Supporting Information

Caption of Figures:

Fig. S1. Formation energies of $\text{Li}_x \text{Mn}_2\text{O}_4$ with Li occupying 2a, 2b, 4e, 8h and 8h' sites show the stability following 8h>8h'>4e>2a>2b.

Fig. S2. Lattice constant c of Li_xMn₂O₄.

Fig. S3. Evolution of γ for Li_xMn₂O₄. The largest deviation between γ and 90 \Box is 1.0 \Box , suggesting the structure remains at near-orthorhombic symmetry. For simplicity we regard the symmetry as "orthorhombic" in the manuscript.

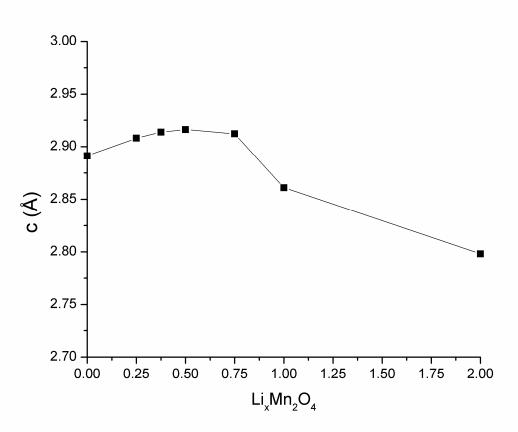

Fig. S4. Relative energy difference between $Li_{2x}MnO_{2+x}$ configurations with Li(O) occupying 8h(2a) and the most stable configurations in which Li(O) occupies 8h'(2b) sites.

Fig. S5. Partial Density of States for (a) pristine MnO₂ and (b) 0.25Li₂O·MnO₂. Blue: Mn, Red: framework O, Green: inserted O. For pristine MnO₂, the valence band edge is mainly composed of occupied Mn 3d orbitals, while the conduction band edge is composed of both unoccupied Mn 3d and O 2p orbitals. For 0.25Li₂O·MnO₂ the occupied band near Fermi energy is mainly composed of Mn 3d and framework O 2p orbitals, with minor contribution from inserted O 2p orbitals.

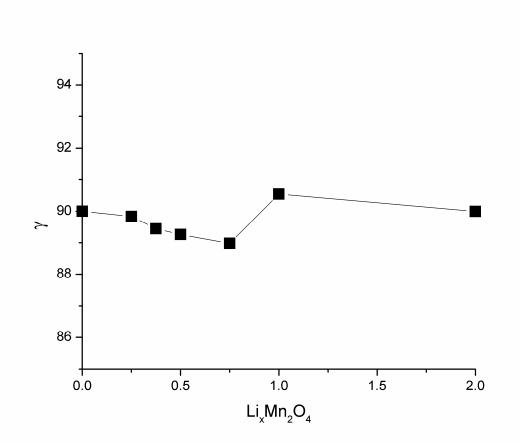

Fig. S6. Density of States for (a) pristine MnO₂ and (b) 0.25Li₂O·MnO₂. For pristine MnO₂, the valence band edge is mainly composed of occupied Mn 3d orbitals, while the conduction band edge is composed of both unoccupied Mn 3d and O 2p orbitals. For 0.25Li₂O·MnO₂ the occupied band near Fermi energy is mainly composed of Mn 3d and framework O 2p orbitals, with minor contribution from inserted O 2p orbitals. **Fig. S7.** Decomposed Density of States projected on d-orbitals of Mn ions in LiMn₂O₄

Fig. S1. Formation energies of Li_xMn₂O₄ with Li occupying 2a, 2b, 4e, 8h and 8h' sites show the stability following 8h>8h'>4e>2a>2b.

Fig. S2. Lattice constant c of $Li_xMn_2O_4$.

Fig. S3. Evolution of γ for Li_xMn₂O₄. The largest deviation between γ and 90 \Box is 1.0 \Box , suggesting the structure remains at near-orthorhombic symmetry. For simplicity we regard the symmetry as "orthorhombic" in the manuscript.

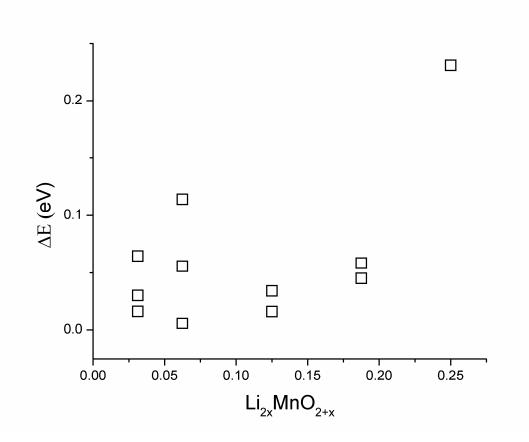
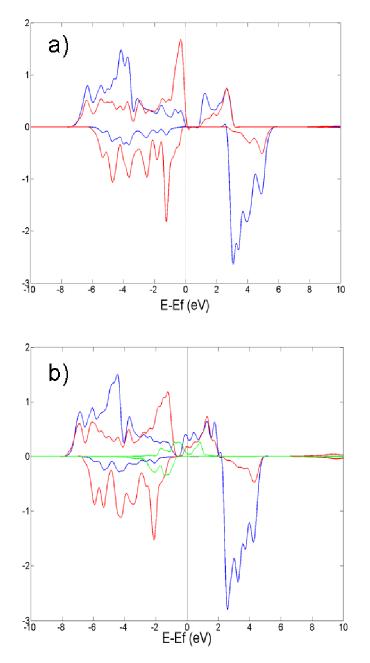



Fig. S4. Relative energy difference between $Li_{2x}MnO_{2+x}$ configurations with Li(O) occupying 8h(2a) and the most stable configurations with Li(O) occupying 8h'(2b) sites.

Fig. S5. Partial Density of States for (a) pristine MnO₂ and (b) 0.25Li₂O·MnO₂. Blue: Mn, Red: framework O, Green: inserted O. For pristine MnO₂, the valence band edge is mainly composed of occupied Mn 3d orbitals, while the conduction band edge is composed of both unoccupied Mn 3d and O 2p orbitals. For 0.25Li₂O·MnO₂ the occupied band near Fermi energy is mainly composed of Mn 3d and framework O 2p orbitals, with minor contribution from inserted O 2p orbitals.

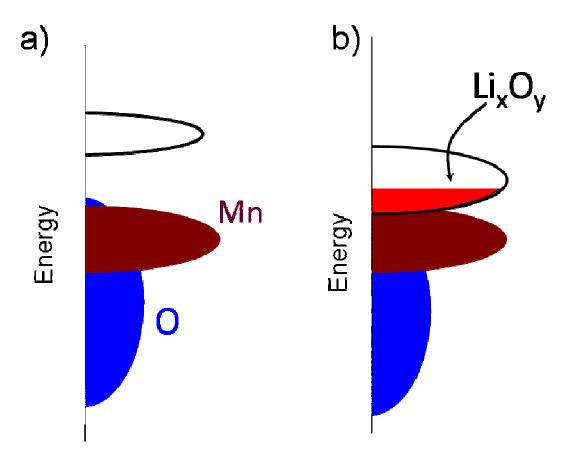


Fig. S6. Schematic of the change of the band structure from (a) pristine αMnO_2 to (b) Li_xO_y inserted αMnO_2 .

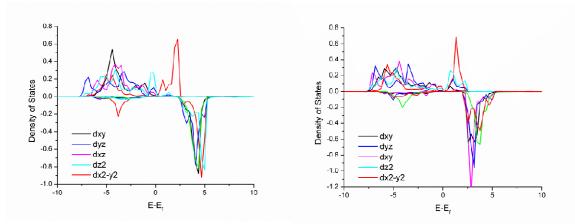


Fig. S7. Decomposed Density of States projected on d-orbitals of Mn ions in $LiMn_2O_4$