Supporting Information

Low-Temperature Aluminum Reduction of Graphene Oxide, Electrical Properties, Surface Wettability, and Energy Storage Applications

Dongyun Wan,^{1,†} Chongyin Yang,^{1,†} Tianquan Lin,¹ Yufeng Tang,¹ Mi Zhou,¹ Yajuan Zhong,¹ Fuqiang Huang,^{1,2*} Jianhua Lin^{2*}

¹ CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China; ² State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

*Correspondence should be addressed to <u>huangfq@mail.sic.ac.cn</u> (F. Huang), <u>jhlin@pku.edu.cn (J</u>. Lin).

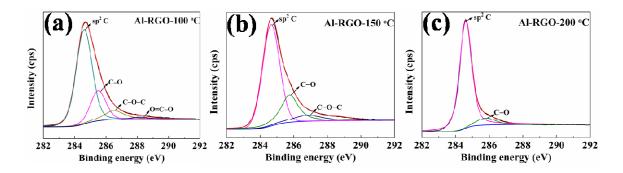


Figure S1. C1s XPS spectra of GO papers reduced *via* Al powder under different temperature of (a)

100 °C, (b) 150 °C, and (c) 200 °C.

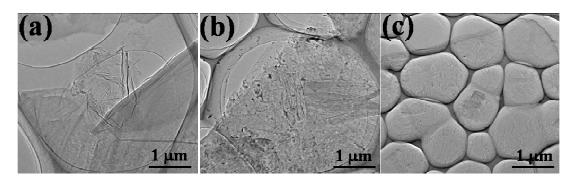


Figure S2. TEM images of (a) GO, (b) 500 °C T-RGO, and(c) 200 °C Al-RGO.

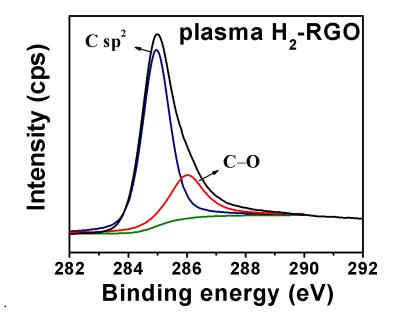


Figure S3. C1s XPS spectra of GO papers reduced *via* the plasma hydrogen.