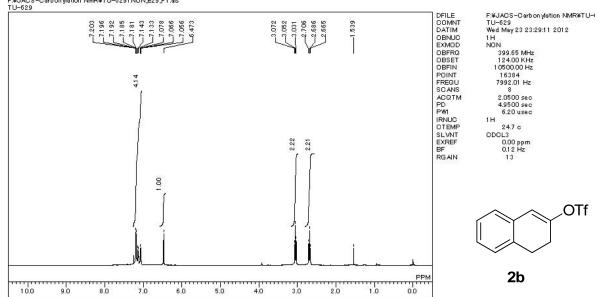


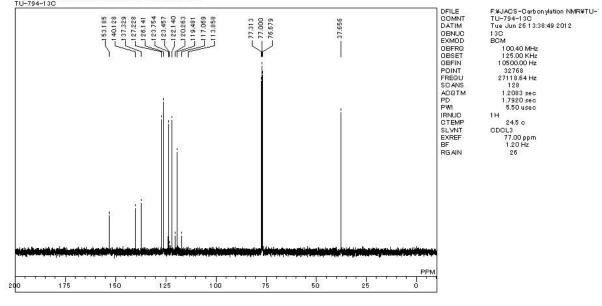

F:¥JACS-Carbonylation NMR¥TU-7371 NON_E52_FT.als TU-737



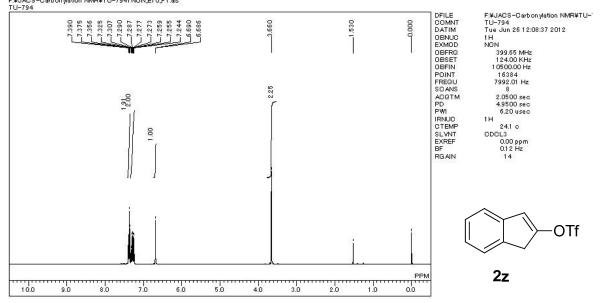

F:¥JACS-Carbonylation NMR¥TU-7391 NON_E54_FT.als TU-739

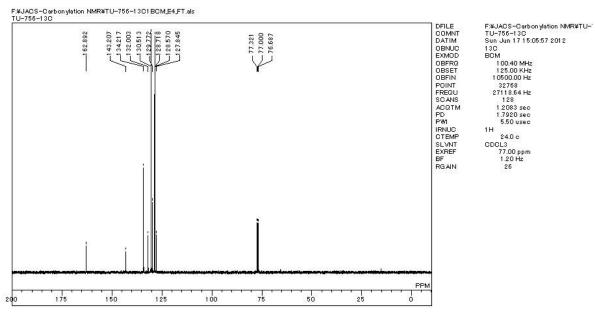


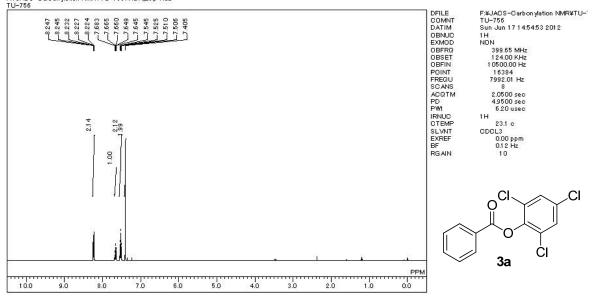

F:¥JACS-Carbonylation NMR¥TU-7341 NON_E4_FT.als TU-734



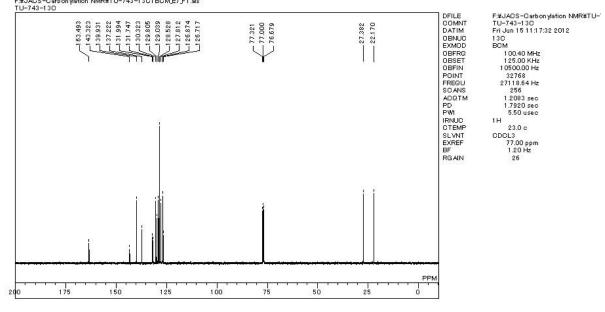
F:¥JACS-Carbonylation NMR¥TU-7381 NON_E53_FT.als TU-738



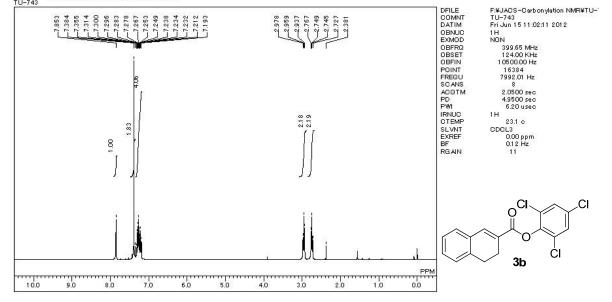

F:¥JACS-Carbon vlation NMR¥TU-6291 NON_E29_FT.als TU-629

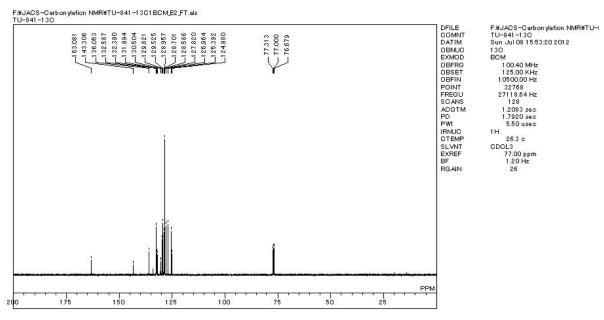


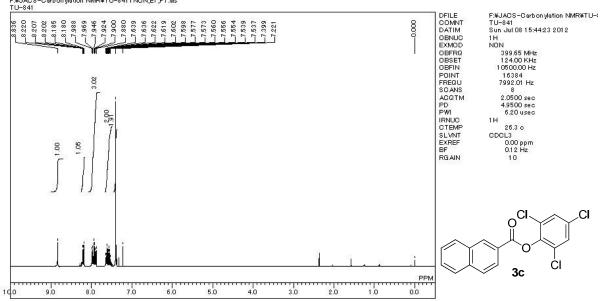
F#JACS-Carbonylation NMR¥TU-794-13C1 BCM_E17_FT.als U-794-13C



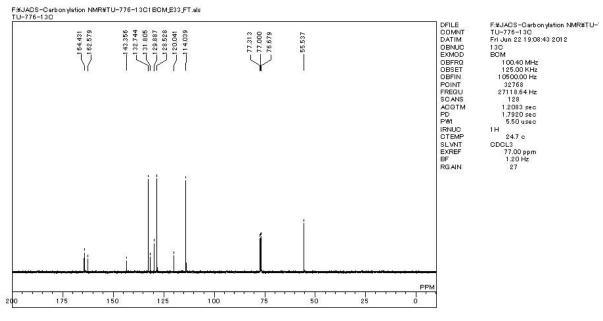
F:¥JACS-Carbon ylation NMR¥TU-7941 NON_E10_FT.als TU-794

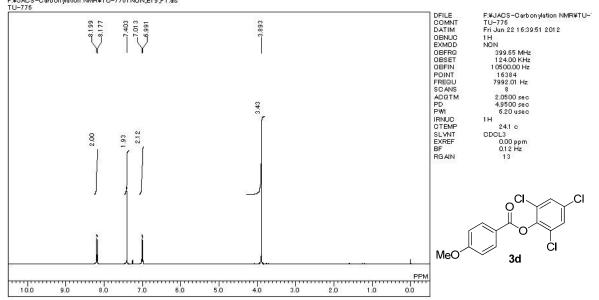


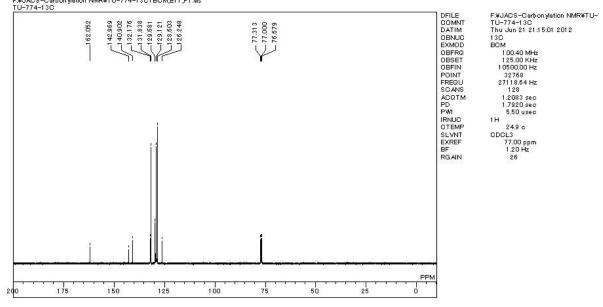

F:¥JACS-Carbonylation NMR¥TU-7561NON_E3_FT.als TU-756



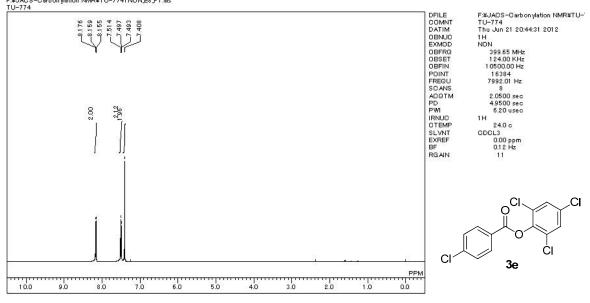
F:¥JACS-Carbon vlation NMR¥TU-743-13C1BCM_E7_FT.als TU-743-13C

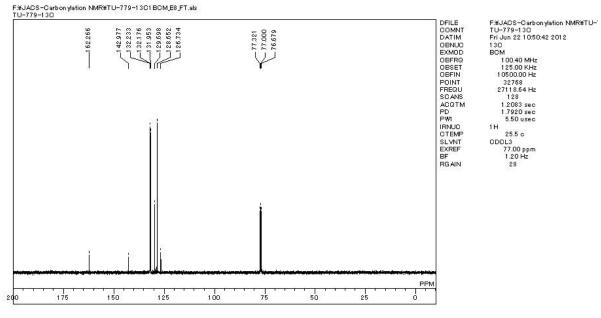


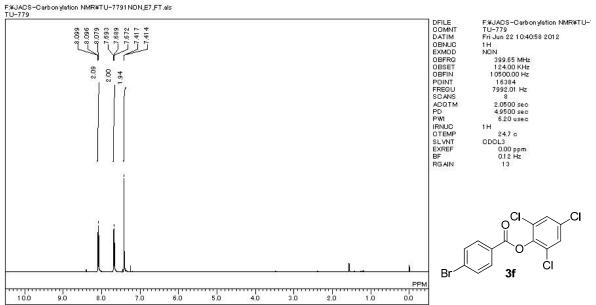

F:¥JACS-Carbonylation NMR¥TU-7431 NON_E6_FT.als TU-743

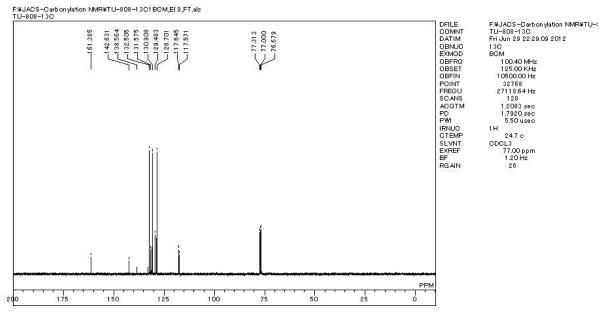


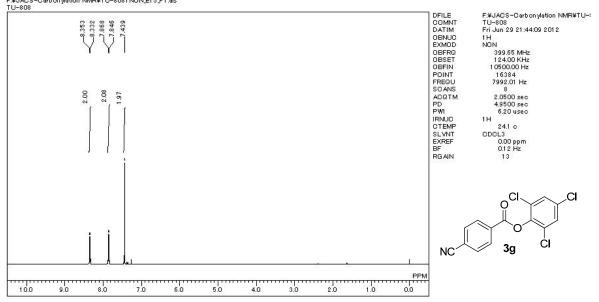
F:¥JACS-Carbonylation NMR¥TU-8411NON_E1_FT.als TU-841



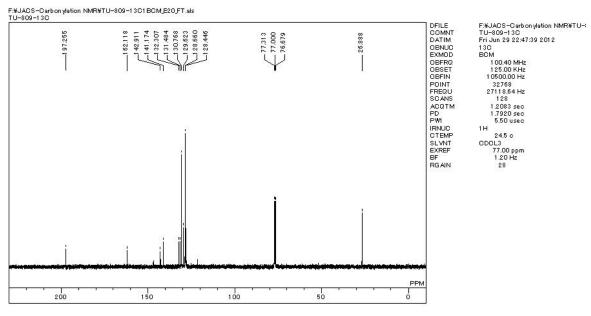

F:¥JACS-Carbonylation NMR¥TU-7761NON_E19_FT.als TU-776

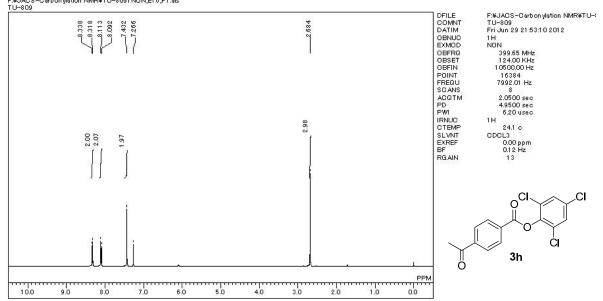


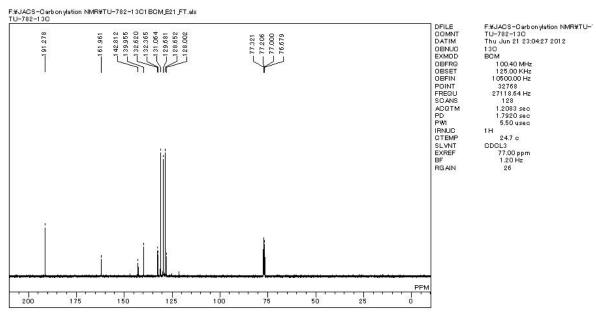

F:¥JACS-Carbonylation NMR¥TU-774-13C1BCM_E11_FT.als TU-774-13C

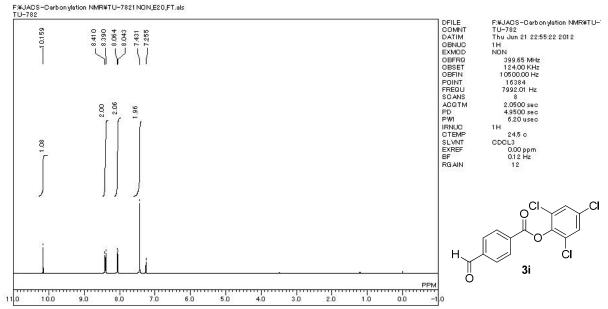


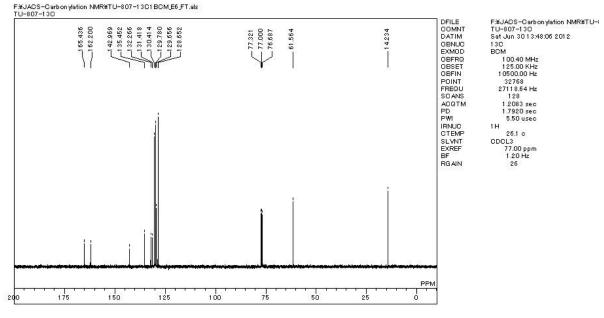
F:¥JACS-Carbonylation NMR¥TU-7741 NON_E8_FT.als TU-774

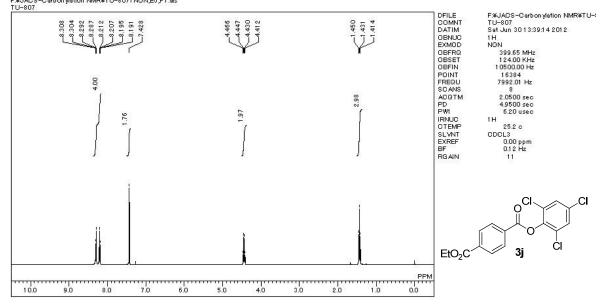




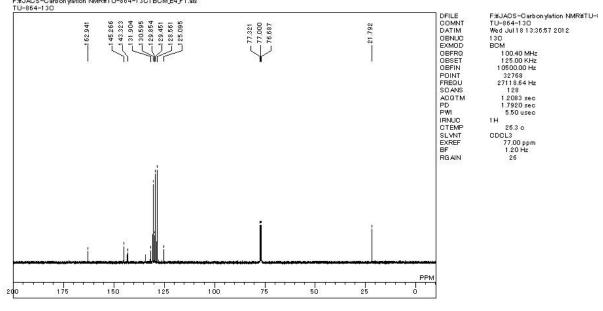


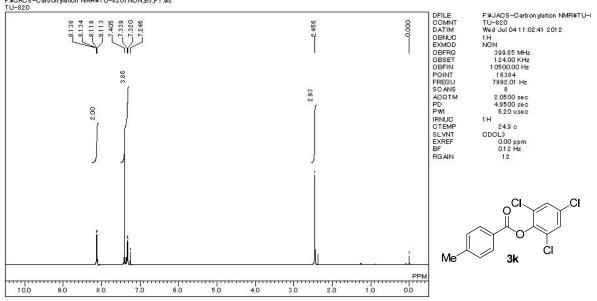

F:¥JACS-Carbon ylation NMR¥TU-8081 NON_E15_FT.als TU-808

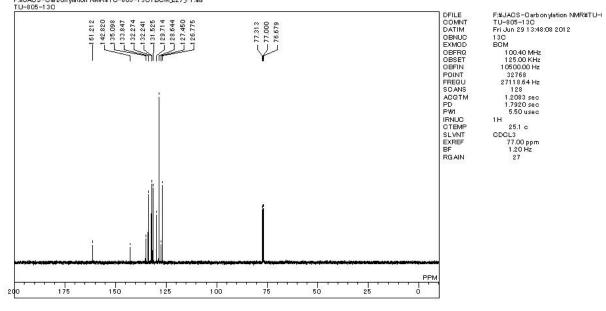


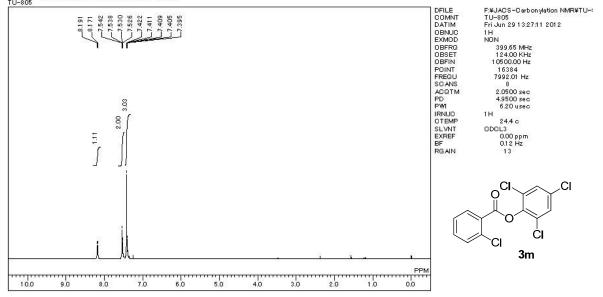


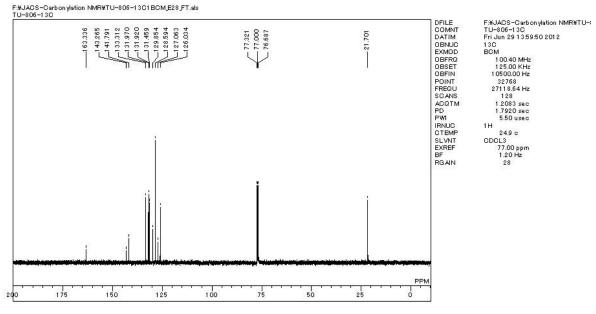
F:¥JACS-Carbonylation NMR¥TU-8091 NON_E16_FT.als TU-809

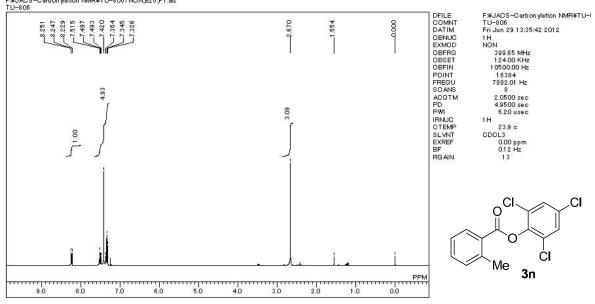




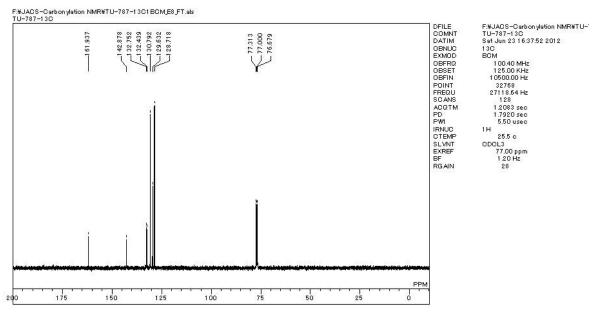

F:¥JACS-Carbonylation NMR¥TU-8071 NON_E5_FT.als TU-807

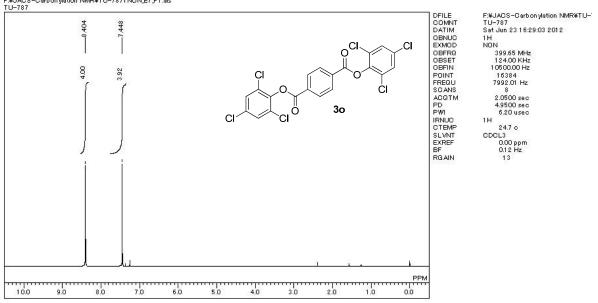

F:¥JACS-Carbonylation NMR¥TU-864-13C1BCM_E4.FT.als TU-864-13C

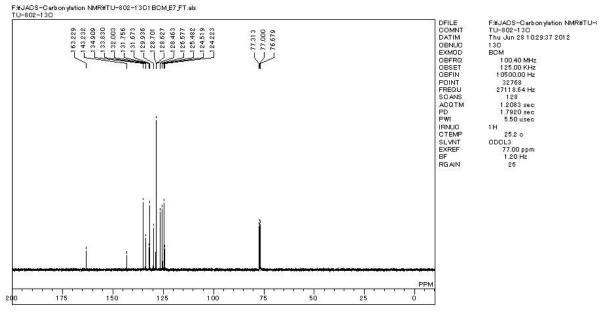

F:¥JACS-Carbonylation NMR¥TU-8201 NON_E5_FT.als TU-820

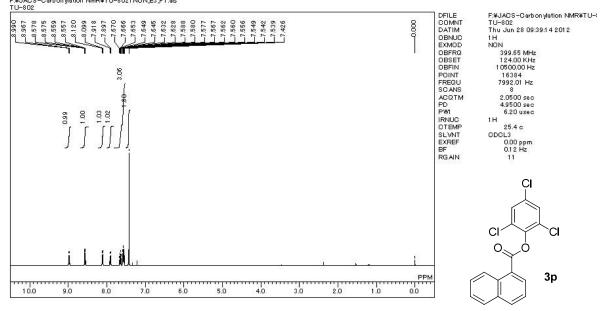


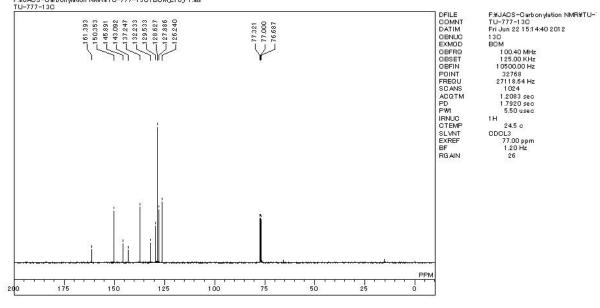
F¥JACS-Carbonylation NMR¥TU-805-13C1 BCM_E27_FT.als TU-805-13C



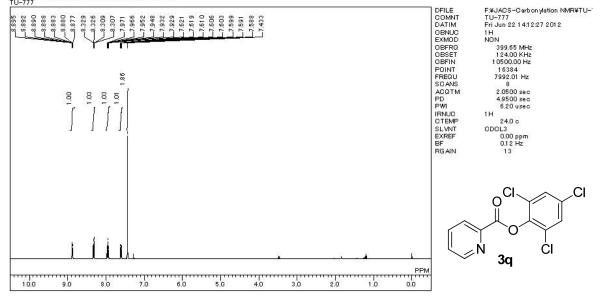

F:¥JACS-Carbonylation NMR¥TU-8051 NON_E25_FT.als TU-805

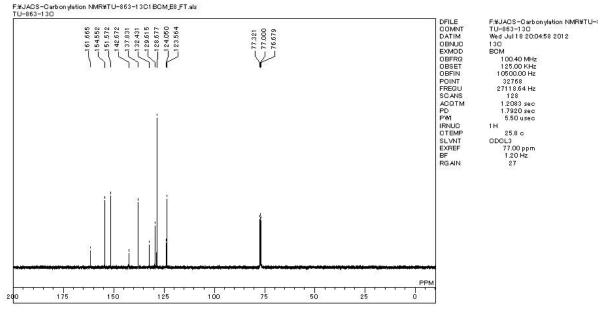


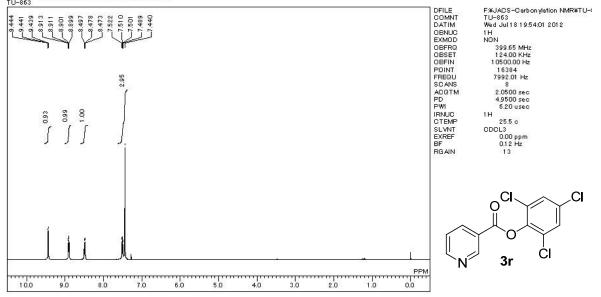

F:¥JACS-Carbonylation NMR¥TU-8061 NON_E26_FT.als TU-806



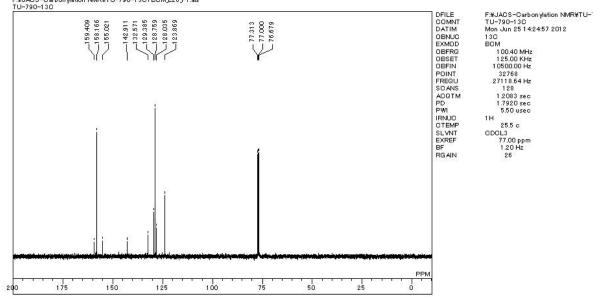
F:¥JACS-Carbonylation NMR¥TU-7871NON_E7_FT.als TU-787



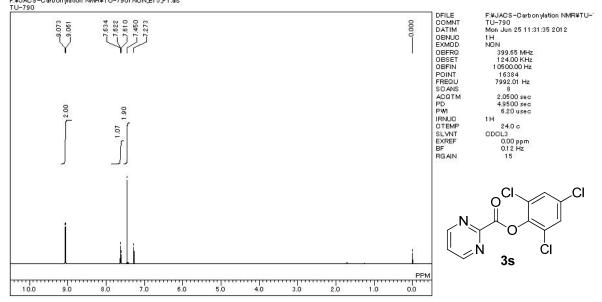

F:¥JACS-Carbonylation NMR¥TU-8021 NON_E3_FT.als TU-802

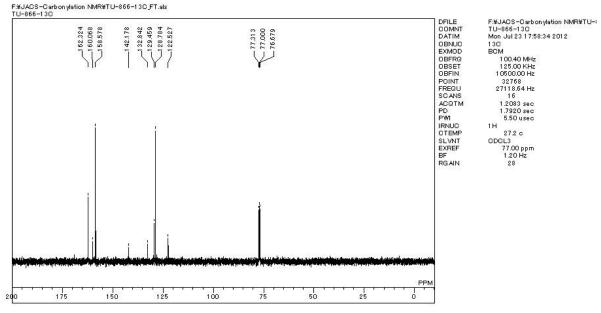


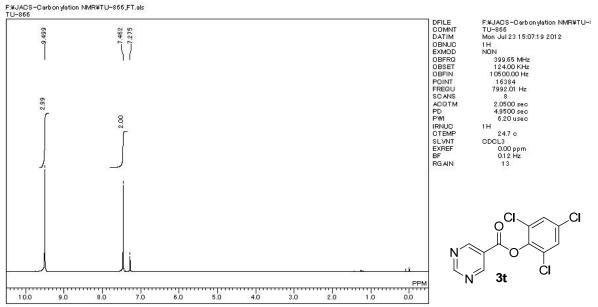
F#JACS-Carbon viation NMR¥TU-777-13C1 BCM_EI0_FT.als TU-777-13C

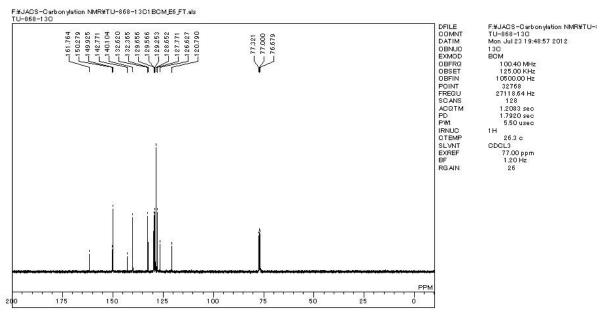


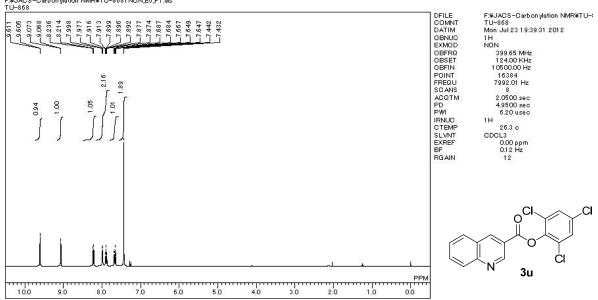
F:¥JACS-Carbonylation NMR¥TU-7771NON_E8_FT.als TU-777



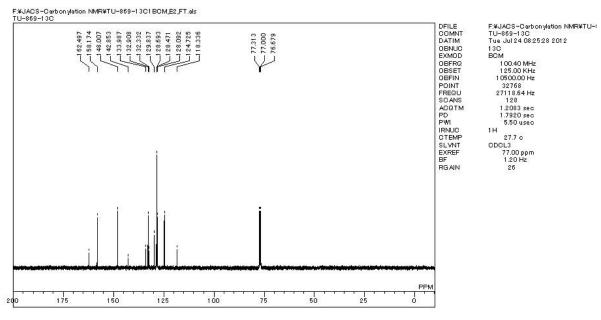

F:¥JACS-Carbonylation NMR¥TU-8631 NON_E7_FT.als TU-863

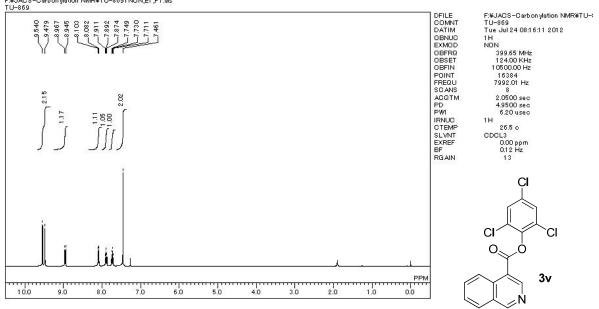


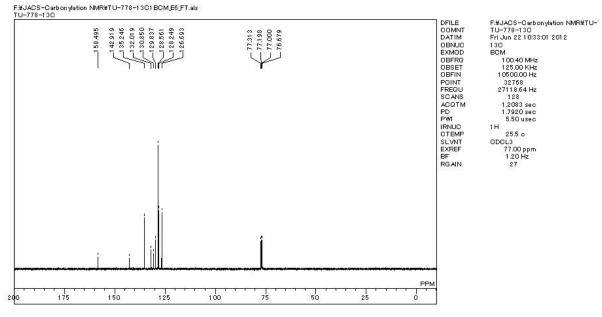

F¥JACS-Carbonylation NMR¥TU-790-13C1 BCM_E28 FT.als

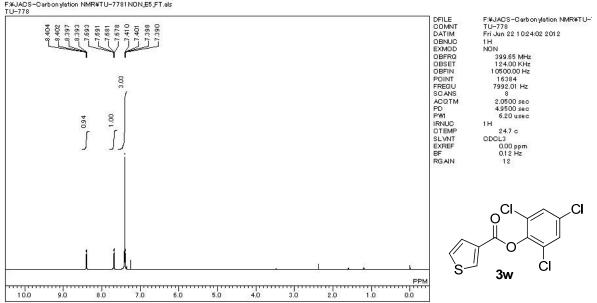


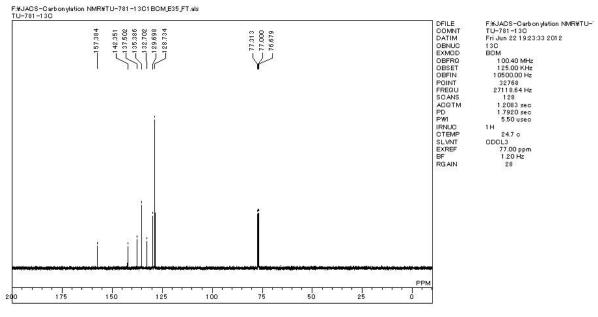
F:¥JACS-Carbon ylation NMR¥TU-7901 NON_E15_FT.als TU-790

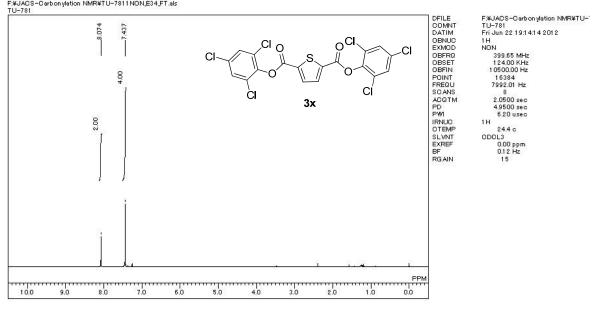


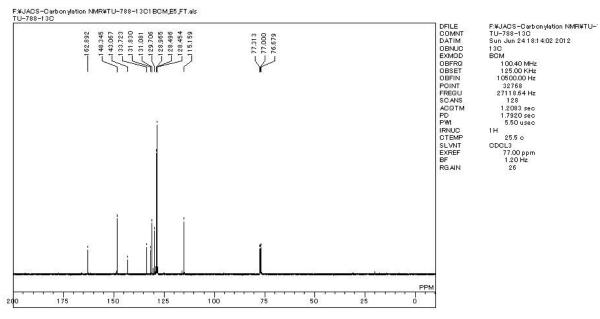


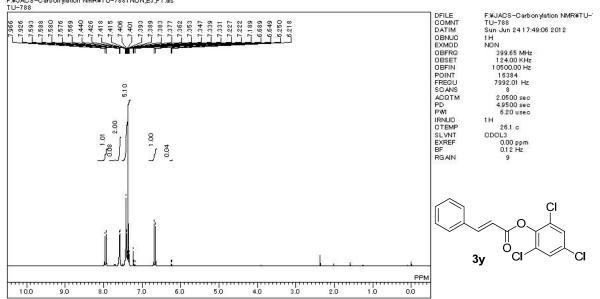

F:¥JACS-Carbonylation NMR¥TU-8681 NON_E5_FT.als TU-868

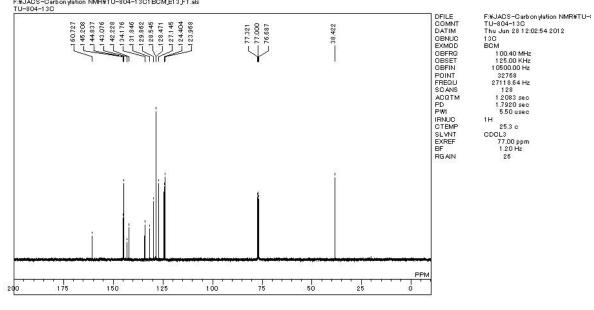




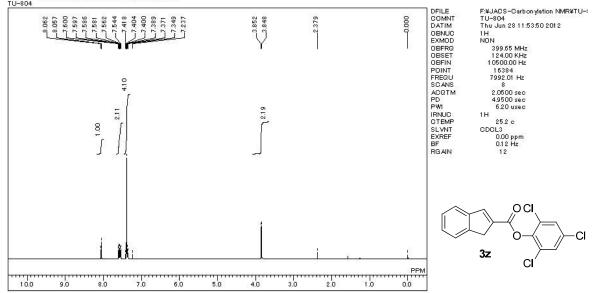

F:¥JACS-Carbonylation NMR¥TU-8691 NON_E1_FT.als TU-869

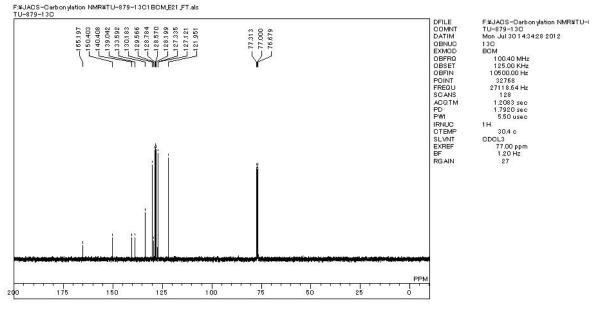


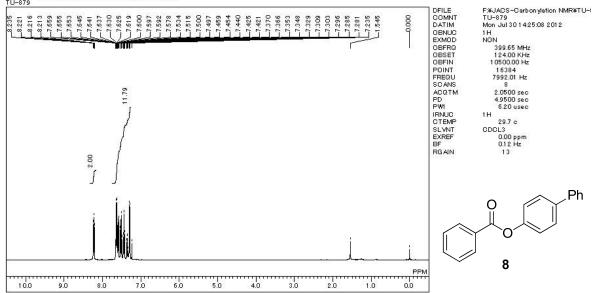

F:¥JACS-Carbonylation NMR¥TU-7781 NON_E5_FT.als TU-778



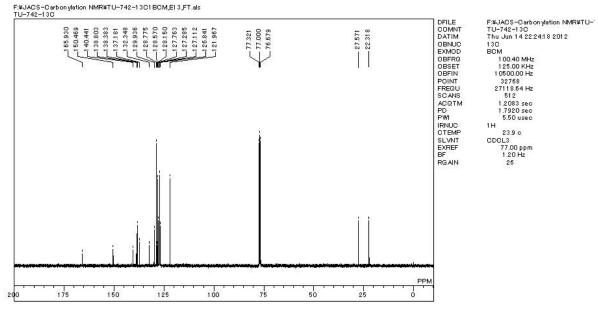
F:¥JACS-Carbonylation NMR¥TU-7811NON_E34_FT.als TU-781

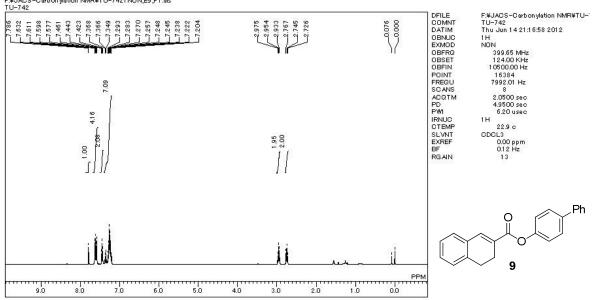


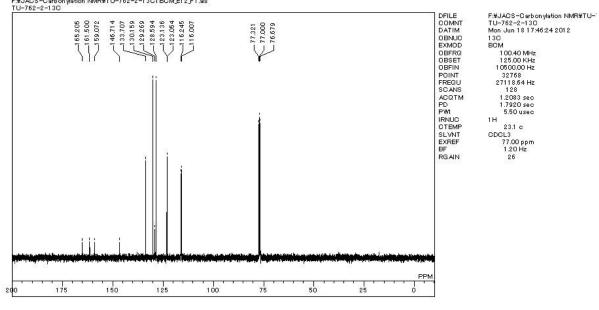

F:¥JACS-Carbonylation NMR¥TU-7881 NON_E3_FT.als TU-788



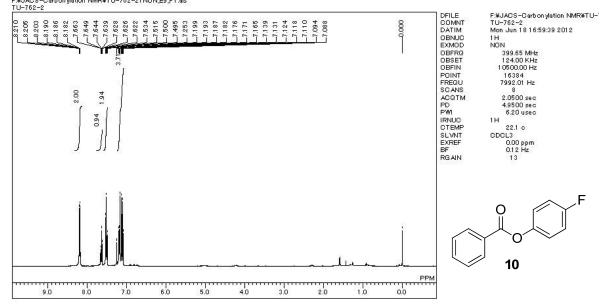
F#JACS-Carbonylation NMR#TU-804-13C1 BCM_E13_FT.als

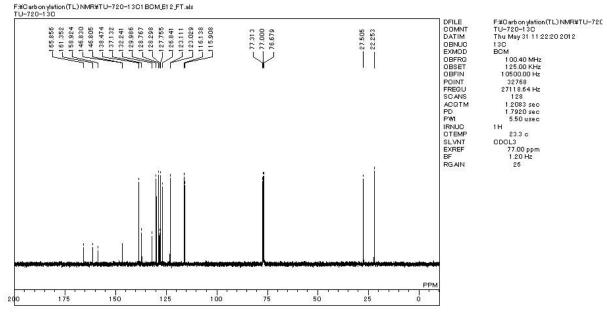


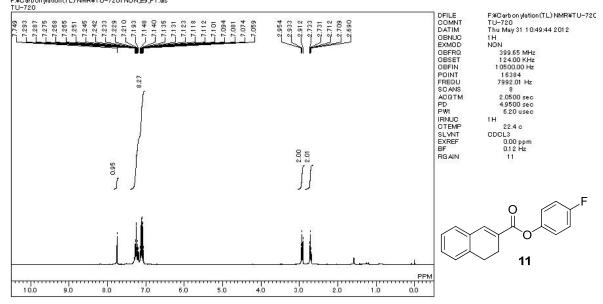

F:¥JACS-Carbon ylation NMR¥TU-8041 NON_E12_FT.als TU-804



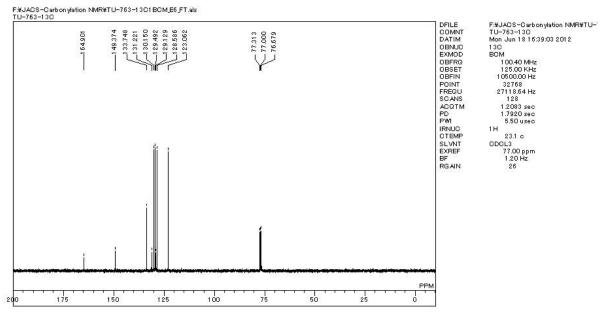
F:¥JACS-Carbonylation NMR¥TU-8791 NON_E20_FT.als TU-879

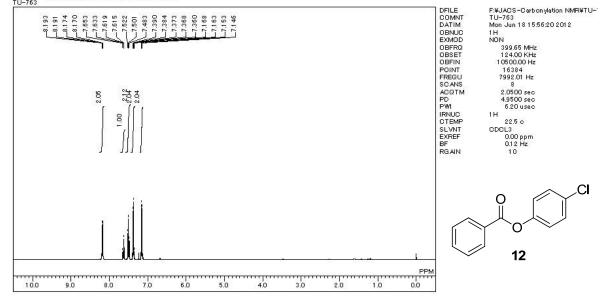


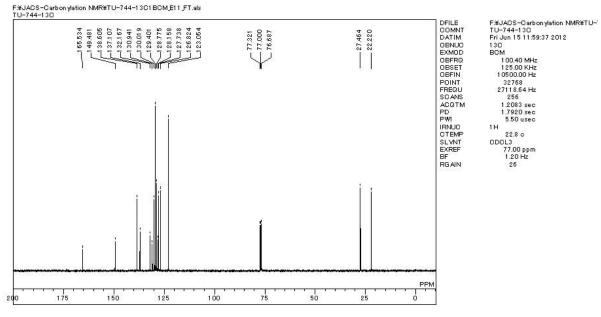

F:¥JACS-Carbonylation NMR¥TU-7421NON_E9_FT.als TU-742

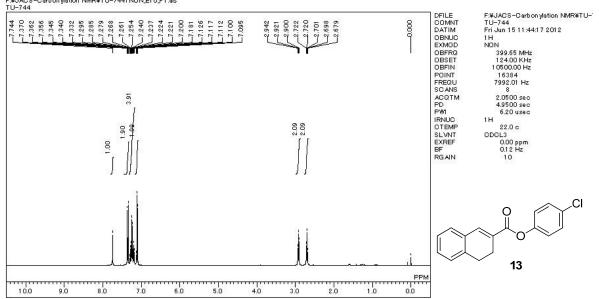


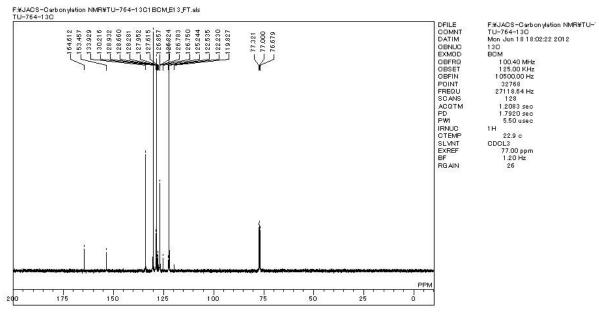
F:¥JACS-Carbon vlation NMR¥TU-762-2-13C1 BCM_E12_FT.als TU-762-2-13C

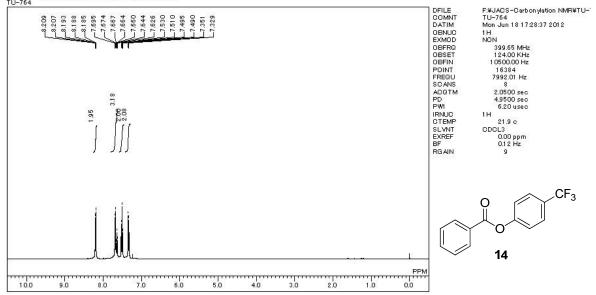


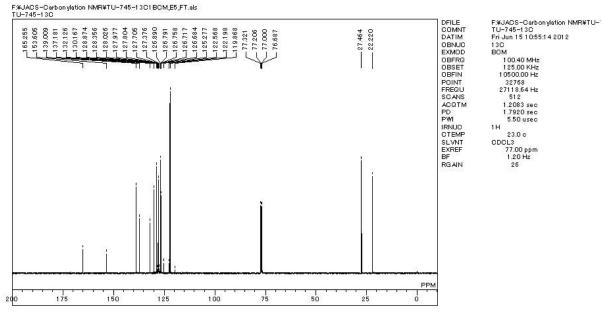

F:¥JACS-Carbonylation NMR¥TU-762-21NON_E9_FT.als TU-762-2



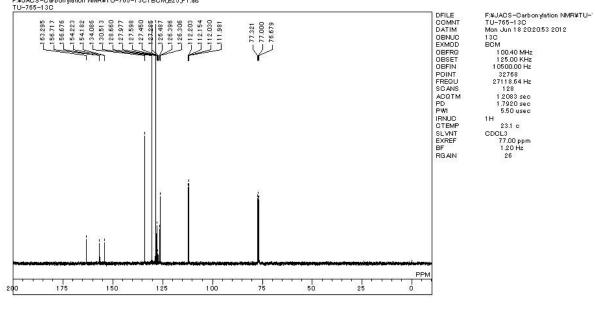

F:¥Carbonylation(TL) NMR¥TU-7201 NON_E9_FT.als TU-720



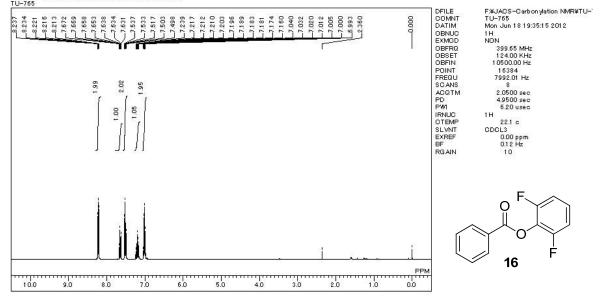

F:¥JACS-Carbonylation NMR¥TU-7631 NON_E2_FT.als TU-763

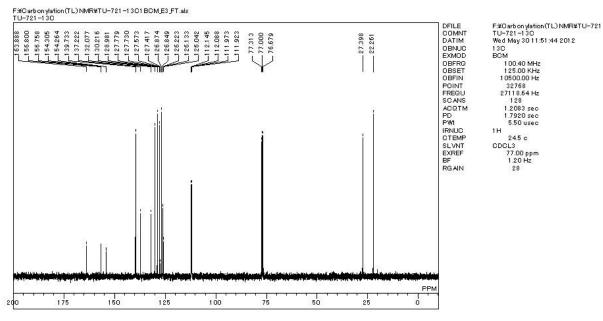


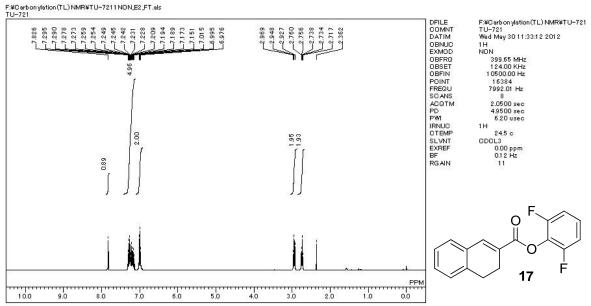
F:¥JACS-Carbon vlation NMR¥TU-7441 NON_E10_FT.als TU-744



F:¥JACS-Carbonylation NMR¥TU-7641NON_E11_FT.als TU-764




F:¥JACS-Carbonylation NMR¥TU-7451 NON_E4_FT.als TU-745



F#JACS-Carbonylation NMR¥TU-765-13C1 BCM_E25_FT.als TU-765-13C

F:¥JACS-Carbonylation NMR¥TU-7651NON_E19_FT.als TU-765

