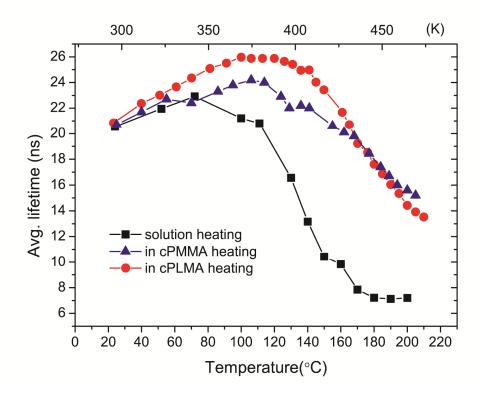
## **Supporting information**

## High Temperature Luminescence Quenching of Colloidal Quantum Dots

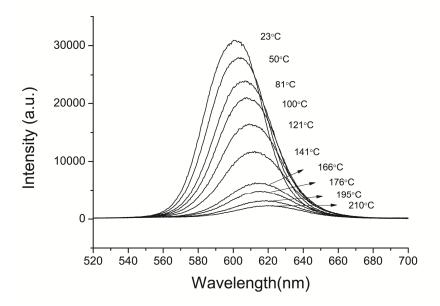
| Yiming Zhao,¹ Charl Riemersma,¹ Francesca Pietra,¹ Rolf Koole,² Celso de Mello Donegá¹ and |
|--------------------------------------------------------------------------------------------|
|                                                                                            |
| Andries Meijerink 1*                                                                       |

- 1. Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
- 2. Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands.

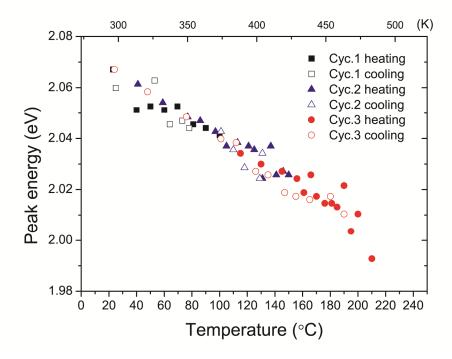
\*Corresponding author:


A.Meijerink@uu.nl

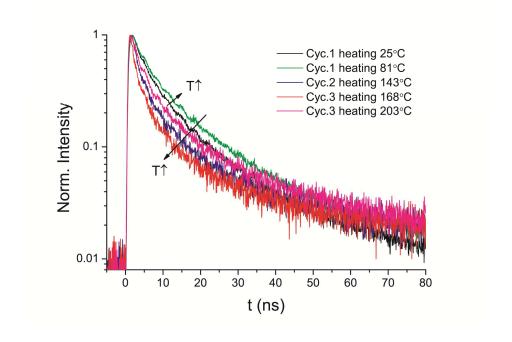
**Table S1.** Characteristics of the colloidal nanocrystals used in the experiments. The core sizes have been determined from the position of the first absorption peak and known sizing curves [1]. Total particle sizes are based on analysis of TEM images of multiple NCs. The PL wavelength and quantum yield are measured by using the set-up described in the main text.


| Sample name       | Core<br>diameter<br>(nm) | Particle size <sup>a</sup><br>(nm) | PL wavelength<br>(nm) | Quantum Yield<br>(%) |
|-------------------|--------------------------|------------------------------------|-----------------------|----------------------|
| CdSe QDs          | 3.4                      | 3.4                                | 573                   | 28                   |
| CdSe/CdS/ZnS QDs  | 3.4                      | 7.0                                | 610                   | 64                   |
| CdSe/CdS nanorods | 3.2                      | 5.5/21.1                           | 604                   | 72                   |
| CdTe/CdSe QDs     | 3.0                      | 6.1                                | 614                   | 59                   |

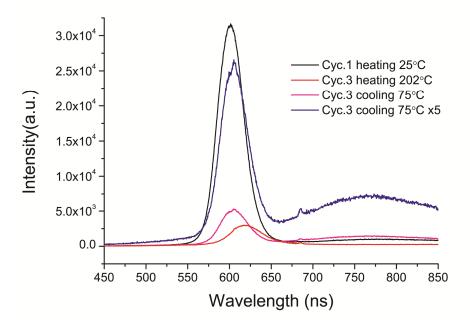
a. For spherical QDs, the particle sizes are given as average diameter. For nanorods, the average diameter and length are given.


## **Supporting Figures**

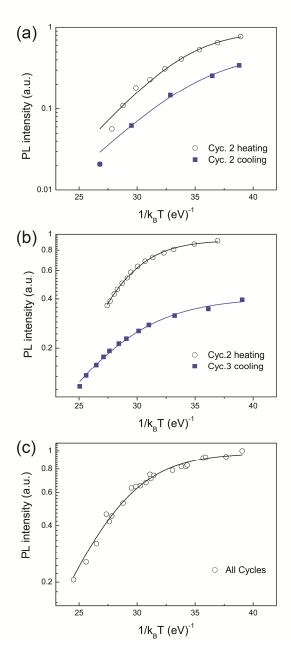



**Figure S1.** Temperature dependent average exciton lifetime for CdSe/CdS/ZnS core-shell-shell QDs in 1-Octadecene (ODE) solution (black squares), crosslinked PMMA (blue triangles) and crosslinked PLMA (red circles).




**Figure S2.** Temperature dependent PL spectra of CdSe/CdS/ZnS core-shell-shell QDs in PLMA at the temperatures indicated.




**Figure S3.** PL peak energy of CdSe/CdS/ZnS core-shell-shell QDs in PLMA during heating cycles.



**Figure S4.** PL luminescence decay curves of CdSe/CdS dot core/rod shell nanorods at selected temperatures.



**Figure S5**. PL spectra of CdSe/CdS dot core/rod shell nanorods at the temperatures indicated. The black curve was measured prior to heating. The red curve was obtained at 202 °C in the third heating cycle. The magenta curve was measured at 75 °C upon cooling down from 202°C, after the third heating cycle. The blue curve corresponds to the magenta curve multiplied by 5. The broad defect related emission at around 770 nm can be clearly observed.



**Figure S6.** Integrated PL intensities of QDs with different structures are plotted as a function of  $1/k_BT$ . The solid lines are fitted curves for an Arrhenius dependence. (a) organically capped CdSe, (b)CdSe/CdS/ZnS QDs and (c) CdTe/CdSe QD.

**Table S2.** Activation energies extracted by fitting the temperature dependence of the integrated emission intensity to an Arrhenius dependence.

| Sample name                    | $E_a$ (eV) | Standard errors |
|--------------------------------|------------|-----------------|
| CdSe QDs Cyc.2 heating         | 0.36       | 0.03            |
| CdSe QDs Cyc.2 cooling         | 0.30       | 0.04            |
| CdSe/CdS/ZnS QDs Cyc.2 heating | 0.44       | 0.01            |
| CdSe/CdS/ZnS QDs Cyc.3 cooling | 0.26       | 0.02            |
| CdTe/CdSe QDs                  | 0.34       | 0.02            |

The thermal quenching of intensity is fitted to an Arrhenius behavior with a single activation energy,  $E_a$  which can be extracted by fitting the experimental data to the expression:

$$I \propto 1 / [1 + Bexp(-E_a / k_BT)]$$
 (1)

where B is a constant, and k<sub>B</sub> is the Boltzmann constant [Ref. 9, 10,12].

The fitted curves for organically capped CdSe, CdSe/CdS/ZnS QDs and CdTe/CdSe QDs are given in Figure S6. The activation energy  $E_a$  extracted from different heating cycles are presented in Table S2. For the same dots,  $E_a$  changes after heating cycles due to the irreversible quenching. For CdSe/CdS nanorods determination of  $E_a$  is hampered by the strong irreversible quenching.

## References

1. Donega, C. D.; Koole, R. J Phys Chem C 2009, 113, (16), 6511-6520.