
SI1. Addition of emergent OPs 

As in Eq. (1) we write the position of atom i in subsystem S as  
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where 
iσ
v
denotes the residual displacement of atom i resulting from a finite truncation of the k  

sum. The residuals 
iσ
v
, in turn, are expressed via a set of OP-like variables 
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, such that     
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where indices k,new are not in the set of OPs and the polynomials 0

, , ( )ki new k new iU U r≡
v

 are mass-

weighted orthogonal to those for the 
kΦ
v
 that constitute the initial set of subsystem-centered OPs. 

The mapping between OPs and atomic positions is 1:1 when the total number of 
kΦ
v
and ,k newΦ

v

equals the number of atoms N in the system. Multiplying (SI1) by 
,k'i newU , summing over all i, 

and using the orthogonality conditions we get  
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Thus additional OPs are constructed from the population of growing residuals.   

 

 

 

 



 

        

 

Fig. S1  Histogram of atomic forces (projected along the ray from the center of mass) for the 

expanding h4-truncated pentamer at 4 ns. Unlike the OP forces (Figs. 2(a)-(c)), histogram for 

atomic forces shows no clear trend in direction or magnitude. 

   

 

 

 

 

 

 

Fig. S2   Line histograms showing distribution of typical OP forces (here, m

kf ; k1=1, k2=0 and 

k3=0) for ensembles constructed using Nh=4, Ne=800 and Nh=2, Ne=1600. The distribution is in 

agreement with those from large non-history ensembles (Nh=0, Ne=3200) and other history 

enhanced ensembles (Nh=8, Ne=400) at the same time. Positively peaked distribution of these 

forces implies overall expansion of the pentamer. 
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Fig. S3   Long-time tail appearing in the 001ZΦ  velocity autocorrelation function of one pentamer 

in the absence of  100XΦ  for the same. Also shown is the velocity autocorrelation decay in 001ZΦ  

when all coupled modes, i.e., 
kΦ
v
 for {000,100,010,001}k =  are incorporated as OPs (red). 

 

 

 

Fig. S4  The velocity autocorrelation function of a typical OP and the autocorrelation function of 

the associated force. These functions have correlation times well-separated and a Markovian 

behavior is expected. 
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                     Fig. S5                                                                                Fig.S6 

Correlation between the thermal average forces obtained from constant OP ensembles of size 

1600 and 200 every Langevin timestep (20ps), showing off-diagonal terms decrease as ensemble 

size decreases. This implies coherence in the thermal average forces over time decreases when 

ensembles used for averaging are incomplete.  
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Fig. S7 (a) Evolution of Θ(t), cosine of the angle of rotation from the original basis vector 

orientation at t=0 to that at time t, for typical 
kΦ
v

. We define, 1
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Deviation of Θ(t) from unity implies a change in the reference structure 0

ir
v
 as reflected in the 

dynamical 
kiU . (b) The basis vectors 

kiU (Eq. (1)) rotate slower than do the corresponding OPs 

(Fig. 4). Thus, 
kiU  can be held constant over a period of 0.6ns or more (blue line), i.e., thirty 



20ps timesteps as Θ stays roughly constant over such interval. Every time the reference structure 

changes, polynomials are reconstructed in terms of the new reference and OPs are redefined. 

 

Fig S8 Changes in radius of gyration over time for a complete (black), h4-truncated (red), and 

h2,h3,h4-truncated HPV pentamer showing the first two structures initially expand and then 

remain stable, while the third expands more extensively. 

 

 

 


