Palladium-Catalyzed Diastereo- and Enantioselective Formal [3+2]Cycloadditions of Substituted Vinylcyclopropanes

SUPPORTING INFORMATION

Barry M. Trost*, Patrick J. Morris, and Simon J. Sprague

General Information

Glassware was oven-dried for at least 6 h at $110^{\circ} \mathrm{C}$ or flame dried prior to use. All reactions were performed under inert atmosphere (dry nitrogen or argon) unless otherwise noted. Analytical thinlayer chromatography was performed using 0.25 nm coated commercial silica gel plates (EMD Chemicals, silica gel 60 F254). Silica gel flash chromatography was performed using Silicycle silica gel (230-400 Mesh). Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were acquired on a Inova-300 (300 MHz), Mercury $400(400 \mathrm{MHz}$), or Varian Unity Inova-500 (500 MHz) spectrometer. Chemical shifts are reported in parts per million (ppm) relative to deuterochloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR and 77.23 ppm for ${ }^{13} \mathrm{C}$ NMR). Coupling constants ($/$) are quoted in Hz to the nearest 0.5 Hz . Splitting patterns are reported as: s, singlet; d, doublet; t, triplet; q, quartet, m, multiplet, etc. Melting points (uncorrected) were measured using a Thomas Hoover Capillary Melting Point Analysis. Infrared (IR) spectra were recorded as a thin film on NaCl plates with a Thermo Scientific Nicolet IR 100 FT-IR. Chiral HPLC analyses were performed on a Thermo Separation Products spectra series P-100 or P-200 pump and a UV100 detector (254 nm or 220 nm) using a Chiralpak IA. IB, or IC column eluted with the indicated solvent mixture and a flow rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter using 5 cm cells and the sodium D line (589 nm) at ambient temperature in methylene chloride. High resolution mass spectra were obtained from Stanford University using positive electrospray ionization (ESI+).

Materials

Dioxane and toluene were distilled from sodium metal under nitrogen prior to use. Dichloroethane was distilled from calcium hydride under nitrogen. Other reaction solvents were dried using J.C. Meyer's Solvent Purification System by passing them through activated alumina prior to use.
$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ was prepared by the procedure of Ibers. ${ }^{1}$
Trost Ligands $\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}$, and \mathbf{L}_{4} were prepared according to literature procedures. ${ }^{2}$

Dimethyl 2-vinylcyclopropane-1,1-dicarboxylate 1 was purified according to the procedure of Johnson et al. ${ }^{3}$ Spectral data were in accordance with the literature values.

Meldrum's acid alkylidenes $4,{ }^{4} \mathbf{8 c},{ }^{5} \mathbf{8 e},{ }^{6} \mathbf{8 f},{ }^{7} 8 \mathbf{g}^{8}$ and $8 \mathbf{j}^{9}$ were prepared by Dr. Pekka Joensuu at Stanford University according to the procedure of Sartori et al. ${ }^{10}$ Spectral data were in accordance with the literature values.
(Z)-4-Benzylidene-2-phenyloxazol-5(4H)-one 14a was purchased from Sigma Aldrich and used without purification.

Azlactone alkylidene (Z)-4-(4-nitrobenzylidene)-2-phenyloxazol-5(4H)-one $\mathbf{1 4 g}^{11}$ was prepared by Dr Benjamin Taft at Stanford University according to General Procedure C reported by Chavez et al. ${ }^{16}$ Spectral data were in accordance with the literature values.

All other reagents were purchased from commercial sources and used without prior purification, unless otherwise noted.

Compound Synthesis

Dimethyl 1-(4-methoxyphenyl)-8,8-dimethyl-6,10-dioxo-4-vinyl-7,9-dioxaspiro[4.5]decane-2,2dicarboxylate 5a

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2.0 \mathrm{mg}, 0.002 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{1}$ chiral ligand, $(4.0 \mathrm{mg}$, 0.006 mmol). A second reaction tube, also equipped with a stir bar, was charged with dimethyl 2 -vinylcyclopropane-1,1-dicarboxylate $\mathbf{1}(20.0 \mathrm{mg}, \quad 0.109 \mathrm{mmol})$, 5-(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione 4 ($35.0 \mathrm{mg}, 0.133 \mathrm{mmol}$) and 1,3,5-trimethoxybenzene (5.0 mg , $0.03 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (1 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 14 h and the solvent was removed in vacuo. ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product reveals a

97\% yield (internal standard 1,3,5-trimethoxybenzene) and a 1.5:1 diastereomeric ratio. The product was purified by flash column chromatography (10% to 40% diethyl ether in petroleum ether) to give the title compound $\mathbf{5 a}$ as a waxy solid, as a $1.5: 1$ mixture of diastereomers, with a 39% e.e. for the major diastereomer and a 72% e.e. for the minor diastereomer (by chiral HPLC, Chiralpak IC column, 10% isopropanol, 90% heptanes, UV wavelength 254 nm ; retention times: 15.9 min (minor enantiomer, minor diastereomer), 18.0 min (minor enantiomer, major diastereomer), 19.6 min (major enantiomer, major diastereomer), 35.6 min (major enantiomer, minor diastereomer)); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}, 1.5:1 mixture of diastereomers): $\delta=7.30-7.15$ ($\mathrm{m}, 4 \mathrm{H}$, both diastereomers), $5.82-5.69(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), 5.35 ($\mathrm{s}, 1 \mathrm{H}$, minor diastereomer), 5.34-5.27 ($\mathrm{m}, 1 \mathrm{H}$, both diastereomers), $5.25-5.19$ ($\mathrm{m}, 1 \mathrm{H}$, both diastereomers), 4.95 (s, 1H, major diastereomer), 4.24 (td, $J=7.9,12.0 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), $3.86(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor diastereomer), 3.80 ($\mathrm{s}, 3 \mathrm{H}$, both diastereomers), 3.78 ($\mathrm{s}, 3 \mathrm{H}$, minor diastereomer), 3.77 ($\mathrm{s}, 3 \mathrm{H}$, major diastereomer), 3.45 (m, 1H, minor diastereomer), 3.40 ($\mathrm{s}, 3 \mathrm{H}$, minor diastereomer), 3.38 ($\mathrm{s}, 3 \mathrm{H}$, major diastereomer), 3.05 (dd, $J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), $2.69(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), 2.42 (dd, $J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor diastereomer), 1.62 ($\mathrm{s}, 3 \mathrm{H}$, major diastereomer), 1.56 (s, 3H, minor diastereomer), 1.51 ($\mathrm{s}, 3 \mathrm{H}$, major diastereomer), 0.85 ($\mathrm{s}, 3 \mathrm{H}$, minor diastereomer); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1.5: 1$ mixture of diastereomers) 172.8, 171.3, 170.0, 168.6, 159.7, 134.5, 133.1, 132.7, 131.8, 120.5, 114.1, 113.7, 66.9, 66.2, 65.1, 63.7, 60.6, 55.4, 55.4, $55.2,54.0,53.7,52.7,52.6,39.9,39.2,29.5,29.5,29.4,29.2$; HRMS (ESI+): observed 469.1464; calculated $469.1469\left(\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{9},[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

Bis(2,2,2-trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate 6

6

A stirred mixture of bis(2,2,2-trifluoroethyl)malonate ${ }^{12}(893 \mathrm{mg}, 3.33 \mathrm{mmol})$, 1,4-dibromobut-2-ene ($705 \mathrm{mg}, 3.33 \mathrm{mmol}$) and cesium carbonate ($2.70 \mathrm{~g}, 8.29 \mathrm{mmol}$) in tetrahydrofuran (20 mL) was heated under reflux at $60^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then allowed to cool, filtered, and the filtrate diluted with diethyl ether. The organic phase was washed successively with sat. aq. sodium bicarbonate, water, brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The organic layers were concentrated in vacuo to give the crude product, which was purified by silica gel chromatography (10% to 20% methylene
chloride in petroleum ether) to afford the title compound $\mathbf{6}$ as a colorless oil ($600 \mathrm{mg}, 56 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=5.46(\mathrm{ddd}, J=17.0,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ $(\mathrm{dd}, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.7,165.4,131.5,122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $275 \mathrm{~Hz}, 2 \mathrm{C}), 120.5,61.5\left(\mathrm{q}, J_{\text {C-F }}=37 \mathrm{~Hz}\right), 61.3\left(\mathrm{q}, J_{\text {C-F }}=37 \mathrm{~Hz}\right), 35.2,33.1,21.7 ;{ }^{19} \mathrm{~F}$ NMR (479 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-74.2(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{~F}),-74.4(\mathrm{t}, J=8.5 \mathrm{~Hz}, 3 \mathrm{~F}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2979,1747,1640$, 1414, 1280, 1168, 1120, 978, 926, 842, 780; HRMS (ESI+): observed 321.0557; calculated 321.0562 $\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{O}_{4},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

Bis(2,2,2-trifluoroethyl) 1-(4-methoxyphenyl)-8,8-dimethyl-6,10-dioxo-4-vinyl-7,9-dioxaspiro[4.5]decane-2,2-dicarboxylate 5b

5b

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2.5 \mathrm{mg}, 0.002 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{1}$ chiral ligand, (5.0 mg , $0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate $\quad \mathbf{6} \quad(25.0 \mathrm{mg}, \quad 0.078 \mathrm{mmol}$), $\quad 5$-(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione $4(30.0 \mathrm{mg}, 0.114 \mathrm{mmol})$ and $1,3,5-$ trimethoxybenzene $(5.0 \mathrm{mg}, 0.03 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for 30 min) was added to the first tube $(1 \mathrm{~mL})$ and second tube $(1 \mathrm{~mL})$, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 14 h and the solvent was removed in vacuo. ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product reveals a 84% yield (internal standard 1,3,5-trimethoxybenzene) and a 2.1:1 diastereomeric ratio. The product was purified by flash column chromatography (10% to 40% diethyl ether in petroleum ether) to give the title compound $\mathbf{5 b}$ as a waxy solid, as a 2.1:1 mixture of diastereomers, with a 29% e.e. for the major diastereomer and a 79% e.e. for the minor diastereomer (by chiral HPLC, Chiralpak IC column, 1% isopropanol, 99% heptanes, UV wavelength 254 nm ;
retention times: 12.4 min (major enantiomer, major diastereomer), 13.4 min (major enantiomer, minor diastereomer), 14.7 min (minor enantiomer, minor diastereomer), 21.1 min (minor enantiomer, major diastereomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 2.1:1 mixture of diastereomers): $\delta=7.22$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, major diastereomer), 7.14 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$, minor diastereomer), 6.84-6.75 (m, 2H, both diastereomers), 5.77 (ddd, $J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), 5.71 (ddd, $J=17.5,10.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor diastereomer), $5.35-5.30(\mathrm{~m}, 1 \mathrm{H}$, both diastereomers), 5.32 ($\mathrm{s}, 1 \mathrm{H}$, minor diastereomer), 5.27 ($\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor diastereomer), 5.24 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), 4.94 ($\mathrm{s}, 1 \mathrm{H}$, major diastereomer), 4.65-4.37 ($\mathrm{m}, 4 \mathrm{H}$, both diastereomers), 4.21 (dq, $J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), 3.96-3.83 (m, 1H, minor diastereomer), 3.79 ($\mathrm{s}, 3 \mathrm{H}$, major diastereomer), 3.78 ($\mathrm{s}, 3 \mathrm{H}$, minor diastereomer), 3.46 (dd, $J=13.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor diastereomer), $3.11(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), 2.72 (dd, $J=$ $13.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}$, major diastereomer), 2.44 (dd, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor diastereomer), 1.61 (s , 3 H , major diastereomer), $1.58\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor diastereomer), $1.50\left(\mathrm{~s}, 9 \mathrm{H}\right.$, both diastereomers); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2.1: 1$ mixture of diastereomers): $\delta=168.7,168.3,167.6,166.6,160.1,133.9$, 132.6, 132.3, 131.7, 125.3, 121.1, 114.5, 114.0, 105.7, 66.5, 65.9, 64.8, 63.6, $62.2(\mathrm{q}, J=21.3 \mathrm{~Hz}), 61.6$ ($\mathrm{q}, J=20.4$), $55.5,54.0,39.3 ; 19 \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.05-75.51(\mathrm{~m}, 6 \mathrm{~F}) ;$ IR $\left(\mathrm{cm}^{-1}\right):$ 1756, 1612, 1516, 1414, 1263, 1254, 1170, 1035, 938, 839, 734; HRMS (ESI+): observed 605.1228; calculated $605.1217\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{NaO}_{9},[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

6,6-Dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione 7

7

To a stirred suspension of Meldrum's acid ($565 \mathrm{mg}, 3.92 \mathrm{mmol}$) in DMF (4 mL) at $0^{\circ} \mathrm{C}$ was added potassium carbonate $(677 \mathrm{mg}, 4.90 \mathrm{mmol})$. The reaction was stirred for 10 min , then $1,4-$ dibromobut-2-ene ($1.00 \mathrm{~g}, 4.70 \mathrm{mmol}$) was added in a single portion and the reaction stirred for a 1 h at $0^{\circ} \mathrm{C}$ and a further 2 h at room temperature. A further portion of potassium carbonate (677 mg , 4.90 mmol) was added, and the reaction was stirred for a further 16 h at room temperature. The reaction was poured into 1 M aqueous $\mathrm{HCl}(25 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed successively with brine (25 mL), water (25 mL), dried
$\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was purified by flash column chromatography ($4: 1$ petrol:diethyl ether) to give the title compound 7 as a waxy solid (299 mg , $1.52 \mathrm{mmol}, 39 \%) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.75(\mathrm{ddd}, J=17.0,10.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.46(\mathrm{dd}$, $J=17.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=10.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=$ $9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=167.8,165.5,131.6,122.2,105.4,43.3,31.8,27.9,27.8,24.9$; IR $\left(\mathrm{cm}^{-1}\right): 3101,1745,1394,1327,1284,1200,1046,967,930,881,831,740,690$; spectral data in accordance with the literature. ${ }^{13}$
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(4-methoxyphenyl)-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2]pentadecane 5c

5c

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($4.0 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(8.0 \mathrm{mg}$, 0.010 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione 7 ($35.0 \mathrm{mg}, 0.178 \mathrm{mmol}$) and 5-(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione $4(60.0 \mathrm{mg}, 0.229 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for $30 \mathrm{~min})$ was added to the first tube $(1 \mathrm{~mL})$ and second tube $(2 \mathrm{~mL})$, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (30% to 35% diethyl ether in petroleum ether) to give the title compound $5 \mathbf{c}$ as a white solid ($50.8 \mathrm{mg}, 0.111 \mathrm{mmol}, 62 \%$) as a $17: 1$ mixture of
diastereomers (by crude ${ }^{1} \mathrm{H} N \mathrm{NR}$) and with a 96% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 0.7% ethanol, 27% methylene chloride, 72.3% heptanes, UV wavelength 254 nm ; retention times: 7.83 min (minor enantiomer, major diastereomer), 10.07 min (minor diastereomer), 10.60 min (minor diastereomer), 12.54 min (major enantiomer, major diastereomer)); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{ddd}, J=$ $17.5,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{ddd}, J=13.0,8.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=13.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=170.4$, 170.1, 167.1, 166.6, 160.6, 133.9, 132.9, 125.0, 121.2, 114.6, 105.6, 105.3, 66.2, 64.7, 62.1, 56.2, 55.5, 42.2, 29.6, 29.4, 29.3, 28.5; IR (cm^{-1}): 3583, 3001, 2944, 1769, 1746, 1609, 1514, 1393, 1382, 1275, 1205, 1186, 1091, 1029, 929, 732; HRMS (ESI+) observed 481.1468; calculated 481.1479 $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NaO} 9,[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+27.55^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ m.p. $148{ }^{\circ} \mathrm{C}$ (decomposes).

The compound was recrystallized by vapor diffusion of hexanes into chloroform at room temperature, to obtain X-ray quality crystals. The X-ray crystallographic report for this compound is in Appendix A.

5-Benzylidene-2,2-dimethyl-1,3-dioxane-4,6-dione 8a

8a

To a stirred solution of benzaldehyde ($1.06 \mathrm{~g}, 10.0 \mathrm{mmol}$) and Meldrum's acid ($1.58 \mathrm{~g}, 10.9 \mathrm{mmol})$ in benzene (50 mL) was added pyrrolidinium acetate $(2.0 \mathrm{~mL}$ of a 0.5 M solution in benzene, 1.00 mmol). The reaction was stirred at room temperature for 16 h , then diluted with ethyl acetate, and washed with sat. aq. sodium bicarbonate. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was purified by flash column chromatography ($20 \%-30 \%$ diethyl ether in petroleum ether) to give the title compound $\mathbf{8 a}$ as a yellow liquid which crystalizes upon standing ($830 \mathrm{mg}, 3.57 \mathrm{mmol}, 36 \%$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.43(\mathrm{~s}, 1 \mathrm{H})$, $8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81$ (s, 6H); m.p. $72-$ $74^{\circ} \mathrm{C}$ (lit. $74.5-75.5^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{14}$

2,2-Dimethyl-5-(4-methylbenzylidene)-1,3-dioxane-4,6-dione 8b

8b

To a stirred solution of 4-methylbenzaldehyde ($1.20 \mathrm{~g}, 10.0 \mathrm{mmol}$) and Meldrum's acid (1.58 g , $10.9 \mathrm{mmol})$ in benzene (50 mL) was added pyrrolidinium acetate (2.0 mL of a 0.5 M solution in benzene, 1.00 mmol). The reaction was heated under reflux at $50^{\circ} \mathrm{C}$ for 16 h , then allowed to cool, diluted with ethyl acetate, and washed with sat. aq. sodium bicarbonate. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was recrystallized from hot ethanol to give the title compound $\mathbf{8 b}$ as a white solid ($1.23 \mathrm{~g}, 50.0 \mathrm{mmol}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.40(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.80$ (s, 6 H); m.p. $110-114^{\circ} \mathrm{C}$ (lit. $116-118{ }^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{15}$

5-(3-Chlorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione 8d

8d

To a stirred solution of 3-chlorobenzaldehyde ($1.40 \mathrm{~g}, 10.0 \mathrm{mmol}$) and Meldrum's acid (1.58 g , $10.9 \mathrm{mmol})$ in benzene (50 mL) was added pyrrolidinium acetate (2.0 mL of a 0.5 M solution in benzene, 1.00 mmol). The reaction was heated under reflux at $50^{\circ} \mathrm{C}$ for 16 h , then allowed to cool, diluted with ethyl acetate, and washed with sat. aq. sodium bicarbonate. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was recrystallized from hot ethanol to give the title compound $\mathbf{8 d}$ as a white solid ($1.40 \mathrm{~g}, 52.5 \mathrm{mmol}, 53 \%$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.33(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.0,159.6,156.3,134.9$, $133.5,133.4,132.8,131.6,130.1,116.5,105.1,27.9 ;$ IR $\left(\mathrm{cm}^{-1}\right): 1731,1612,1562,1472,1424,1381$, $1283,1188,1032,935,798,674$; m.p. $104-107^{\circ} \mathrm{C}$ (lit. $115-116^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{4}$

2,2-Dimethyl-5-(naphthalen-2-ylmethylene)-1,3-dioxane-4,6-dione $\mathbf{8 h}$

8h

To a stirred solution of 2-naphthaldehyde ($1.55 \mathrm{~g}, 10.0 \mathrm{mmol}$) and Meldrum's acid (1.58 g , $10.9 \mathrm{mmol})$ in benzene (50 mL) was added pyrrolidinium acetate $(2.0 \mathrm{~mL}$ of a 0.5 M solution in benzene, 1.00 mmol). The reaction was heated under reflux at $50^{\circ} \mathrm{C}$ for 16 h , then allowed to cool, diluted with ethyl acetate, and washed with sat. aq. sodium bicarbonate. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was recrystallized from hot ethanol to give the title compound $\mathbf{8 d}$ as a white solid ($1.50 \mathrm{~g}, 53.1 \mathrm{mmol}, 53 \%$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.60(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{m} . \mathrm{p}$. 148-149 ${ }^{\circ} \mathrm{C}$ (lit. 150.8-151.5 ${ }^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{14}$

2,2-Dimethyl-5-(3-(triisopropylsilyl)prop-2-yn-1-ylidene)-1,3-dioxane-4,6-dione $\mathbf{8 i}$

8i

To a stirred solution of triisopropylsilylacetylene ($522 \mathrm{mg}, 2.87 \mathrm{mmol}$) in tetrahydrofuran (10 mL) at $-78^{\circ} \mathrm{C}$ was added n-butyllithium (2.5 M in hexanes, $1 \mathrm{~mL}, 2.5 \mathrm{mmol}$) via syringe. The flask was allowed to warm to $-20^{\circ} \mathrm{C}$, and stirred for 10 min , then recooled to $-78^{\circ} \mathrm{C}$. A solution of 5-(dimethylaminomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione ($440 \mathrm{mg}, \quad 2.05 \mathrm{mmol}$) in tetrahydrofuran $(25 \mathrm{~mL})$ was then added slowly via syringe at $-78^{\circ} \mathrm{C}$. The solution was then allowed to slowly warm to room temperature over 1.5 h . The solution was then poured into 1 M HCl , and quickly extracted with dichloromethane. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was purified by flash column chromatography (20% diethyl ether in petroleum ether) to give the title compound $\mathbf{8 i}$ as a pale yellow oil $(682 \mathrm{mg}, 2.03 \mathrm{mmol}$, 99%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{sp}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}$,
$J=5.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.7,158.1,137.2,126.1,124.4,105.2,102.8$, 28.1, 18.7, 11.4; IR (cm^{-1}): 2944, 2866, 2129, 2030, 1741, 1595, 1463, 1383, 1347, 1285, 1203, 1080, 1022, 925, 883, 794, 678; HRMS (ESI+) observed 359.1649; calculated 359.1655 ($\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NaO}_{4} \mathrm{Si}$, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-phenyl-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2]pentadecane $\mathbf{9 a}$

9a

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex $(3.0 \mathrm{mg}, 0.003 \mathrm{mmol})$ and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(6.0 \mathrm{mg}$, 0.075 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7(36.0 \mathrm{mg}, \quad 0.178 \mathrm{mmol})$ and 5-benzylidene-2,2-dimethyl-1,3-dioxane-4,6-dione $8 \mathbf{a}$ ($50.0 \mathrm{mg}, 0.215 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (20% to 40% diethyl ether in petroleum ether) to give the title compound $9 \mathbf{9}$ as a white solid $(59.5 \mathrm{mg}, 0.139 \mathrm{mmol}, 78 \%$), as a $8: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 89% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 3% isopropanol, 10% methylene chloride, 87% heptanes, UV wavelength 254 nm ; retention times: 11.5 min (minor enantiomer, major diastereomer), 14.2 min (minor diastereomer), 15.3 min (minor diastereomer), 16.6 min (major enantiomer, major diastereomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{ddd}, J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=$
$17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{ddd}, J=13.0,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{dd}$, $J=13.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.84$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,169.9,133.9,133.2,131.6,129.9,129.6,121.4$, 105.7, 105.4, 66.7, 64.6, 62.1, 56.4, 44.2, 29.5, 29.4, 29.3, 28.4; IR (cm^{-1}) 2999, 1746, 1456, 1394, 1277, 1205, 1097, 1022, 930, 730, 704; HRMS (ESI+) observed 451.1364; calculated 451.1369 $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NaO}_{8},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+23.38^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $154^{\circ} \mathrm{C}$ (decomposes).
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-tolyl-14-vinyl-2,4,10,12-
tetraoxadispiro[5.1.5.2]pentadecane $\mathbf{9 b}$

9b

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3.0 \mathrm{mg}, 0.003 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(6.0 \mathrm{mg}$, $0.075 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7(37.0 \mathrm{mg}, \quad 0.189 \mathrm{mmol})$ and 2,2-dimethyl-5-(4-methylbenzylidene)-1,3-dioxane-4,6-dione $\mathbf{8 b}$ ($60.0 \mathrm{mg}, 0.244 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (20% to 40% diethyl ether in petroleum ether) to give the title compound $\mathbf{9 b}$ as a white solid ($63.6 \mathrm{mg}, 0.144 \mathrm{mmol}, 76 \%$), as a $12: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 95% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 3\% isopropanol, 10% methylene chloride, 87% heptanes, UV wavelength 254
nm ; retention times: 11.1 min (minor enantiomer, major diastereomer), 13.9 min (minor diastereomer), $17.8 \mathrm{~min}\left(\right.$ minor diastereomer), 20.3 min (major enantiomer, major diastereomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.81$ (ddd, $J=17.5$, $10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (ddd, $J=13.0,8.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.4$, 170.1, 167.1, 166.5, 139.9, 134.0, 131.4, 130.2, 130.1, 121.3, 105.6, 105.4, 66.5, 64.7, 62.0, 56.3, 44.2, 29.6, 29.5, 29.4, 28.4, 21.3; IR (cm^{-1}) 3000, 2946, 1769, 1747, 1516, 1393, 1276, 1205, 1091, 1045, 930, 792, 736, 703; HRMS (ESI +) observed 465.1520; calculated $465.1525\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{Na},[\mathrm{M}+\mathrm{Na}]^{+}\right)$; $[\alpha]_{\mathrm{D}}^{23}=+30.50^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ m.p. $145^{\circ} \mathrm{C}$ (decomposes).

(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(4-nitrophenyl)-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2]pentadecane 9c

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($4.0 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(8.0 \mathrm{mg}$, 0.010 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7 \quad(35.0 \mathrm{mg}, \quad 0.178 \mathrm{mmol})$ and 2,2-dimethyl-5-(4-nitrobenzylidene)-1,3-dioxane-4,6-dione $8 \mathbf{c}(60.0 \mathrm{mg}, 0.216 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (2 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product,
which was purified by flash column chromatography (30% to 35% diethyl ether in petroleum ether) to give the title compound $9 \mathbf{c}$ as a white solid ($59.0 \mathrm{mg}, 0.125 \mathrm{mmol}, 70 \%$), as a $10: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 85% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 2% isopropanol, 20% methylene chloride, 78% heptanes, UV wavelength 254 nm ; retention times: 12.0 min (minor enantiomer, major diastereomer), 12.6 min (minor diastereomer), 14.0 min (minor diastereomer), 16.3 min (major enantiomer, major diastereomer)); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta=8.15$ (dd, $J=6.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (dd, $J=6.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.77 (ddd, $J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{ddd}, J=13.0,8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=$ $13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8,169.3,166.6,166.2,148.5,140.2,133.2,132.7,124.3,122.1,105.7,105.6,64.9,64.3,61.8$, $56.4,44.2,29.7,29.4,29.3,28.7$; IR (cm^{-1}): 3490, 3082, 3001, 2946, 1770, 1746, 1604, 1525, 1393, 1351, 1278, 1204, 1046, 1024, 929, 732; HRMS (ESI+): observed 496.1214; calculated 496.1220 $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{10},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+30.39^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ m.p. $147^{\circ} \mathrm{C}$ (decomposes).
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(3-chlorophenyl)-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2]pentadecane 9d

9d

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3.0 \mathrm{mg}, 0.003 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(6.0 \mathrm{mg}$, 0.075 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione 7 ($39.0 \mathrm{mg}, 0.198 \mathrm{mmol}$) and 5-(3-chlorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione $8 \mathbf{d d}(60.0 \mathrm{mg}, 0.225 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via
syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (20% to 40% diethyl ether in petroleum ether) to give the title compound $9 \mathbf{d}$ as a white solid ($59.7 \mathrm{mg}, 0.129 \mathrm{mmol}, 65 \%$), as a $6: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 89% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 3% isopropanol, 10% methylene chloride, 87% heptanes, UV wavelength 254 nm ; retention times: 10.5 min (minor enantiomer, major diastereomer), 15.0 min (minor diastereomer), 16.3 min (major enantiomer, major diastereomer), 22.0 min (minor diastereomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.24(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,169.7,166.8,166.3,135.3,135.1,133.6,131.7,130.8,130.1,129.6$, $131.7,105.7,105.5,65.6,64.4,61.8,56.4,44.2,29.6,29.4,29.3,28.6$; IR $\left(\mathrm{cm}^{-1}\right) 3000,1770,1746$, 1383, 1277, 1205, 1092, 1023, 932, 735; HRMS (ESI+), observed 485.0975; calculated 485.0979 $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNaO}_{8},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+27.61^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $156^{\circ} \mathrm{C}$ (decomposes).
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(4-bromophenyl)-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2]pentadecane $9 \mathbf{e}$

9e

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($4.0 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(7.8 \mathrm{mg}$, 0.010 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione 7 ($29.4 \mathrm{mg}, 0.150 \mathrm{mmol}$) and 5-(4-bromobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione $8 \mathbf{e}(52.9 \mathrm{mg}, 0.170 \mathrm{mmol})$. Both tubes were sealed with a
septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (2 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (30% diethyl ether in petroleum ether) to give the title compound $9 \mathbf{e}$ as a white solid ($54.8 \mathrm{mg}, 0.108 \mathrm{mmol}, 70 \%$), as a $6: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 92% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 2% isopropanol, 20% methylene chloride, 78% heptanes, UV wavelength 254 nm ; retention times: 10.0 min (minor enantiomer, major diastereomer), 11.1 min (minor diastereomer), 16.5 min (minor diastereomer), 18.1 min (major enantiomer, major diastereomer)); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.77$ (ddd, $J=17.0$, $10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.83(1 \mathrm{H}, \mathrm{m}), 4.89(\mathrm{~s}$, $1 \mathrm{H}), 3.16$ (dd, $J=13.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.47(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.19$ ($\mathrm{s}, 3 \mathrm{H}$), $1.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.1,169.7,168.9,163.4,133.6,133.2,132.6$, 132.1, 124.4, 131.6, 105.6, 105.5, 65.6, 64.4, 61.9, 56.4, 44.1, 29.7, 29.4, 29.3, 28.6; IR ($\left(\mathrm{cm}^{-1}\right)$; HRMS (ESI+): observed 529.0465; calculated $529.0469\left(\mathrm{C}_{23} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO}_{8},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+26.96^{\circ}(\mathrm{c}=$ 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $134{ }^{\circ} \mathrm{C}$ (decomposes).

$$
\begin{gathered}
(7 \mathrm{R}, 14 \mathrm{~S})-1,5,9,13 \text {-Tetraoxy-3,3,11,11-tetramethyl-7-(2-thienyl)-14-vinyl-2,4,10,12- } \\
\text { tetraoxadispiro[5.1.5.2]pentadecane } \mathbf{9 f}
\end{gathered}
$$

9f

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($4.0 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(8.0 \mathrm{mg}$, 0.010 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-

1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7(35.0 \mathrm{mg}, 0.178 \mathrm{mmol})$ and 2,2-dimethyl-5-(thiophen-2-ylmethylene)-1,3-dioxane-4,6-dione $\mathbf{8 f}(60.0 \mathrm{mg}, 0.252 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (30% to 35% diethyl ether in petroleum ether) to give the title compound $\mathbf{9 f}$ as a white solid $(25.0 \mathrm{mg}, 0.058 \mathrm{mmol}, 32 \%$, as a $8: 1 \mathrm{mixture}$ of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 96% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 0.5% ethanol, 20% methylene chloride, 79.5% heptanes, UV wavelength 254 nm; retention times: 14.6 min (minor enantiomer, major diastereomer), 20.9 min (major enantiomer, major diastereomer), 23.1 min (minor diastereomer, overlapping)); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.23 (dd, $J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (ddd, $J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H})$, 4.87 (ddd, $J=13.0,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dd, $J=13.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1$, $169.8,166.9,166.4,133.6,133.5,131.6,128.7,127.0,121.6,105.7,105.5,64.6,62.6,60.0,56.6,44.4$, 29.7, 29.3, 29.2, 28.7; IR (cm^{-1} : $3485,2998,1769,1744,1395,1384,1277,1247,1203,831,703$; HRMS (ESI +) observed 457.0927; calculated $457.0933\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{8} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+26.95^{\circ}$ (c = 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $154^{\circ} \mathrm{C}$ (decomposes).
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(2-furyl)-14-vinyl-2,4,10,12-
tetraoxadispiro[5.1.5.2]pentadecane $\mathbf{9 g}$

9g
An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($4.0 \mathrm{mg}, 0.004 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(8.0 \mathrm{mg}$, 0.010 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7(35.0 \mathrm{mg}, 0.178 \mathrm{mmol})$ and 5-(furan-2-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione $8 \mathrm{~g}(55.0 \mathrm{mg}, 0.248 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (30% to 35% diethyl ether in petroleum ether) to give the title compound $9 \mathbf{g}$ as a white solid ($39.0 \mathrm{mg}, 0.093 \mathrm{mmol}, 52 \%$) , as a $7: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 85% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 0.5% ethanol, 20% methylene chloride, 79.5% heptanes, UV wavelength 254 nm ; retention times: 15.6 min (minor enantiomer, major diastereomer), 21.7 min (minor diastereomer, overlapping), 26.2 min (major enantiomer, major diastereomer)); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=3.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (ddd, $J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H})$, 4.82 (ddd, $J=13.0,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7$, 169.6, 166.4, 165.7, 147.0, 142.3, 133.1, 121.7, 113.9, 112.4, 105.6, 105.5, 63.5, 60.8, 58.1, 56.4, 44.7, 29.3, 29.1, 29.0, 28.7; IR (cm^{-1}): 3489, 1772, 1746, 1394, 1277, 1249, 1205, 1016, 943; HRMS (ESI+),
observed 441.1158; calculated $441.1162\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{9},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+22.09^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $143{ }^{\circ} \mathrm{C}$ (decomposes).
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(2-naphthyl)-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2] pentadecane $\mathbf{9 h}$

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3.0 \mathrm{mg}, 0.003 \mathrm{mmol}$) and $(R, R)-\mathbf{L}_{3}$ chiral ligand, $(6.0 \mathrm{mg}$, 0.075 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7 \quad(36.0 \mathrm{mg}, \quad 0.183 \mathrm{mmol})$ and 2,2-dimethyl-5-(naphthalen-2-ylmethylene)-1,3-dioxane-4,6-dione $8 \mathbf{h}$ ($55.0 \mathrm{mg}, 0.195 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (20% to 40% diethyl ether in petroleum ether) to give the title compound $\mathbf{9 h}$ as a white solid ($60.4 \mathrm{mg}, 0.126 \mathrm{mmol}, 69 \%$), as a $8: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H} N \mathrm{NR}$) and with a 93% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 3% isopropanol, 10% methylene chloride, 87% heptanes, UV wavelength 254 nm ; retention times: 10.2 min (minor enantiomer, major diastereomer), 14.5 min (minor diastereomer), 16.2 min (major enantiomer, major diastereomer), 21.2 min (minor diastereomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.82$ (ddd, J $=17.0,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (s, 1H), 5.01
(ddd, $J=13.5,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=13.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.57(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.4,170.0$, 167.1, 166.6, 133.9, 133.5, 133.2, 131.7, 130.5, 129.4, 128.7, 128.1, 127.8, 127.5, 126.9, 121.4, 105.6, 105.4, 66.7, 64.7, 62.0, 56.4, 44.4, 29.6, 29.4, 29.3, 28.4; IR (cm $\left.{ }^{-1}\right) 3060,3001,1746,1444,1382,1274$, 1204, 1093, 1046, 930, 805, 737, 703; HRMS (ESI+) observed 501.1522; calculated 501.1525 $\left(\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NaO}_{8},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+26.95^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ m.p. $105^{\circ} \mathrm{C}$.
(7R,14S)-1,5,9,13-Tetraoxy-3,3,11,11-tetramethyl-7-(triisopropylsilylethynyl)-14-vinyl-2,4,10,12tetraoxadispiro[5.1.5.2]pentadecane $\mathbf{9 i}$

9i

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2.0 \mathrm{mg}, 0.002 \mathrm{mmol}$) and $(R, R)-\mathrm{L}_{3}$ chiral ligand, $(4.0 \mathrm{mg}$, 0.005 mmol). A second reaction tube, also equipped with a stir bar, was charged with 6,6-dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione $7(35.0 \mathrm{mg}, \quad 0.178 \mathrm{mmol}$) and 2,2-dimethyl-5-(3-(triisopropylsilyl)prop-2-yn-1-ylidene)-1,3-dioxane-4,6-dione $\mathbf{8 i}$ ($70.0 \mathrm{mg}, 0.208 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Dioxane (degassed by sparging with nitrogen for 30 min) was added to the first tube (1 mL) and second tube (3 mL), and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into sat. aq. sodium bicarbonate solution, and extracted with methylene chloride. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (10% to 20% to 40% diethyl ether in petroleum ether) to give the title compound $\mathbf{9 i}$ as a white solid (72.0 mg , $0.135 \mathrm{mmol}, 76 \%$), as a $12: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H} N \mathrm{NR}$) and with a 89% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IC column, 2% isopropanol, 20\% methylene chloride, 78% heptanes, UV wavelength 254 nm ; retention times: 5.8 min (minor enantiomer, major
diastereomer), 9.2 min (minor diastereomer, overlapping), 9.8 min (major enantiomer, major diastereomer); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.66(\mathrm{ddd}, J=17.5,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{ddd}, J=13.5,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{dd}$, $J=13.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.69$ $(\mathrm{s}, 3 \mathrm{H}), 1.05-0.97(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.8,168.8,165.8,164.3,132.6$, $121.8,105.4,99.0,94.5,91.5,63.2,60.4,56.0,51.9,44.7,30.4,29.5,29.2,28.9,18.6,11.3 ;$ IR $\left(\mathrm{cm}^{-1}\right)$ 3001, 2944, 2866, 2173, 1754, 1639, 1463, 1384, 1276, 1205, 1077, 1020, 924, 883, 735, 679; HRMS (ESI +) observed 555.2384; calculated $555.2390\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NaO}_{8} \mathrm{Si},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{23}{ }_{\mathrm{D}}=+30.32^{\circ}(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $114{ }^{\circ} \mathrm{C}$ (decomposes).
(1R,4S)-Dimethyl 8,8-dimethyl-1-(naphthalen-2-yl)-6,10-dioxo-4-vinyl-7,9-dioxaspiro[4.5]decane-2,2dicarboxylate 10

10

To a stirred solution of (7R,14S)-1,5,9,13-tetraoxy-3,3,11,11-tetramethyl-7-(2-naphthyl)-14-vinyl-2,4,10,12-tetraoxadispiro[5.1.5.2]pentadecane $9 \mathrm{~h}(56.0 \mathrm{mg}, 0.117 \mathrm{mmol})$ in anhydrous methanol $(2 \mathrm{~mL})$ was added a solution of sodium methoxide ($200 \mu \mathrm{~L}, 0.58 \mathrm{M}$ in methanol, 0.117 mmol). The reaction was stirred for 1 h at room temperature, then quenched by addition of excess aqueous 1 M sodium bisulfate solution. The reaction mixture was extracted twice with methylene chloride, and the combined organic extracts concentrated in vacuo. The crude residue was dissolved in a mixture of dimethoxyethane $(1 \mathrm{~mL})$ and methanol $(1 \mathrm{~mL})$. Trimethylsilyldiazomethane ($200 \mu \mathrm{~L}, 2 \mathrm{M}$ in diethyl ether, 0.400 mmol) was added. The reaction was allowed to stir for 20 min , then quenched by dropwise addition of acetic acid until no further effervescence was observed. The reaction mixture was diluted with diethyl ether and washed with sat. aq. sodium bicarbonate solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was purified by flash column chromatography (20% to 30% diethyl ether in petroleum ether) to give the title compound 10 as a waxy solid ($51.2 \mathrm{mg}, 0.110 \mathrm{mmol}, 94 \%$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-$ $7.36(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddd}, J=17.5,10.5,8.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.32$ (ddd, $J=12.0,8.5$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=13.5,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4,170.1,168.6,166.6,134.4$, 133.2, 133.1, 132.2, 131.2, 128.5, 127.9, 127.7, 126.9, 126.5, 120.6, 105.5, 66.3, 65.1, 61.2, 54.4, 53.7, $53.6,52.7,39.4,29.6,29.3$; IR $\left(\mathrm{cm}^{-1}\right): 3581,2950,1736,1432,1391,1380,1249,1203,1151,1091$, 1021; HRMS (ESI +) observed 467.1699; calculated $467.1706\left(\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{8},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+24.04^{\circ}$ $\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(2R,4S)-Tetramethyl 2-(naphthalen-2-yl)-4-vinylcyclopentane-1,1,3,3-tetracarboxylate 11

To a stirred solution of (7R,14S)-1,5,9,13-tetraoxy-3,3,11,11-tetramethyl-7-(2-naphthyl)-14-vinyl-2,4,10,12-tetraoxadispiro[5.1.5.2]pentadecane $9 \mathrm{~h}(83 \mathrm{mg}, 0.173 \mathrm{mmol})$ in anhydrous methanol $(2 \mathrm{~mL})$ was added a solution of sodium methoxide ($750 \mu \mathrm{l}, 0.58 \mathrm{M}$ in methanol, 0.435 mmol). The reaction was stirred at room temperature for 1 h , then quenched by addition of excess aqueous 1 M sodium bisulfate. The reaction mixture was extracted twice with methylene chloride, and the combined organic extracts concentrated in vacuo. The crude residue was dissolved in a mixture of dimethoxyethane (1 mL) and methanol (1 mL). Trimethylsilyldiazomethane ($0.20 \mathrm{~mL}, 2 \mathrm{M}$ in diethyl ether, 0.400 mmol) was added and the reaction was allowed to stir for 20 min , then quenched by dropwise addition of acetic acid until no further effervescence was observed. The reaction mixture was diluted with diethyl ether, washed with sat. aq. sodium bicarbonate solution and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was purified by flash column chromatography gave the title compound 11 as a waxy solid ($61.6 \mathrm{mg}, 0.136 \mathrm{mmol}$, 78%); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H})$, 5.95 (ddd, $J=17.5,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{dd}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (s, 3H), 2.12 (dd, $J=13.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7,171.2,170.8$, $169.7,136.2,135.9,133.1,132.5,128.5,128.3,127.6,127.3,126.3,126.2,116.8,69.5,65.4,56.5,53.3$,
$52.5,52.4,52.1,49.8,36.1$ IR $\left(\mathrm{cm}^{-1}\right): 2950,1733,1432,1245,1203,1178,1116,1093,1061,935,748$, 700; HRMS (ESI+): observed 455.1701; calculated $455.1706\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{8},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+36.04^{\circ}$ $\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(4aS,7R,7aR)-Trimethyl 7-(naphthalen-2-yl)-1-oxohexahydrocyclopenta[c]pyran-6,6,7a(1 H)tricarboxylate 12

A solution of ($2 R, 4 S$)-tetramethyl 2-(naphthalen-2-yl)-4-vinylcyclopentane-1,1,3,3-tetracarboxylate 11 ($42.0 \mathrm{mg}, 0.092 \mathrm{mmol}$) and dicyclohexylborane ($21.0 \mathrm{mg}, 0.118 \mathrm{mmol}$) in tetrahydrofuran (0.5 mL) was stirred at room temperature for 14 h . Aqueous sodium acetate ($1.0 \mathrm{~mL}, 5.0 \mathrm{M}, 5.0 \mathrm{mmol}$) was added, followed by hydrogen peroxide ($1.0 \mathrm{~mL}, 30 \%$ in water). The reaction was allowed to stir for 6 h, and then quenched by addition to aqueous sodium bicarbonate solution. The mixture was extracted with diethyl ether, and the organic extracts washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give the crude product, which was purified by flash column chromatography ($20 \%-50 \%$ ethyl acetate in petroleum ether) to give the corresponding primary alcohol as a colorless oil ($20 \mathrm{mg}, 0.042 \mathrm{mmol}, 46 \%$), which was used directly in the next step.

A stirred solution of the alcohol ($20 \mathrm{mg}, 0.042 \mathrm{mmol}, 46 \%$) and p-toluenesulfonic acid monohydrate $(10.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ in chloroform $(1 \mathrm{~mL})$ heated to $60^{\circ} \mathrm{C}$ for 4 h , after which time thin layer chromatography showed complete consumption of the intermediate alcohol $\left(\mathrm{R}_{\mathrm{f}}=0.3\right.$ in 50% ethyl acetate/petroleum ether), and formation of a new product ($R_{f}=0.6$ in 50% ethyl acetate/petroleum ether). The solvent was removed in vacuo, and the crude reaction mixture purified by flash column chromatography (30% ethyl acetate in petroleum ether) to give the title compound $\mathbf{1 2}$ as a colorless oil ($16.1 \mathrm{mg}, 0.037 \mathrm{mmol}, 87 \%$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.42(\mathrm{~m}$, 2H), 7.28 (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.31$ (ddd, $J=11.5,5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.08(\mathrm{~m}$, $2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}, J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{ddd}, J=13.5,9.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, J=14.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 171.3, 170.3, 169.9, 168.9, 134.6, 133.2, 132.7, 129.3, 128.3, 127.6, 127.6, 126.4, 126.3, 91.2, 67.3, $66.2,65.4,57.5,53.5,53.2,52.5,41.1,39.5,28.3$; IR (cm^{-1}) 2950, 2917, 1732, 1432, 1260, 1234, 1166,

1136, 1083, 1070; HRMS (ESI+), observed 441.1543; calculated $441.1549\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{8},[\mathrm{M}+\mathrm{H}]^{+}\right)$; $[\alpha]_{\mathrm{D}}^{23}=-11.16^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(Z)-4-(4-Bromobenzylidene)-2-phenyloxazol-5(4H)-one 13b

According to General Procedure A reported by Chavez et al. ${ }^{16}$ A stirred solution of 4bromobenzaldehyde ($2.40 \mathrm{~g}, 13.0 \mathrm{mmol}$), hippuric acid ($2.85 \mathrm{~g}, 15.9 \mathrm{mmol}$), acetic anhydride (4.87 g , $48 \mathrm{mmol}, 4.5 \mathrm{~mL}$) and diisopropylethylamine ($1.03 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.5 \mathrm{~mL}$) was heated to $40{ }^{\circ} \mathrm{C}$ under reflux for 40 min . The reaction was allowed to cool to room temperature, diluted with 50% aqueous ethanol solution $(15 \mathrm{~mL})$, and then cooled to $-20^{\circ} \mathrm{C}$ in the freezer for 30 min . The resulting solid was filtered to and recrystallized from hot toluene to give the title compound $\mathbf{1 3 b}$ as a powdery yellow solid ($1.73 \mathrm{~g}, 5.27 \mathrm{mmol}, 41 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.20-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$; m.p. $188^{\circ} \mathrm{C}$ (lit. $197-$ $199^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{11}$
(Z)-4-(4-Chlorobenzylidene)-2-phenyloxazol-5(4H)-one 13c

According to General Procedure A reported by Chavez et al. ${ }^{16}$ A stirred solution of 3chlorobenzaldehyde ($1.80 \mathrm{~g}, 13.0 \mathrm{mmol}$), hippuric acid ($2.85 \mathrm{~g}, 15.9 \mathrm{mmol}$), acetic anhydride (4.87 g , $48 \mathrm{mmol}, 4.5 \mathrm{~mL}$) and diisopropylethylamine ($1.03 \mathrm{~g}, 8.0 \mathrm{mmol}, 1.5 \mathrm{~mL}$) was heated to $40{ }^{\circ} \mathrm{C}$ under reflux for 40 min . The reaction was allowed to cool to room temperature, diluted with 50% aqueous ethanol solution $(15 \mathrm{~mL})$, and then cooled to $-20^{\circ} \mathrm{C}$ in the freezer for 30 min . The resulting solid was filtered to and recrystallized from hot toluene to give the title compound 13c as a feathery yellow solid ($1.15 \mathrm{~g}, 4.05 \mathrm{mmol}, 31 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.31(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=$
$8.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{tt}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}$, $2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$; m.p. $163-165^{\circ} \mathrm{C}$ (lit. $166^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{17}$
(Z)-4-(3-Methoxybenzylidene)-2-phenyloxazol-5(4H)-one 13d

According to General Procedure A reported by Chavez et al. ${ }^{16}$ To a stirred solution of 3methoxybenzaldehyde ($2.10 \mathrm{~g}, 15.0 \mathrm{mmol}$), hippuric acid ($3.00 \mathrm{~g}, 16.7 \mathrm{mmol}$), acetic anhydride $(3.30 \mathrm{~g}, 32 \mathrm{mmol}, 3.1 \mathrm{~mL})$ in tetrahydrofuran $(24 \mathrm{~mL})$ was added sodium acetate $(820 \mathrm{mg}$, 10.0 mmol). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the filter successively with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude product, which was recrystallized from hot ethanol to give the title compound 13d as a yellow solid (1.39 g, $4.98 \mathrm{mmol}, 33 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.17$ (dd, $J=8.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.94 (s, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.06-6.92(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$; m.p. $99-102{ }^{\circ} \mathrm{C}$ (lit. $103.5-104{ }^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{18}$
(Z)-4-(2-Methoxybenzylidene)-2-phenyloxazol-5(4H)-one 13e

According to General Procedure A reported by Chavez et al. ${ }^{16}$ To a stirred solution of 2methoxybenzaldehyde ($1.60 \mathrm{~g}, 11.0 \mathrm{mmol}$), hippuric acid ($2.70 \mathrm{~g}, 15.1 \mathrm{mmol}$), acetic anhydride $(4.20 \mathrm{~g}, 41 \mathrm{mmol}, 4.0 \mathrm{~mL})$ in tetrahydrofuran $(20 \mathrm{~mL})$ was added sodium acetate $(300 \mathrm{mg}$, 3.60 mmol). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the filter successively with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude
product, which was recrystallized from hot ethanol to give the title compound 13e as an off-white solid ($2.57 \mathrm{~g}, 9.20 \mathrm{mmol}, 84 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$;

(Z)-4-(4-Methoxybenzylidene)-2-phenyloxazol-5(4H)-one 13f

To a stirred solution of 4-methoxybenzaldehyde ($1.20 \mathrm{~g}, 8.80 \mathrm{mmol}$), hippuric acid (2.70 g , 15.1 mmol), acetic anhydride ($5.40 \mathrm{~g}, 53 \mathrm{mmol}, 5.0 \mathrm{~mL}$) in tetrahydrofuran (20 mL) was added sodium acetate ($300 \mathrm{mg}, 3.60 \mathrm{mmol}$). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the filter successively with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude product, which was recrystallized from hot ethanol to give the title compound $\mathbf{1 3 f}$ as an off-white solid ($1.36 \mathrm{~g}, 48.7 \mathrm{mmol}, 55 \%$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.24-8.14(\mathrm{~m}, 4 \mathrm{H})$, $7.59(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$; m.p. $145-147^{\circ} \mathrm{C}$ (lit. $143{ }^{\circ} \mathrm{C}$); spectral data in accordance with the literature..11
(Z)-4-(Naphthalen-2-ylmethylene)-2-phenyloxazol-5(4H)-one 13h

According to General Procedure A reported by Chavez et al. ${ }^{16}$ To a stirred solution of 2naphthaldehyde ($1.80 \mathrm{~g}, 12.0 \mathrm{mmol}$), hippuric acid ($2.70 \mathrm{~g}, 15.1 \mathrm{mmol}$), acetic anhydride (5.40 g , $53 \mathrm{mmol}, 5.0 \mathrm{~mL}$) in tetrahydrofuran (20 mL) was added sodium acetate ($300 \mathrm{mg}, 3.60 \mathrm{mmol}$). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the filter successively
with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude product, which was recrystallized from hot ethanol to give the title compound 13 h as a bright yellow solid $(1.72 \mathrm{~g}$, $5.74 \mathrm{mmol}, 48 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.25-8.21$ $(\mathrm{m}, 2 \mathrm{H}), 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 4 \mathrm{H})$, 7.42 (s, 1H); m.p. $135-138^{\circ} \mathrm{C}$ (lit. $154^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{20}$
(Z)-4-((E)-3-(4-Methoxyphenyl)allylidene)-2-phenyloxazol-5(4H)-one 13i

According to General Procedure A reported by Chavez et al. ${ }^{16}$ To a stirred solution of (E)-3-(4methoxyphenyl)acrylaldehyde ($2.00 \mathrm{~g}, 12.0 \mathrm{mmol}$), hippuric acid $(2.70 \mathrm{~g}, 15.1 \mathrm{mmol}$), acetic anhydride ($4.20 \mathrm{~g}, 41 \mathrm{mmol}, 4.0 \mathrm{~mL}$) in tetrahydrofuran (20 mL) was added sodium acetate (300 mg , 3.60 mmol). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and poured into sat. aq. sodium bicarbonate solution and diluted with diethyl ether. The organic phase was washed successively with water, and brine, leading to the formation of an emulsion, which was collected by suction filtration and recrystallized from hot ethanol to give the title compound $\mathbf{1 3 i}$ as a bright orange solid ($400 \mathrm{mg}, 1.31 \mathrm{mmol}, 11 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=8.13(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{dd}, J=11.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.2$, 161.8, 161.5, 144.3, 134.0, 133.1, 133.1, 130.0, 129.2, 129.1, 128.2, 126.0, 121.6, 114.7, 55.7; IR (cm $\left.{ }^{1}\right): 1777,1645,1594,1569,1509,1337,1306,1254,1167,1029,967,875,817,695,680$; HRMS (ESI+): observed 328.0945; calculated $328.0950\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NNaO}_{3},[\mathrm{M}+\mathrm{Na}]^{+}\right)$; m.p. $156-158{ }^{\circ} \mathrm{C}$.

13j

To a stirred solution of 2-thiophenecarboxaldehyde ($1.20 \mathrm{~g}, 10.7 \mathrm{mmol}$), hippuric acid (2.70 g , 15.1 mmol), acetic anhydride ($5.40 \mathrm{~g}, 53 \mathrm{mmol}, 5.0 \mathrm{~mL}$) in tetrahydrofuran (20 mL) was added sodium acetate ($300 \mathrm{mg}, 3.60 \mathrm{mmol}$). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the filter successively with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude product, which was recrystallized from hot ethanol to give the title compound $\mathbf{1 3 j}$ as a bright yellow feathery solid ($820 \mathrm{mg}, 3.21 \mathrm{mmol}, 30 \%$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20-$ $8.15(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}$, 3 H), 7.17 (dd, $J=5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$); m.p. $161-164^{\circ} \mathrm{C}$ (lit. $176-178{ }^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{21}$

$$
\text { (Z)-4-(Furan-2-ylmethylene)-2-phenyloxazol-5(4H)-one } 13 \mathrm{k}
$$

According to General Procedure A reported by Chavez et al. ${ }^{16}$ To a stirred solution of 2furancarboxaldehyde ($1.20 \mathrm{~g}, 12.5 \mathrm{mmol}$), hippuric acid ($2.70 \mathrm{~g}, 15.1 \mathrm{mmol}$), acetic anhydride (5.40 g , $53 \mathrm{mmol}, 5.0 \mathrm{~mL}$) in tetrahydrofuran (20 mL) was added sodium acetate ($300 \mathrm{mg}, 3.60 \mathrm{mmol}$). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the filter successively with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude product, which was recrystallized from hot ethanol to give the title compound $\mathbf{1 3 k}$ as a bright yellow feathery solid ($1.76 \mathrm{~g}, 7.36 \mathrm{mmol}, 59 \%$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=1.5$,
$0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (ddt, $J=2.5,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H})$; m.p. $158-160^{\circ} \mathrm{C}$ (lit. $\left.168-169^{\circ} \mathrm{C}\right) ;{ }^{21}$ spectral data in accordance with the literature. ${ }^{22}$

4-(Ethoxymethylene)-2-phenyloxazol-5(4H)-one 131

131

According to the procedure of Stammer et al. ${ }^{23}$ A stirred solution of hippuric acid $(9.00 \mathrm{~g}$, $50.0 \mathrm{mmol})$ and triethylorthoformate ($8.90 \mathrm{~g}, 60 \mathrm{mmol}, 10.0 \mathrm{~mL}$) in acetic anhydride (20 mL) under a nitrogen atmosphere was heated under reflux to $135^{\circ} \mathrm{C}$ for 45 min ; a red-brown solution formed. The reaction was then allowed to cool and poured into a mizture of diethyl ether and sat. aq. sodium bicarbonate solution. The organic layer was carefully washed twice with saturated aqueous sodium bicarbonate, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was crystallized from hot isopropanol (50 mL) to give a brown solid, which was filtered and washed on the filter with water to give the title compound 131 as an off-white solid ($4.90 \mathrm{~g}, 22.6 \mathrm{mmol}, 45 \%, 3: 1$ mixture of E / Z isomers) which was used directly without further purification; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 8.09-8.04 (m, 2H), $7.53(\mathrm{tt}, J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; m.p. $94-96^{\circ} \mathrm{C}$ (lit. $94-95^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{23}$
(Z)-4-(Cyclohexylmethylene)-2-phenyloxazol-5(4H)-one 13m

According to General Procedure A reported by Chavez et al. ${ }^{16}$ To a stirred solution of cyclohexanecarboxaldehyde ($1.80 \mathrm{~g}, 16.0 \mathrm{mmol}$), hippuric acid ($2.70 \mathrm{~g}, 15.1 \mathrm{mmol}$), acetic anhydride $(5.40 \mathrm{~g}, 53 \mathrm{mmol}, 5.0 \mathrm{~mL})$ in tetrahydrofuran $(20 \mathrm{~mL})$ was added sodium acetate (300 mg , 3.60 mmol). The reaction mixture was heated to $60^{\circ} \mathrm{C}$ under reflux for 3 h , then allowed to cool to room temperature and the solvent removed in vacuo. The resulting solid was filtered, washed on the
filter successively with water, sat. aq. sodium bicarbonate, water and ethanol to give the crude product, which was recrystallized from hot ethanol to give the title compound 13 m as an off-white solid ($1.45 \mathrm{~g}, 5.68 \mathrm{mmol}, 36 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09$ (dd, $J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61-7.55 (m, 1H), 7.53-7.47 (m, 2H), $6.55(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{td}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.69(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.18(\mathrm{~m}, 5 \mathrm{H})$; m.p. $94-98^{\circ} \mathrm{C}$ (lit. $114^{\circ} \mathrm{C}$); spectral data in accordance with the literature. ${ }^{24}$

(Z)-4-Heptylidene-2-phenyloxazol-5(4H)-one 13n

According to the procedure reported by Paradisi et al. ${ }^{25} \mathrm{~A}$ suspension of 2-phenyloxazol-5(4H)-one ($107 \mathrm{mg}, 0.660 \mathrm{mmol}$), heptaldehyde ($81 \mathrm{mg}, 0.720 \mathrm{mmol}$) and alumina (1.00 g , Brockmann Grade I, basic) in methylene chloride (1.0 mL) was stirred vigorously for 5 min at room temperature. The reaction was concentrated in vacuo, petroleum ether (3 mL) was added and the resulting slurry was purified by silica gel chromatography (10% to 20% to 40% methylene chloride in petroleum ether) to give the title compound $\mathbf{1 3 n}$ as a viscous liquid ($46 \mathrm{mg}, 0.179 \mathrm{mmol}, 27 \%$) ; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.10(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{dt}, J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; spectral data in accordance with the literature. ${ }^{26}$
(Z)-4-(2-((tert-Butyldimethylsilyl)oxy)ethylidene)-2-phenyloxazol-5(4H)-one 13o

According to the procedure reported by Paradisi et al. ${ }^{25}$ A suspension of 2-phenyloxazol-5(4H)-one ($550 \mathrm{mg}, 3.41 \mathrm{mmol}$), 2-((tert-butyldimethylsilyl)oxy)acetaldehyde ($470 \mathrm{mg}, 2.70 \mathrm{mmol}$) and alumina (5.00 g , Brockmann Grade I, basic) in methylene chloride (10.0 mL) was stirred vigorously for 2 h at room temperature. The reaction was filtered to remove the alumina, concentrated in vacuo and
purified by silica gel chromatography (5% diethyl ether in petroleum ether) to give the title compound 13 o as a viscous liquid ($107 \mathrm{mg}, 0.337 \mathrm{mmol}, 13 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,143.3$, 137.4, 133.7, 129.2, 128.5, 128.3, 125.6, 60.2, 26.1, 18.5, -5.0; IR (cm^{-1}): 2954, 2929, 2857, 1801, 1677, 1593, 1569, 1450, 1326, 1255, 1177, 1104, 1059, 871, 836, 778, 689; HRMS (ESI+): observed 340.1336; calculated $340.1345\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{Si},[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 4-oxo-2,6-diphenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7dicarboxylate 14a

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($4 \mathrm{mg}, 0.004 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (8 mg , $0.010 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) and (Z)-4-benzylidene-2-phenyloxazol-5(4H)-one $\mathbf{1 3 a}(40 \mathrm{mg}, 0.160 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound 14a as a colorless oil ($45 \mathrm{mg}, 0.079 \mathrm{mmol}, 66 \%$), as a $19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 96% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 5% isopropanol, 95% heptanes, UV wavelength 254 nm ; retention times: 5.74 min (major enantiomer), $7.30 \mathrm{~min}($ minor enantiomer) $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89$ (dd, $J=8.5$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 5.79$ (ddd, $J=17.5,10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.66$ $(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (ddd,
$J=9.5,8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J$ $=13.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.6,169.1,168.1,160.3,136.4,134.0$, 133.3, 133.1, 131.2, 128.9, 128.3, 128.1, $125.7,122.7$ ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}$), $122.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right)$, 120.5, $91.2,80.3,78.6,65.1,61.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36 \mathrm{~Hz}\right), 61.5\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=37 \mathrm{~Hz}\right), 58.1,53.4,38.0 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.20-74.24(\mathrm{~m}, 3 \mathrm{~F}),-74.30-74.35(\mathrm{~m}, 3 \mathrm{~F}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2965,1812,1752$, 1652, 1495, 1451, 1413, 1283, 1236, 1168, 871, 697; HRMS (ESI+): observed 570.1336; calculated $570.1351\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{NO}_{6},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+15.61^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(4-bromophenyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14b

14b

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (4 mg , $0.006 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2 -vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, \quad 0.093 \mathrm{mmol}$) and (Z)-4-(4-bromobenzylidene)-2-phenyloxazol-5(4H)-one $\mathbf{1 3 b}$ ($30 \mathrm{mg}, 0.094 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 b}$ as a colorless oil ($47 \mathrm{mg}, 0.072 \mathrm{mmol}, 78 \%$), as a 19:1 mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 98% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 8.03 min (major enantiomer), 9.27 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90(\mathrm{dd}, J=8.0,1.0,2 \mathrm{H}), 7.56(\mathrm{td}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{ddd}, J=17.0,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H})$, $3.14(\mathrm{dd}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 178.4, 168.9, 167.9, 160.6, 133.3, 133.0, 132.9, 132.1, 131.6, 131.2, 129.1, 129.0, 128.3, 125.4, 122.8, $122.7\left(\mathrm{q}, J_{\mathrm{CF}}=275 \mathrm{~Hz}\right), 122.3\left(\mathrm{q}, J_{\mathrm{CF}}=276 \mathrm{~Hz}\right), 120.7,80.0,64.9,61.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37.1 \mathrm{~Hz}\right), 61.5\left(\mathrm{q}, J_{\mathrm{C}}\right.$ ${ }_{\mathrm{F}}=37.2 \mathrm{~Hz}$), 57.5, 53.5, 38.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.18 \mathrm{~Hz}-74.28 \mathrm{~Hz}(\mathrm{~m}, 6 \mathrm{~F})$; IR $\left(\mathrm{cm}^{-1}\right): 1812,1752,1650,1489,1450,1413,1283,1236,1169,971,883,699$ HRMS (ESI+): observed 648.0449; calculated $648.0456\left(\mathrm{C}_{27} \mathrm{H}_{21}{ }^{79} \mathrm{BrF}_{6} \mathrm{NO}_{6},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}=-3.14^{\circ}(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(3-chlorophenyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14c

14c

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2.5 \mathrm{mg}, 0.0024 \mathrm{mmol}$) and ((S, S) - \mathbf{L}_{1} chiral ligand, (5 mg , $0.007 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($52 \mathrm{mg}, \quad 0.160 \mathrm{mmol}$) and (Z)-4-(3-chlorobenzylidene)-2-phenyloxazol-5(4H)-one 13c ($45 \mathrm{mg}, 0.160 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 2 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 c}$ as a colorless oil ($68 \mathrm{mg}, 0.113 \mathrm{mmol}, 70 \%$), as a 19:1 mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 93% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 7.80 min (major enantiomer), 8.87 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddd}, J=17.0,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=$ $13.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4,168.8,167.9,160.5,135.8,133.8,133.3$, 133.1, 131.3, 129.5, 129.3, 129.1, 128.6, 128.3, 125.4, 122.7 (q, $J_{\text {C.F }}=275 \mathrm{~Hz}$), 122.3 (q, $J_{\text {C.F }}=$ $276 \mathrm{~Hz}), 120.7,79.9,65.1,61.9\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=46 \mathrm{~Hz}\right), 61.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=46 \mathrm{~Hz}\right), 57.7,53.5,38.2 ;{ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl_{3}): $\delta=-74.2(\mathrm{~m}, 3 \mathrm{~F}),-74.3(\mathrm{~m}, 3 \mathrm{~F}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 1813,1752,1651,1596,1572,1450$, 1413, 1283, 1237, 1169, 1124, 1086, 971, 884, 779, 693; HRMS (ESI+): observed 604.0948; calculated $604.0961\left(\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{ClF}_{6} \mathrm{NO}_{6},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{23}=+14.16^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(3-methoxyphenyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14d

14d

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (4 mg , $0.006 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, \quad 0.125 \mathrm{mmol}$) and (Z)-4-(3-Methoxybenzylidene)-2-phenyloxazol-5(4H)-one $13 \mathbf{d}$ ($50 \mathrm{mg}, 0.180 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 d}$ as a colorless oil ($63 \mathrm{mg}, 0.105 \mathrm{mmol}, 84 \%$), as a 19:1 mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 94% e.e. for the major diastereomer
(by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 7.84 min (major enantiomer), 9.63 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.5$, $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (ddd, $J=17.5,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H})$, $4.66(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 3H), 3.60 (ddd, $J=9.0,8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dq, $J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, $J=13.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4,169.1,168.1$, $160.3,159.3,135.3,133.3,133.2,129.0,128.8,128.3,125.7,123.4,122.8\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=278 \mathrm{~Hz}\right), 122.4(\mathrm{q}$, $\left.J_{\text {C-F }}=276 \mathrm{~Hz}\right), 120.4,116.6,114.2,80.4,65.0,61.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.6 \mathrm{~Hz}\right), 61.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37 \mathrm{~Hz}\right), 58.0$, $55.4,53.5,38.2 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta=-74.19-74.23(\mathrm{~m}, 3 \mathrm{~F}),-74.31--74.35(\mathrm{~m}, 3 \mathrm{~F})$; IR $\left(\mathrm{cm}^{-1}\right): 1813,1752,1652,1600,1451,1413,1283,1236,1168,971,696 ;$ HRMS (ESI +): observed 600.1461; calculated $600.1457\left(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{O}_{7} \mathrm{~N},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]^{24}{ }_{\mathrm{D}}=+23.87^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(4-methoxyphenyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate $\mathbf{1 4 f}$

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$) and (S, S) $-\mathbf{L}_{1}$ chiral ligand, (4 mg , $0.006 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($31 \mathrm{mg}, \quad 0.096 \mathrm{mmol}$) and (Z)-4-(4-methoxybenzylidene)-2-phenyloxazol-5(4H)-one 13 f ($31 \mathrm{mg}, 0.111 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the
crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 f}$ as a colorless oil ($21 \mathrm{mg}, 0.035 \mathrm{mmol}, 36 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 99% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 10.53 min (major enantiomer), 12.20 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{tt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.29 (m, 2H), $6.75(\mathrm{td}, J=9.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{ddd}, J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.69-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=14.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.6,169.1,168.2,160.2,159.5,133.5,133.1,132.3,128.9,128.3,125.7$,
 $=37 \mathrm{~Hz}, 1 \mathrm{C}), 61.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37 \mathrm{~Hz}, 1 \mathrm{C}\right), 57.7,55.4,53.3,38.2,29.9 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -74.2-74.3 (m, 6F); IR $\left(\mathrm{cm}^{-1}\right): 2967,1813,1753,1652,1612,1581,1451,1414,1285,1251.1180$, 1035, 971, 884, 695; HRMS (ESI+): observed 600.1438; calculated $600.1457\left(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{ClF}_{6} \mathrm{NO}_{7}\right.$, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{24}=+9.46^{\circ}\left(\mathrm{c}=0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(4-nitrophenyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate $\mathbf{1 4 g}$

$14 g$

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$) and (S, S) $-\mathbf{L}_{1}$ chiral ligand, $(4 \mathrm{mg}$, $0.006 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2 -vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, \quad 0.125 \mathrm{mmol}$) and (Z)-4-(4-nitrobenzylidene)-2-phenyloxazol-5(4H)-one $\mathbf{1 3 g}(40 \mathrm{mg}, 0.136 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of
the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 g}$ as a colorless oil ($53 \mathrm{mg}, 0.086 \mathrm{mmol}, 69 \%$) , as a $8: 1 \mathrm{mixture}$ of diastereomers (by crude ${ }^{1} \mathrm{H} N \mathrm{NR}$) and with a 85% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 220 nm ; retention times: 25.29 min (major enantiomer), 30.09 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.76$ (ddd, $J=17.0,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (s, 1H), $4.64(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}), 2.53(\mathrm{dd}, J=13.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.2,168.5,167.7,160.9,147.8,141.3,133.5,132.7,132.4,129.1,128.3,125.1$, $123.0,122.6\left(\mathrm{q}, J_{\text {C.F }}=275 \mathrm{~Hz}\right), 122.2\left(\mathrm{q}, J_{\text {C.F }}=276 \mathrm{~Hz}\right), 121.1,79.8,65.1,62.0\left(\mathrm{q}, J_{\text {C.F }}=37.2 \mathrm{~Hz}\right)$, 61.6 (q, J J.F $=38.7 \mathrm{~Hz}$), 57.5, 53.7, 38.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.19-74.25$ (m, 6F); IR $\left(\mathrm{cm}^{-1}\right): 2976,1814,1752,1651,1602,1524,1450,1413,1349,1284,1238,1170,1126,974,883,699$; HRMS (ESI+): observed 637.1008; calculated 637.1022 ($\left.\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{NaO}_{8},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{26}=$ -6.32°, $\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(naphthalen-2-yl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14h

14h

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (6 mg , $0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2 -vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, \quad 0.125 \mathrm{mmol}$) and (Z)-4-(4-methoxybenzylidene)-2-phenyloxazol-5(4H)-one $\mathbf{1 3 h}(50 \mathrm{mg}, 0.167 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with
nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 h}$ as a colorless oil ($64 \mathrm{mg}, 0.103 \mathrm{mmol}, 83 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 94% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2\% isopropanol, 98% heptanes, UV wavelength 220 nm ; retention times: 7.63 min (major enantiomer), 9.02 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 4 \mathrm{H})$, $7.40(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{ddd}, J=17.5,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=13.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=14.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7,169.1,168.2$, $160.4,133.3,133.1,133.0,131.4,131.0,128.9,128.3,128.3,127.6,127.2,126.6,126.4,125.6,122.7$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right), 122.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right), 120.6,80.5,65.0,61.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37 \mathrm{~Hz}\right), 61.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $36 \mathrm{~Hz}), 58.5,53.6,38.2 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.1--74.2(\mathrm{~m}, 3 \mathrm{~F}),-74.3-74.5(\mathrm{~m}$, $3 F) ;$ IR $\left(\mathrm{cm}^{-1}\right): 3061,2970,1812,1752,1650,1450,1413,1283,1236,1169,1123,1087,972,884$, 693, 648; HRMS (ESI +): observed 620.1508; calculated $620.1508\left(\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~N},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}=$ $-26.95^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-((E)-4-methoxystyryl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14i

$14 i$

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (6 mg , $0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2-
trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, 0.125 \mathrm{mmol}$) and (Z)-4-((E)-3-(4-methoxyphenyl)allylidene)-2-phenyloxazol-5(4H)-one 13 i ($50 \mathrm{mg}, 0.164 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 i}$ as a colorless oil ($40 \mathrm{mg}, 0.064 \mathrm{mmol}, 51 \%$) , as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 94% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 220 nm ; retention times: 12.20 min (major enantiomer), 13.84 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dddd}, J=7.5,7.5,1.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=16.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.0,10.5,9.0 \mathrm{~Hz}), 5.15(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.64-4.46 (m, 4H), $4.03(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.5$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=13.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.0,168.4,167.8$, $160.7,159.8,135.9,134.3,133.2,129.2,129.0,128.4,128.2,125.6,122.9$ (q, $\left.J_{C-F}=275 \mathrm{~Hz}\right), 122.7(\mathrm{q}$, $\left.J_{\text {C.F }}=276 \mathrm{~Hz}\right), 119.8,118.8,114.1,80.7,63.7,61.7\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=37 \mathrm{~Hz}, 2 \mathrm{C}\right), 58.1,55.5,51.9,39.3 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.75(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{~F}),-74.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{~F}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 1814$, 1753, 1649, 1511, 1450, 1412, 1284, 1248, 1172, 1112, 969, 698; HRMS (ESI+): observed 626.1614; calculated $626.1613\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{NO}_{7},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}=+106.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 4-oxo-2-phenyl-6-(thiophen-2-yl)-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14j

14j

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and $(S, S)-\mathbf{L}_{1}$ chiral ligand, $(6 \mathrm{mg}$,
$0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, 0.125 \mathrm{mmol}$) and (Z)-2-phenyl-4-(thiophen-2-ylmethylene)oxazol-5(4H)-one 13j ($35 \mathrm{mg}, 0.137 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4} \mathbf{j}$ as a colorless oil $(28 \mathrm{mg}, 0.049 \mathrm{mmol}, 39 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H} N \mathrm{NR}$) and with a 95% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 220 nm ; retention times: 12.36 min (major enantiomer), 18.64 min (minor enantiomer)); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddd}, J=17.0,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.16(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dq}, J=12.5$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddd, $J=8.5,7.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=177.3,169.1,167.4,161.3,134.3,133.7,133.3,130.1,129.1,128.6,127.1,126.6,126.5$ $125.7,122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right), 122.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}\right) 120.1,80.3,64.8,61.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37.5 \mathrm{~Hz}\right)$, $61.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36 \mathrm{~Hz}\right), 53.7,52.8,38.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-74.16-74.23(\mathrm{~m}, 6 \mathrm{~F})$; IR $\left(\mathrm{cm}^{-1}\right): 1815,1752,1649,1413,1283,1232,1168,963,702$; HRMS (ESI +): observed 576.0923; calculated $576.0910\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}_{6} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}=+74.1^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(furan-2-yl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14k

14k

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2.5 \mathrm{mg}, 0.0024 \mathrm{mmol}$) and $(S, S)-\mathbf{L}_{1}$ chiral ligand, (5 mg , $0.007 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($40 \mathrm{mg}, 0.125 \mathrm{mmol}$) and (Z)-4-(furan-2-ylmethylene)-2-phenyloxazol-5(4 H)-one $\mathbf{1 3 k}$ ($35 \mathrm{mg}, 0.146 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 k}$ as a colorless oil ($60.5 \mathrm{mg}, 0.108 \mathrm{mmol}, 87 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 95% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 5% isopropanol, 95% heptanes, UV wavelength 254 nm ; retention times: 5.95 min (major enantiomer), $7.94 \mathrm{~min}($ minor enantiomer) $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{tt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=$ $2.0,1.0, \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddd}, J=17.0$, $10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (s, 1H), $4.63(\mathrm{dq}, J=$ $12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dq}, J=12.5$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=10.5,8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=13.5$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.0,168.5,167.5,161.1,148.3,143.0,133.3$, 133.0, 129.0, 128.4, 125.6, 122.7 ($\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=276 \mathrm{~Hz}$), $122.5\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=276 \mathrm{~Hz}\right), 120.7,110.9,110.7,80.0$, 63.1, $62.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37 \mathrm{~Hz}, 2 \mathrm{C}\right), 52.3,51.5,37.2,{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-74.20-74.26(\mathrm{~m}$, $6 \mathrm{~F}) ;$ IR $\left(\mathrm{cm}^{-1}\right): 2976,1815,1758,1654,1451,1414,1289,1233,1171,973,931,885,740,695,664 ;$

HRMS (ESI+): observed 582.0953; calculated $582.0963\left(\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{NNaO}_{7}\right) ;[\alpha]_{\mathrm{D}}^{26}=-19.2^{\circ}(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-ethoxy-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 141

14I

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (6 mg , 0.009 mmol). A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, 0.093 \mathrm{mmol}$) and 4-(ethoxymethylene)-2-phenyloxazol-5 (4 H)-one 131 ($40 \mathrm{mg}, 0.184 \mathrm{mmol}, 3: 1$ mixture of E / Z isomers). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 1}$ as a colorless oil ($38 \mathrm{mg}, 0.071 \mathrm{mmol}, 76 \%$), as a 10:1 mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 63% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 5% isopropanol, 95% heptanes, UV wavelength 254 nm ; retention times: 6.31 min (major enantiomer), 7.29 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{tt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.58$ (ddd, $J=17.0,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (s, 1H), 4.63-4.53 (m, 3H), $4.47(\mathrm{dq}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dq}, J=$ $9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{dq}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=14.0$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.1,168.1,166.2,161.6$. 133.3, 132.6, 129.1, 128.4, 125.6, $122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}, 2 \mathrm{C}\right), 120.8,86.0,81.1,69.5,64.2,61.9\left(\mathrm{q}, J_{\mathrm{C}}\right.$ $\left.{ }_{\mathrm{F}}=36.6 \mathrm{~Hz}\right), 61.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=36.6 \mathrm{~Hz}\right), 49.9,34.1,15.1 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-74.12(\mathrm{t}, \mathrm{J}$
$=9.7 \mathrm{~Hz}, 3 \mathrm{~F}),-74.23(\mathrm{t}, J=8.6 \mathrm{~Hz}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2976,1812,1759,1649,1450,1412,1284,1235$, 1168 , 976, 897; HRMS (ESI +): observed 560.1115; calculated $560.1120\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{NNaO}_{7},[\mathrm{M}+\mathrm{Na}]^{+}\right)$; $[\alpha]^{24}{ }_{\mathrm{D}}=-4.08^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-hexyl-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate $\mathbf{1 4 n}$

14n

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (4 mg , $0.006 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, 0.093 \mathrm{mmol}$) and (Z)-4-heptylidene-2-phenyloxazol-5(4H)-one $13 \mathrm{n}(20 \mathrm{mg}, 0.078 \mathrm{mmol})$. Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for 30 min , 1 mL) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound 14 n as a colorless oil ($28 \mathrm{mg}, 0.048 \mathrm{mmol}, 63 \%$), as a $8: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 77% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 9.49 min (major enantiomer), 14.45 min (minor enantiomer)); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97(\mathrm{dd}, J=$ $1.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{tt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.0,8.0,2 \mathrm{H}), 5.76(\mathrm{ddd}, J=17.0,10.5$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.65-4.46 (m, 3H), $3.39(\mathrm{ddd}, J=11.5,9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $13.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=13.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.21-0.96(\mathrm{~m}, 8 \mathrm{H}), 0.73(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=179.4,168.8,168.1,160.4,134.5,133.1,129.0,128.3$,
125.7, 122.9 (q, $J_{\text {C-F }}=275 \mathrm{~Hz}$), $122.8\left(\mathrm{q}, J_{\text {C-F }}=276 \mathrm{~Hz}\right), 119.8,79.4,62.9,61.5\left(\mathrm{q}, J_{\mathrm{CFF}}=37.1 \mathrm{~Hz}\right)$, $61.4\left(\mathrm{q}, J_{\text {C.F }}=37 \mathrm{~Hz}\right.$), $54.9,52.6,40.1,31.4,29.2,27.9,27.2,22.5,14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.84(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{~F}),-74.26(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{~F}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 2921,2856,1813,1753,1649$, 1451, 1411, 1283, 1233, 1168, 1098, 963, 880, 699; HRMS (ESI+): observed 600.1793; calculated $600.1797\left(\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{NNaO} 6,[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{26}{ }_{\mathrm{D}}=+23.96^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(((tert-butyldimethylsilyl)oxy)methyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14o

140

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2 \mathrm{mg}, 0.002 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (4 mg , $0.006 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($39 \mathrm{mg}, 0.121 \mathrm{mmol}$) and (Z)-4-(2-((tert-butyldimethylsilyl)oxy)ethylidene)-2-phenyloxazol-5(4H)-one 130 ($40 \mathrm{mg}, 0.126 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 4 o}$ as a colorless oil ($49 \mathrm{mg}, 0.077 \mathrm{mmol}, 64 \%$), as a 3:1 mixture of diastereomers which were inseparable by chiral HPLC [derivatization, shown below, estimates the e.e. for the major diastereomer to be 77%]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.99-7.95$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{tt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{ddd}, J=17.0,10.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=10.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.27$ (m, 1H), $2.92(\mathrm{dd}, J=13.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=13.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H})$,
-0.25 ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=178.2,168.2,167.3,160.8,134.8,132.9,128.9$, 128.3, 126.1, $122.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=274 \mathrm{~Hz}\right), 122.7\left(\mathrm{q}, J_{\mathrm{CF}}=276 \mathrm{~Hz}\right), 99.4,78.0,61.5\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=36.5 \mathrm{~Hz}\right.$, 2C), $60.7,59.7,57.2,51.8,40.7,25.7,18.2,-5.8,-5.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.83(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 3 \mathrm{~F}),-74.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{~F})$; IR (cm^{-1}): 2931, 2859, 1819, 1759, 1651, 1451, 1411, 1284, 1173, 1098, 966, 884, 840, 799, 700, 666; HRMS (ESI+): observed 660.1805; calculated 660.1828 $\left(\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{NNaO} \mathrm{N}_{7} \mathrm{Si},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{24}=+34.05^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

For the purposes of e.e. determination, $\mathbf{1 4 o}$ (approx. 10 mg) was dissolved in methanol (2 mL), and sodium methoxide (approx. 100 mg , excess) was added. The mixture was stirred at room temperature for 1 h , then quenched by addition of aqueous sodium bicarbonate, extracted into methylene chloride. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude compound was filtered through a silica plug (100% diethyl ether) to obtain the derivative which showed an e.e. of 77% (by chiral HPLC, Chiralpak IA column, 10% isopropanol, 90% heptanes, UV wavelength 254 nm ; retention times: 9.51 min (major enantiomer), 12.55 min (minor enantiomer); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78(\mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42$ (dd, $J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{ddd}, J=17.0,10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{dd}, J=$ $13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=13.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H})$; IR $\left(\mathrm{cm}^{-1}\right): 2926,2852,1734,1669,1520,1487,1434,1254,1090,837$.

A solution of $(5 S, 6 R, 9 S)$-bis(2,2,2-trifluoroethyl) 6-(4-bromophenyl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate $\mathbf{1 4 b}(49 \mathrm{mg}, 0.075 \mathrm{mmol})$ and sodium methoxide $(150 \mathrm{mg}, 3.75 \mathrm{mmol})$ in methanol $(4 \mathrm{~mL})$ was stirred for 1 h at room temperature. The reaction was quenched by the addition of aqueous sodium bicarbonate, then extracted twice with diethyl ether, the organic layers combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed in vacuo to give the crude product, which was purified by flash column chromatography (50% diethyl in petroleum ether) to give the title compound 15 as a white solid ($35 \mathrm{mg}, 0.065 \mathrm{mmol}, 86 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.40(\mathrm{~m}, 1 \mathrm{H}) 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{ddd}, J=17.0$, $10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.0,1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.41$ (ddd, $J=12.5,8.0,7.5, \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=$ 13.5, $12.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.1,171.5,171.3,167.3,136.8,134.6,133.9$, 132.7, 131.9, 130.6, 128.7, 126.8, 121.3, 119.6, 70.4, 65.4, 56.4, 55.9, 53.4, 52.8, 52.7, 35.9; IR (cm^{-1}): 3359, 2949, 1731, 1641, 1579, 1526, 1488, 1433, 1238, 1210, 1121, 1074, 1009, 912, 842, 792, 731; HRMS (ESI+): observed 566.0780; calculated $566.0790\left(\mathrm{C}_{26} \mathrm{H}_{26}{ }^{79} \mathrm{BrNNaO}_{7},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=$ $+68.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ m.p. $148-149{ }^{\circ} \mathrm{C}$.

The compound was recrystallized by vapor diffusion of pentanes into ethyl acetate at $-20^{\circ} \mathrm{C}$, to obtain X-ray quality crystals. The X-ray crystallographic report for this compound is in Appendix B.
(4aS,7R,7aS)-Bis(2,2,2-trifluoroethyl) 7a-benzamido-7-(naphthalen-2-yl)-1-oxohexahydrocyclopenta[d]pyran-6,6(1H)-dicarboxylate 16

16

To dicyclohexylborane ($15.0 \mathrm{mg}, 0.083 \mathrm{mmol}$) in a sealed vial equipped with a stir bar under a nitrogen atmosphere was added a solution of ($5 S, 6 \mathrm{R}, 9 \mathrm{~S}$)-bis(2,2,2-trifluoroethyl) 6-(naphthalen-2-yl)-4-oxo-2-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 14 h ($35.0 \mathrm{mg}, 0.056 \mathrm{mmol}$) in tetrahydrofuran $(1 \mathrm{~mL})$. The reaction was stirred at room temperature for 16 h , then a solution of meta-chloroperoxybenzoic acid ($130 \mathrm{mg}, 75 \%$ by weight, 0.540 mmol) in tetrahydrofuran (2.5 mL) was added by syringe. The reaction was stirred for a further 4 h , then diluted with ethyl acetate. The solution was washed successively with 1 M aq. sodium bisulfate solution and sat. aq. sodium bicarbonate solution, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (20% to 40% to 100% ethyl acetate in petroleum ether), to give the title compound 16 as a waxy solid ($25.2 \mathrm{mg}, 0.040 \mathrm{mmol}, 71 \%$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta=7.94$ (s, 1H), 7.90-7.79 (m, 3H), 7.75 (dd, $\left.J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.55-$ $7.41(\mathrm{~m}, 7 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.89-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{dq}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (dq, $J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dt}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J$ $=14.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5$, 170.1, 169.3, 167.8, 133.4, 133.3, 133.2, 132.5, 130.2, 130.1, 129.0, 128.9, 128.4, 127.8, 127.3, 127.2, $127.0,126.8,122.6\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=275 \mathrm{~Hz}\right), 122.1\left(\mathrm{q}, J_{\mathrm{C} \cdot \mathrm{F}}=276 \mathrm{~Hz}\right), 68.7,67.3,64.3,62.0\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=37 \mathrm{~Hz}\right)$, $61.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37 \mathrm{~Hz}\right), 56.3,44.3,39.5,27.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-74.12(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $3 \mathrm{~F}),-74.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{~F})$; IR (cm^{-1}): 3300, 3059, 2976, 1753, 1664, 1601, 1522, 1481, 1446, 1413, 1284, 1241, 1169, 1073, 965, 738, 712, 650; HRMS (ESI+): observed 660.1437; calculated $660.1433\left(\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{NNaO}{ }_{7},[\mathrm{M}+\mathrm{Na}]^{+}\right) ;[\alpha]^{24}{ }_{\mathrm{D}}=+116.27^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(Z)-4-Benzylidene-2-(3,4-dichlorophenyl)oxazol-5(4H)-one 17a

To a stirred mixture of 2-(3,4-dichlorobenzamido)acetic acid ($860 \mathrm{mg}, 3.46 \mathrm{mmol}$) and benzaldehyde ($800 \mathrm{mg}, 7.54 \mathrm{mmol}$) were added acetic anhydride (15 mL) and sodium acetate ($500 \mathrm{mg}, 12.5 \mathrm{mmol}$). The resulting solution was heated under reflux to $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 2.5 h , resulting in the formation of a yellow precipitate. The solution was allowed to cool, filtered, and the filter cake washed successively with water $(10 \mathrm{~mL})$, cold ethanol $(10 \mathrm{~mL})$. The yellow solid product dried in vacuo for 16 h to give the title compound 17a as a yellow solid ($485 \mathrm{mg}, 1.52 \mathrm{mmol}, 44 \%$) which was used without further purification; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.49(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=167.2,161.8,138.1,134.0,133.5,133.5$, 132.9, 132.9, 131.9, 131.4, 130.1, 129.3, 127.4, 125.7; IR (cm^{-1}): 1797, 1774, 1658, 1449, 1390, 1306, 1278, 1246, 1164, 1108, 994, 892, 865, 892, 765, 829, 765, 722, 681, 558; HRMS (ESI+): observed 318.0082; calculated $318.0083\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$; m.p. $261-263{ }^{\circ} \mathrm{C}$.
(Z)-2-(3,4-Dichlorophenyl)-4-(2-methoxybenzylidene)oxazol-5(4H)-one 17b

To a stirred mixture of 2-(3,4-dichlorobenzamido)acetic acid (1.50 g, 6.05 mmol$)$, 2methoxybenzaldehyde ($1.00 \mathrm{~g}, 7.34 \mathrm{mmol}$), and sodium acetate ($300 \mathrm{mg}, 3.65 \mathrm{mmol}$) was added acetic anhydride (10 mL). The mixture was heated under reflux at $90^{\circ} \mathrm{C}$ for 2 h and allowed to cool. The yellow precipitate was filtered off, then washed on the filter successively with water (40 mL), aqueous sodium bicarbonate $(20 \mathrm{~mL})$ and ethanol $(10 \mathrm{~mL})$. The solid was dried under vacuum $(<1$ Torr) over 16 h , to obtain the title compound $\mathbf{1 7 b}$ as a yellow solid ($970 \mathrm{mg}, 2.79 \mathrm{mmol}, 46 \%$) which was used without further purification; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.25(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11$ (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=167.5,161.2,159.7,137.8,133.9,133.8,133.2,132.1,131.4,130.0,127.7,127.3,126.0$, 122.6, 121.3, 111.1, 56.0; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 1792,1774,1649,1571,1462,1389,1304,1255,1223,1180,1165$, 1029, 997, 892, 870, 826, 747, 718; HRMS (ESI+): observed 348.0177; calculated 348.0189 $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}_{3},[\mathrm{M}+\mathrm{H}]^{+}\right)$; m.p. $208-210^{\circ} \mathrm{C}$.
(Z)-4-(2-Methoxybenzylidene)-2-(4-(trifluoromethyl)phenyl)oxazol-5(4H)-one 17c

To a stirred solution of glycine tert-butyl ester ($262 \mathrm{mg}, 2.00 \mathrm{mmol}$) in a biphasic mixture of dichloromethane (5 mL) and sat. aq. sodium bicarbonate solution (5 mL) was added 4trifluromethylbenzoic anhydride ($869 \mathrm{mg}, 2.40 \mathrm{mmol}$). The reaction was stirred for 20 min , the layers were separated and the aqueous layer extracted with dichloromethane $(20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a white solid (618 mg), which was re-dissolved in trifluoroacetic acid $(2 \mathrm{~mL})$ and stirred at room temperature for 30 min . The solvent was removed in vacuo and co-evaporated with toluene to remove residual traces, to give a white solid (471 mg). The solid was resuspended in acetic anhydride, sodium acetate ($492 \mathrm{mg}, 6.00$ mmol) and o-anisaldehyde ($454 \mathrm{mg}, 4.00 \mathrm{mmol}$) were added and the mixture was heated under reflux at $90^{\circ} \mathrm{C}$ for 2 h , then allowed to cool. The resulting solid was filtered and washed on the filter with di-isopropylether (50 mL), then purified by flash column chromatography ($1: 1$ petroleum ether:ethyl acetate) to give the title compound $\mathbf{1 7 c}$ as a yellow solid ($172 \mathrm{mg}, 0.495 \mathrm{mmol}, 50 \%$ over three steps); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.81(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.92$ $(\mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.5,161.8,159.7,137.7,133.8$, $133.2,130.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275 \mathrm{~Hz}\right), 128.7,128.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=27.5 \mathrm{~Hz}\right), 127.9,126.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 122.6$, 121.3, 111.1, 55.9; ${ }^{19}$ F NMR: ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-63.53$ ($\mathrm{s}, 3 \mathrm{~F}$); IR $\left(\mathrm{cm}^{-1}\right): 1795,1776,1650$, 1614, 1485, 1321, 1252, 1164, 1066, 856; HRMS (ESI+): observed 348.0830; calculated 348.0842 $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{3},[\mathrm{M}+\mathrm{H}]^{+}\right)$; m.p. $162-163{ }^{\circ} \mathrm{C}$.
(Z)-2-(3,4-Dichlorophenyl)-4-(4-methoxybenzylidene)oxazol-5(4H)-one 17d

To a stirred mixture of 2-(3,4-dichlorobenzamido)acetic acid (1.46 g, 5.89 mmol$)$, 4methoxybenzaldehyde ($1.00 \mathrm{~g}, 7.35 \mathrm{mmol}$), and sodium acetate ($400 \mathrm{mg}, 4.88 \mathrm{mmol}$) was added acetic anhydride (15 mL). The reaction mixture was heated under reflux at $90^{\circ} \mathrm{C}$ for 2 h under an atmosphere of nitrogen. After 2 h , the reaction mixture was allowed to cool to room temperature, and yellow precipitate was filtered off, then washed on the filter successively with water (40 mL), aqueous sodium bicarbonate $(20 \mathrm{~mL})$ and ethanol $(10 \mathrm{~mL})$. The solid was dried under vacuum $(<1$ Torr) over 16 h , to obtain the title compound $\mathbf{1 7 d}$ as a yellow solid ($801 \mathrm{mg}, 2.31 \mathrm{mmol}, 39 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.24(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.6,162.8,160.7,137.7,135.1,133.9,133.6,131.4,130.7,129.9,127.2,126.5,126.0,114.9$, 55.8 ; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 1795,1771,1699,1649,1602,1561,1512,1463,1430,1389,1311,1263,1181,1162$, 1023, 894, 861, 800, 759, 717; HRMS (ESI+): observed 348.0184; calculated 348.0189 $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}_{3},[\mathrm{M}+\mathrm{H}]^{+}\right)$; m.p. 203-205 ${ }^{\circ} \mathrm{C}$.
(Z)-4-(Cyclohexylmethylene)-2-(3,4-dichlorophenyl)oxazol-5(4H)-one 17e

To a stirred solution of 2-(3,4-dichlorobenzamido)acetic acid ($1.30 \mathrm{~g}, 5.24 \mathrm{mmol}$) in methylene chloride (50 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide ($1.11 \mathrm{~g}, 1.1 \mathrm{mmol}$). The reaction was stirred for 1 h , then water $(50 \mathrm{~mL})$ was added. The reaction mixture was washed with water, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo to give 2-(3,4-dichlorophenyl)oxazol- $5\left(4 H\right.$)-one as a white solid ($621 \mathrm{mg}, 2.70 \mathrm{mmol}, 51 \%$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.5,131.3,129.9,127.8,127.1,55.3$; m.p. $129-133^{\circ} \mathrm{C}$. The intermediate azlactone was used without further purification.

A vial equipped with a stir bar was charged with a solution of 2-(3,4-dichlorophenyl)oxazol-5(4H)one ($100 \mathrm{mg}, 0.430 \mathrm{mmol}$) and cyclohexanecarboxaldehyde ($100 \mathrm{mg}, 0.89 \mathrm{mmol}$) in methylene chloride (4 mL), then alumina (Brockmann grade I, basic, 2.00 g) was added. The vial was sealed and stirred vigorously for 2 h . The crude product was purified by flash column chromatography (10% diethyl ether in petroleum ether) to give the title compound 17 e ($42 \mathrm{mg}, 0.130 \mathrm{mmol}, 30 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dtt}, J=10.0,10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.46-$ $1.16(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.2,160.8,146.3,137.8,134.3,133.8,131.3,129.9$, 127.2, 125.9, 38.3, 32.0, 25.9, 25.4; IR (cm ${ }^{-1}$: 2928, 2852, 1811, 1671, 1596, 1551, 1463, 1393, 1308, 1244, 1180, 1142, 1104, 1032, 960, 883, 726; HRMS (ESI+): observed 324.0553; calculated 324.0553 $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$; m.p. $107-109^{\circ} \mathrm{C}$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 2-(3,4-dichlorophenyl)-4-oxo-6-phenyl-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 18a

18a

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($2.5 \mathrm{mg}, 0.0025 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (5 mg , $0.0072 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, 0.093 \mathrm{mmol}$) and (Z)-4-benzylidene-2-(3,4-dichlorophenyl)oxazol-5(4H)-one 17 a ($30 \mathrm{mg}, 0.094 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was
stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound 18a as a colorless oil ($41 \mathrm{mg}, 0.064 \mathrm{mmol}, 68 \%$), as a $10: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 96% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 10.94 min (minor enantiomer), 12.92 min (major enantiomer)); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.32 (m, 3H), 5.78 (ddd, $J=17.0,10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (d, $J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J$ $=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=10.0,8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J$ $=13.5,7.0, \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.9$, 168.9, 168.0, 158.7, 137.8, 133.8, 133.7, 133.0, 131.2, 131.1, 130.0, 128.5, 128.2, 127.2, 125.5, 122.9 $\left(\mathrm{q}, J_{\mathrm{CFF}}=227 \mathrm{~Hz}\right), 122.5\left(\mathrm{q}, J_{\mathrm{CF}}=227 \mathrm{~Hz}\right), 120.8,80.5,65.1,61.8\left(\mathrm{q}, J_{\mathrm{CF}}=37 \mathrm{~Hz}, 1 \mathrm{C}\right), 61.6\left(\mathrm{q}, J_{\mathrm{CFF}}=\right.$ $37 \mathrm{~Hz}, 1 \mathrm{C}), 61.3,58.2,53.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-74.23(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{~F}),-74.32(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{~F}) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2972,1822,1753,1654,1472,1454,1284,1240,1171,1124,1091,974,898$, 744, 706, 651; HRMS (ESI+): observed 638.0557; calculated $638.0566\left(\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{NO}_{6},[\mathrm{M}+\mathrm{H}]^{+}\right)$; $[\alpha]^{25}{ }_{\mathrm{D}}=-37.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 2-(3,4-dichlorophenyl)-6-(2-methoxyphenyl)-4-oxo-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 18b

18b

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (6 mg , $0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2 -vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, \quad 0.093 \mathrm{mmol}$) and (Z)-2-(3,4-
dichlorophenyl)-4-(2-methoxybenzylidene)oxazol-5(4H)-one 17b ($53 \mathrm{mg}, 0.152 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 8 b}$ as a colorless oil ($18 \mathrm{mg}, 0.027 \mathrm{mmol}, 29 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 92% e.e. for the major diastereomer (by chiral HPLC, Chiralpak AD-H column, 2\% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 14.09 min (major enantiomer), 15.09 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{ddd}, J=17.0,10.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.27-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dt}, J=$ $11.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (dd, $J=13.5,11.0 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5,168.5,168.3,158.6,158.0,143.6,137.5,133.0,131.7$, 130.7, 129.9, 129.4, 129.2, 128.6, 127.1, 121.3 ($\mathrm{q}, J=284 \mathrm{~Hz}, 2 \mathrm{C}$), 120.9, 111.0, 80.4, 64.5, 61.8 ($\mathrm{q}, J_{\mathrm{C}-}$ ${ }_{\mathrm{F}}=29.2$), $61.4\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=29.1\right), 55.8,53.1,50.0,37.9 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-74.27(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 6 \mathrm{~F}) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2924,2852,1820,1755,1654,1494,1466,1413,1283,1249,1169,1127,1085$, 974, 897; HRMS (ESI+): observed 668.0665; calculated $668.0672\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{NO}_{7},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}$ $=+16.21^{\circ}\left(\mathrm{c}=0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-(2-methoxyphenyl)-4-oxo-2-(4-(trifluoromethyl)phenyl)-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 18c

18c

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (6 mg , $0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2 -vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, \quad 0.093 \mathrm{mmol}$) and (Z)-4-(2-methoxybenzylidene)-2-(4-(trifluoromethyl)phenyl)oxazol-5(4H)-one 17c ($53 \mathrm{mg}, 0.152 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound 18c as a colorless oil ($40 \mathrm{mg}, 0.060 \mathrm{mmol}, 64 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 99% e.e. for the major diastereomer (by chiral HPLC, Chiralpak IA column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 9.57 min (major enantiomer), 11.88 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{ddd}, J=17.5,10.0,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dq}, J=16.0,8.0,1 \mathrm{H})$, 4.53-4.35 (m, 2H), 3.76 (s, 3H), 3.69 (ddd, $J=11.5,8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dq}, J=16.0,8.0,1 \mathrm{H})$, $3.10(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $178.5,168.5,168.3,159.2,158.0,133.0,131.7,129.4,128.5,125.9,125.8,124.1$ (q, $J_{\mathrm{C} . \mathrm{F}}=349 \mathrm{~Hz}$, 1C), $122.8,122.7$ ($\left.\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}, 1 \mathrm{C}\right), 122.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=276 \mathrm{~Hz}, 1 \mathrm{C}\right), 120.8,119.7,111.0,80.4,64.5$, $61.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=39.9 \mathrm{~Hz}, 1 \mathrm{C}\right), 61.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37.2 \mathrm{~Hz}, 1 \mathrm{C}\right), 55.8,53.1,50.1,37.9,29.9 ;{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-63.63(\mathrm{~s}, 3 \mathrm{~F}),-74.27(\mathrm{t}, J=8.6 \mathrm{~Hz}, 6 \mathrm{~F}) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2947,1818,1756,1654,1495$, 1414, 1324, 1285, 1169, 1130, 966, 854, 756; HRMS (ESI+): observed 668.1316; calculated 668.1325 $\left(\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~F}_{9} \mathrm{NO}_{7},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}=+5.70^{\circ}\left(\mathrm{c}=0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 2-(3,4-dichlorophenyl)-6-(4-methoxyphenyl)-4-oxo-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 18d

18d

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and $(S, S)-\mathbf{L}_{1}$ chiral ligand, $(8 \mathrm{mg}$, $0.011 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($34 \mathrm{mg}, \quad 0.098 \mathrm{mmol}$) and (Z)-2-(3,4-dichlorophenyl)-4-(4-methoxybenzylidene)oxazol-5(4H)-one 17d ($34 \mathrm{mg}, 0.097 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound $\mathbf{1 8 d}$ as a colorless oil ($53 \mathrm{mg}, 0.079 \mathrm{mmol}, 81 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 95% e.e. for the major diastereomer (by chiral HPLC, Chiralpak OD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 9.59 min (minor enantiomer), 13.27 min (major enantiomer)); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{ddd}, J=16.5,10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.66-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.5,9.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=177.9,169.0,168.1,159.6,158.6,137.7,133.7,133.2,132.3,131.1,129.9,127.2,125.5$, 125.4, 122.7 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275 \mathrm{~Hz}, 1 \mathrm{C}$), $122.4\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=275 \mathrm{~Hz}, 1 \mathrm{C}\right), 120.6,113.5,80.6,64.9,62.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=37 \mathrm{~Hz}, 1 \mathrm{C}), 61.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=37 \mathrm{~Hz}, 1 \mathrm{C}\right), 57.8,55.4,53.4,38.2 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ -74.20--74.27 (m, 6F); IR (cm $\left.{ }^{-1}\right): 2924,1821,1753,1652,1611,1514,1469,1414,1283,1251,1170$,

1033, 975, 897; HRMS (ESI +): observed 668.0662; calculated $668.0672\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{NO}_{7}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=$ $-21.06^{\circ}\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(5S,6R,9S)-Bis(2,2,2-trifluoroethyl) 6-cyclohexyl-2-(3,4-dichlorophenyl)-4-oxo-9-vinyl-3-oxa-1-azaspiro[4.4]non-1-ene-7,7-dicarboxylate 18e

18e

An oven-dried reaction tube equipped with a stir bar was charged with palladium dibenzylideneacetone-chloroform complex ($3 \mathrm{mg}, 0.003 \mathrm{mmol}$) and (S, S) \mathbf{L}_{1} chiral ligand, (6 mg , $0.009 \mathrm{mmol})$. A second reaction tube, also equipped with a stir bar, was charged with bis(2,2,2trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate ($30 \mathrm{mg}, \quad 0.093 \mathrm{mmol}$) and (Z)-4-(cyclohexylmethylene)-2-(3,4-dichlorophenyl)oxazol-5(4H)-one 17 e ($42 \mathrm{mg}, 0.130 \mathrm{mmol}$). Both tubes were sealed with a septum, evacuated, and backfilled with dry nitrogen. Toluene (degassed by sparging with nitrogen for $30 \mathrm{~min}, 1 \mathrm{~mL}$) was added to each tube, and the tubes were for stirred 20 min . The contents of the first reaction tube were transferred to the second test tube via syringe, and the mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo to give the crude product, which was purified by flash column chromatography (5% to 10% diethyl ether in petroleum ether) to give the title compound 18 e as a gummy solid ($18 \mathrm{mg}, 0.028 \mathrm{mmol}, 31 \%$), as a $>19: 1$ mixture of diastereomers (by crude ${ }^{1} \mathrm{H}$ NMR) and with a 70% e.e. for the major diastereomer (by chiral HPLC, Chiralpak AD-H column, 2% isopropanol, 98% heptanes, UV wavelength 254 nm ; retention times: 9.4 min (major enantiomer), 10.3 min (minor enantiomer)); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (dt, $J=16.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dq}, J=12.5$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dq}, J=12.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.96$ $(\mathrm{m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}$, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.84(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (125 MHz, CDCl_{3}): $\delta=178.3,169.6,167.6,158.7,137.8,134.2,133.8,131.3,130.0,127.2$, 125.5, 123.1 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275 \mathrm{~Hz}, 1 \mathrm{C}$), 122.7 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=275 \mathrm{~Hz}, 1 \mathrm{C}$), 120.4, 79.2, 62.1, 61.7 (q, $J_{\mathrm{C}-\mathrm{F}}=$ $28.5 \mathrm{~Hz}, 2 \mathrm{C}), 53.2,42.1,32.1,32.0,30.0,26.3,26.1,26.0 ;{ }^{19} \mathrm{~F}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-73.23-74.86$ (m, 6F); IR (cm ${ }^{-1}$): 2935, 2858 1758, 1730, 1283, 1168, 976; HRMS (ESI+): observed 644.1045; calculated $\left(\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{NO}_{6},[\mathrm{M}+\mathrm{H}]^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}=+2.80^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Appendix A - Crystal Structure of compound 5c

The compound crystallizes as colorless rod-like crystals from a chloroform / hexanes solution. There are three crystallographically independent, yet chemically identical, molecules of the compound in the asymmetric unit of the primitive, acentric, orthorhombic space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$. The correct enantiomorph and handedness of the molecules was determined by comparison with the known handedness and by comparison of intensities of Friedel pairs of reflections. Both techniques agree and the correct configuration is depicted in the Figures. The Flack analysis, determined by comparison of intensities of Friedel pairs of reflections yields a Flack x parameter of -0.01(6); a value of zero indicates the correct enantiomorph, a value of one the inverted absolute structure. Bayesian statistical analysis was also performed on the data yielding a Hooft y parameter of $-0.021(16)$, with values of zero representing the correct configuration and one the inverted absolute configuration. P 2 (true) and P3(true) values of 1.000 and 1.000 are also reported. These values are a measure of enantiopurity of the sample analyzed. A value of one indicates an enantiopure crystal.

The structure of the compound is as expected. The three independent molecules all exhibit the same configuration at C5 (C29, C53). The primary difference between all three molecules is that one molecule has adopted an opposite direction to the partial boat conformation of one of the rings (molecule 1 adopts the opposite geometry, see Figures). Otherwise the three molecules are essentially identical and their derived parameters (bond distances and angles) are well within statistical error and support this.

CRYSTAL SUMMARY

Crystal data for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{9} ; \mathrm{M}_{\mathrm{r}}=458.45$; Orthorhombic; space group $\mathrm{P}_{1} 2_{1} 2_{1} ; a=6.9048(2) \AA ; b=$ $30.4010(9) \AA ; c=32.6302(9) \AA ; \alpha=90^{\circ} ; \beta=90^{\circ} ; \gamma=90^{\circ} ; \mathrm{V}=6849.5(3) \AA^{3} ; \mathrm{Z}=12 ; \mathrm{T}=120(2) \mathrm{K} ;$ $\lambda(\mathrm{Cu}-\mathrm{K} \alpha)=1.54184 \AA ; \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.860 \mathrm{~mm}^{-1} ; \mathrm{d}_{\text {calc }}=1.334 \mathrm{~g} . \mathrm{cm}^{-3} ; 136106$ reflections collected; 12961 unique ($\mathrm{R}_{\text {int }}=0.0306$); giving $\mathrm{R}_{1}=0.0296, \mathrm{wR}_{2}=0.0800$ for 12840 data with $[I>2 \sigma(\mathrm{I})]$ and R_{1} $=0.0299, \mathrm{wR}_{2}=0.0803$ for all 12961 data. Residual electron density $\left(\mathrm{e}^{-} . \AA^{-3}\right) \mathrm{max} / \mathrm{min}: ~ 0.395 /-0.168$.

An arbitrary sphere of data were collected on a colorless rod-like crystal, having approximate dimensions of $0.38 \times 0.22 \times 0.14 \mathrm{~mm}$, on a Bruker APEX-II diffractometer using a combination of ω - and φ-scans of 0.5°. Data were corrected for absorption and polarization effects and analyzed for space group determination. The structure was solved by direct methods and expanded routinely. The model was refined by full-matrix least-squares analysis of F^{2} against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Unless otherwise noted, hydrogen atoms were included in calculated positions. Thermal parameters for the hydrogens were tied to the isotropic thermal parameter of the atom to which they are bonded $(1.5 \times$ for methyl, 1.2 \times for all others).

REFERENCES

Bruker AXS. (2008). APEX-2. Bruker-Nonius AXS, Madison, Wisconsin, USA.
G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
R. W. W. Hooft, L. H. Straver \& A. L. Spek, J. Appl. Cryst., 2008, 41, 96.
H. D. Flack, Acta Cyyst., 1983, A39, 876.

Table 1. Crystal data and structure refinement for su1211.

Identification code	su1211	
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{9}$	
Formula weight	458.45	
Temperature	120(2) K	
Wavelength	$1.54184 \AA$	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	
Unit cell dimensions	$a=6.9048(2) \AA$	$\alpha=90^{\circ}$
	$b=30.4010(9) \AA$	$\beta=90^{\circ}$
	$c=32.6302(9) \AA$	$\gamma=90^{\circ}$
Volume	6849.5(3) \AA^{3}	
Z	12	
Density (calculated)	$1.334 \mathrm{g.cm}^{-3}$	
Absorption coefficient (μ)	$0.860 \mathrm{~mm}^{-1}$	
$F(000)$	2904	
Crystal color, habit	colorless, rod	
Crystal size	$0.38 \times 0.22 \times 0.14 \mathrm{~mm}^{3}$	
θ range for data collection	1.99 to 71.34°	
Index ranges	$-8 \leq h \leq 6,-37 \leq$	$37,-39 \leq$

Reflections collected
Independent reflections
Completeness to $\theta=71.34^{\circ}$
Absorption correction
Max. and min. transmission

Refinement method

Data / restraints / parameters
Goodness-of-fit on F^{2}

Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

136106
$12961\left[\mathrm{R}_{\mathrm{int}}=0.0306\right]$
97.5 \%

Numerical
1.0000 and 0.9014

Full-matrix least-squares on F^{2}

12961 / 0 / 907
1.064
$\mathrm{R}_{1}=0.0296, \mathrm{wR}_{2}=0.0800$
$\mathrm{R}_{1}=0.0299, \mathrm{wR}_{2}=0.0803$
-0.01(6)
0.395 and $-0.168 \mathrm{e}^{-} . \AA^{-3}$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for su1211. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	0.92908(14)	0.51349(3)	0.69247(3)	0.026(1)
$\mathrm{O}(2)$	0.67122(14)	0.50295(3)	0.73869 (3)	0.027(1)
$\mathrm{O}(3)$	0.90451(13)	0.55112(3)	0.63592(3)	0.024(1)
$\mathrm{O}(4)$	0.37732(14)	$0.52795(4)$	0.72671 (3)	0.030(1)
$\mathrm{O}(5)$	0.39260(13)	0.61534(3)	0.55006(2)	0.018(1)
$\mathrm{O}(6)$	0.14637(13)	0.62718(3)	0.59868(2)	0.019(1)
$\mathrm{O}(7)$	0.68576(13)	0.59524(3)	0.56595(3)	0.022(1)
$\mathrm{O}(8)$	0.20051(15)	0.62236(3)	0.66458(3)	0.028(1)
$\mathrm{O}(9)$	$0.42256(16)$	0.39107(3)	0.54984(3)	0.030(1)
$\mathrm{C}(1)$	0.8329(2)	0.48265(4)	0.71915(4)	0.022(1)
C(2)	0.82439(18)	0.53758(4)	0.66577(3)	0.018(1)
C(3)	0.61911(18)	0.55042(4)	0.67821(3)	0.017(1)
C(4)	0.5417(2)	0.52534(4)	0.71550(4)	0.022(1)
C(5)	0.46449(17)	0.54898(4)	0.64292(3)	0.016(1)
C(6)	0.46142(17)	0.59666(4)	0.62242(3)	0.016(1)
C(7)	0.61668(19)	0.62348(4)	0.64781 (4)	0.020(1)

C(8)	0.62459(19)	$0.60033(4)$	0.68947 (4)	0.021(1)
C(9)	0.52264(17)	0.60071 (4)	0.57759 (3)	0.015(1)
C(10)	0.18847(18)	0.61145(4)	0.55795(3)	0.016(1)
C(11)	0.25894(18)	0.61583(4)	0.63052(4)	0.018(1)
C(12)	0.7665(2)	0.44371 (5)	0.69415(4)	0.035(1)
C(13)	0.9769(2)	0.47116(4)	0.75183(4)	0.027(1)
C(14)	0.12776(18)	0.56410(4)	0.55238(3)	0.018(1)
C(15)	0.08876(19)	0.64251(4)	0.52892(4)	0.021(1)
C(16)	0.46551(18)	0.50783(4)	0.61666(3)	0.016(1)
C(17)	0.60851(18)	$0.49723(4)$	0.58789(4)	0.019(1)
C(18)	0.59939(19)	$0.45836(4)$	0.56519(4)	0.021(1)
C(19)	0.4471 (2)	$0.42953(4)$	0.57098(4)	0.022(1)
C(20)	0.3043(2)	0.43902(4)	0.59997(4)	0.025(1)
C(21)	0.31417(19)	0.47772(4)	0.62220(4)	0.020(1)
C(22)	0.5680(2)	$0.37929(5)$	0.52097 (5)	0.034(1)
C(23)	0.5855(2)	0.67237(4)	$0.65011(4)$	0.030(1)
C(24)	0.7104(3)	$0.70066(5)$	0.63458(5)	0.044(1)
$\mathrm{O}(10)$	0.91339(14)	0.14994(3)	0.67854(3)	0.025(1)
$\mathrm{O}(11)$	0.64828(14)	0.13760(3)	0.72204(3)	0.027(1)
$\mathrm{O}(12)$	0.92231(14)	0.20198(3)	0.63212(3)	0.025(1)
O(13)	0.38622(16)	$0.17860(4)$	0.72041 (3)	0.039(1)

$\mathrm{O}(14)$	0.41129(13)	0.27554(3)	0.54947 (2)	0.019(1)
$\mathrm{O}(15)$	0.16577(13)	0.28315(3)	0.59909(3)	0.020(1)
$\mathrm{O}(16)$	0.70389(13)	0.25290(3)	0.56320(3)	0.024(1)
$\mathrm{O}(17)$	0.22904(15)	0.27689(4)	0.66449 (3)	0.032(1)
$\mathrm{O}(18)$	0.41877(16)	0.05387(3)	0.53313(3)	0.033(1)
C(25)	0.85547(19)	0.13898(4)	0.71966 (4)	0.023(1)
C(26)	0.83436(18)	0.18539(4)	0.65979 (3)	0.018(1)
C(27)	0.63607(18)	0.20109(4)	0.67410(3)	0.020(1)
C(28)	0.5463(2)	0.17233(5)	0.70775(4)	0.025(1)
C(29)	0.48143(18)	0.20241(4)	0.63806 (3)	0.017(1)
C(30)	0.48248(18)	0.25128(4)	0.62029 (3)	0.018(1)
C(31)	0.6424(2)	0.27531(4)	0.64655(4)	0.022(1)
C(32)	0.6481 (2)	0.25021(4)	0.68715(4)	0.024(1)
C(33)	0.54184(18)	0.25814(4)	0.57559 (4)	0.017(1)
C(34)	0.20718(18)	0.27100(4)	0.55723(3)	0.016(1)
C(35)	0.28296(19)	0.27095(4)	0.62991 (4)	0.020(1)
C(36)	0.9272(2)	$0.09277(5)$	0.72725(4)	0.032(1)
C(37)	0.9334(2)	0.17218(4)	0.74976 (4)	0.026(1)
C(38)	0.14587(18)	0.22428(4)	0.54838(4)	0.019(1)
C(39)	0.10743(19)	0.30468 (4)	0.53082(4)	0.022(1)
C(40)	0.47974(18)	0.16320(4)	0.60933 (3)	0.017(1)

C(41)	0.62024(19)	0.15458(4)	0.57965(4)	0.021(1)
C(42)	0.6050(2)	0.11827(4)	0.55374(4)	0.022(1)
C(43)	0.4485(2)	0.09004(4)	0.55736(4)	0.023(1)
C(44)	0.3085(2)	0.09755(4)	0.58724(4)	0.025(1)
C(45)	0.32481(19)	$0.13361(4)$	$0.61273(4)$	0.021(1)
C(46)	0.5658(3)	0.04274(5)	0.50473 (5)	0.040(1)
C(47)	0.6182(2)	0.32441 (5)	0.64923(4)	0.033(1)
C(48)	0.7318(3)	$0.35166(5)$	$0.62872(5)$	0.042(1)
$\mathrm{O}(19)$	0.84728(16)	0.82916(3)	0.68393(3)	0.033(1)
$\mathrm{O}(20)$	0.57391(15)	0.82109(3)	0.72637 (3)	0.028(1)
$\mathrm{O}(21)$	0.88005(14)	0.88113(3)	0.63816(3)	0.025(1)
$\mathrm{O}(22)$	0.32488(15)	0.86586(4)	0.72324(3)	0.036(1)
$\mathrm{O}(23)$	0.38180(13)	0.94490(3)	0.54522(2)	0.019(1)
$\mathrm{O}(24)$	0.13351(13)	0.96035(3)	0.59254(2)	0.021(1)
$\mathrm{O}(25)$	0.67614(13)	0.92880(3)	0.56363(3)	0.024(1)
$\mathrm{O}(26)$	0.18216(15)	$0.95913(4)$	0.65857(3)	0.031(1)
$\mathrm{O}(27)$	0.41424(17)	$0.72498(3)$	0.54420(3)	0.032(1)
C(49)	0.7818(2)	0.81881(5)	0.72446 (4)	0.026(1)
C(50)	0.78235(18)	0.86550(4)	0.66461 (3)	0.019(1)
C(51)	0.58239(19)	0.88276(4)	0.67641 (3)	0.019(1)
C(52)	0.4835(2)	0.85670(4)	$0.71085(4)$	0.023(1)

C(53)	0.43575(18)	0.88199(4)	0.63887(3)	0.017(1)
C(54)	0.44366(17)	0.92977 (4)	0.61867(3)	0.017(1)
C(55)	0.5984(2)	$0.95538(4)$	0.64512(4)	0.021(1)
C(56)	0.5936(2)	$0.93236(4)$	0.68698(4)	0.022(1)
C(57)	0.51066(17)	$0.93307(4)$	0.57410(3)	0.016(1)
C(58)	0.17683(18)	$0.94244(4)$	0.55278(3)	0.016(1)
C(59)	0.24281(18)	$0.95032(4)$	0.62525(4)	0.019(1)
C(60)	0.8376(3)	$0.77165(5)$	0.73175(5)	0.042(1)
C(61)	0.8673(2)	0.85031(5)	0.75530(4)	0.031(1)
C(62)	0.11100(18)	0.89529(4)	0.54912(4)	0.019(1)
C(63)	0.08199(19)	0.97267 (4)	0.52225(4)	0.021(1)
C(64)	0.44373(18)	0.84085(4)	0.61273(3)	0.017(1)
C(65)	0.59069(19)	0.83081(4)	0.58479(4)	0.020(1)
C(66)	0.5867(2)	0.79241 (4)	0.56154(4)	0.021(1)
C(67)	0.4340(2)	$0.76313(4)$	0.56604(4)	0.022(1)
C(68)	0.2872(2)	0.77190(4)	0.59426(4)	0.025(1)
C(69)	0.29289(19)	0.81013(4)	0.61718(4)	0.021(1)
C(70)	0.5642(3)	0.71376 (5)	0.51644(5)	0.038(1)
C(71)	0.5740(2)	1.00451(4)	0.64721 (4)	0.030(1)
C(72)	0.7034(3)	1.03184(5)	0.63190(5)	0.041(1)
H(5)	0.3382	0.5473	0.6578	0.019

H(7)	0.7449	0.6187	0.6343	0.024
H(8A)	0.5120	0.6085	0.7066	0.025
H(8B)	0.7452	0.6078	0.7043	0.025
$\mathrm{H}(12 \mathrm{~A})$	0.6780	0.4537	0.6726	0.052
H(12B)	0.6995	0.4227	0.7120	0.052
H(12C)	0.8791	0.4294	0.6816	0.052
H(13A)	1.0963	0.4604	0.7391	0.041
H(13B)	0.9229	0.4482	0.7696	0.041
H(13C)	1.0056	0.4974	0.7682	0.041
H(14A)	0.1559	0.5548	0.5243	0.027
H(14B)	-0.0114	0.5613	0.5576	0.027
H(14C)	0.1994	0.5455	0.5716	0.027
H(15A)	0.1159	0.6337	0.5006	0.031
H(15B)	0.1367	0.6725	0.5335	0.031
H(15C)	-0.0513	0.6416	0.5338	0.031
H(17)	0.7137	0.5169	0.5837	0.023
H(18)	0.6978	0.4517	0.5458	0.025
$\mathrm{H}(20)$	0.2008	0.4190	0.6044	0.030
$\mathrm{H}(21)$	0.2158	0.4840	0.6417	0.023
H(22A)	0.5357	0.3508	0.5086	0.052
H(22B)	0.6934	0.3771	0.5349	0.052

H(22C)	0.5752	0.4018	0.4995	0.052
H(23)	0.4722	0.6832	0.6632	0.036
H(24A)	0.8244	0.6903	0.6214	0.053
H(24B)	0.6863	0.7314	0.6366	0.053
H(29)	0.3543	0.2003	0.6526	0.021
H(31)	0.7691	0.2698	0.6326	0.026
H(32A)	0.5370	0.2584	0.7048	0.029
H(32B)	0.7699	0.2562	0.7022	0.029
H(36A)	0.8645	0.0726	0.7080	0.048
H(36B)	0.8957	0.0840	0.7554	0.048
H(36C)	1.0678	0.0917	0.7233	0.048
H(37A)	1.0746	0.1738	0.7472	0.039
H(37B)	0.8990	0.1632	0.7777	0.039
H(37C)	0.8772	0.2011	0.7439	0.039
H(38A)	0.1724	0.2173	0.5196	0.028
H(38B)	0.0069	0.2211	0.5538	0.028
H(38C)	0.2184	0.2041	0.5661	0.028
H(39A)	0.1351	0.2986	0.5019	0.032
H(39B)	0.1548	0.3341	0.5379	0.032
H(39C)	-0.0327	0.3033	0.5355	0.032
H(41)	0.7281	0.1738	0.5771	0.025

H(42)	0.7017	0.1129	0.5336	0.026
H(44)	0.2022	0.0780	0.5901	0.031
H(45)	0.2287	0.1385	0.6331	0.025
H(46A)	0.5294	0.0158	0.4902	0.060
H(46B)	0.6879	0.0380	0.5194	0.060
H(46C)	0.5818	0.0668	0.4850	0.060
H(47)	0.5187	0.3361	0.6661	0.039
H(48A)	0.8318	0.3404	0.6117	0.051
H(48B)	0.7132	0.3825	0.6310	0.051
H(53)	0.3051	0.8807	0.6521	0.020
H(55)	0.7282	0.9495	0.6327	0.025
H(56A)	0.4791	0.9417	0.7030	0.026
H(56B)	0.7121	0.9390	0.7029	0.026
H(60A)	0.7710	0.7528	0.7119	0.062
H(60B)	0.8003	0.7631	0.7596	0.062
H(60C)	0.9780	0.7684	0.7285	0.062
H(61A)	1.0089	0.8495	0.7534	0.047
H(61B)	0.8271	0.8417	0.7830	0.047
H(61C)	0.8214	0.8802	0.7495	0.047
H(62A)	-0.0293	0.8937	0.5534	0.029
H(62B)	0.1769	0.8774	0.5698	0.029

$\mathrm{H}(62 \mathrm{C})$	0.1426	0.8842	0.5217	0.029
$\mathrm{H}(63 \mathrm{~A})$	0.1115	0.9626	0.4944	0.031
$\mathrm{H}(63 \mathrm{~B})$	0.1313	1.0026	0.5260	0.031
$\mathrm{H}(63 \mathrm{C})$	-0.0585	0.9724	0.5265	0.031
$\mathrm{H}(65)$	0.6959	0.8507	0.5816	0.024
$\mathrm{H}(66)$	0.6880	0.7863	0.5427	0.026
$\mathrm{H}(68)$	0.1836	0.7517	0.5977	0.030
$\mathrm{H}(69)$	0.1926	0.8158	0.6364	0.025
$\mathrm{H}(70 \mathrm{~A})$	0.5341	0.6856	0.5034	0.057
$\mathrm{H}(70 \mathrm{~B})$	0.7113	0.5313	0.057	
$\mathrm{H}(70 \mathrm{C})$	0.4616	1.0162	0.4954	0.057
$\mathrm{H}(71)$	0.8166	1.0207	0.6600	0.035
$\mathrm{H}(72 \mathrm{~A})$	0.6834	1.0627	0.6337	0.049
$\mathrm{H}(72 \mathrm{~B})$				0.049

Table 3. Anisotropic displacement parameters $\left(\AA^{2}\right)$ for su1211.

The anisotropic displacement factor exponent takes the form:

$$
-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{*} \mathrm{U}_{11}+\ldots+2 \mathrm{hka}{ }^{*} \mathrm{~b} * \mathrm{U}_{12}\right]
$$

$\begin{array}{llllll}\mathrm{U}_{11} & \mathrm{U}_{22} & \mathrm{U}_{33} & \mathrm{U}_{23} & \mathrm{U}_{13} & \mathrm{U}_{12}\end{array}$

$\mathrm{O}(1)$	$0.0193(5)$	$0.0350(5)$	$0.0230(4)$	$0.0104(4)$	$0.0015(4)$	$0.0038(4)$
$\mathrm{O}(2)$	$0.0267(5)$	$0.0362(5)$	$0.0194(4)$	$0.0073(4)$	$0.0050(4)$	$0.0074(4)$
$\mathrm{O}(3)$	$0.0176(5)$	$0.0342(5)$	$0.0192(4)$	$0.0072(4)$	$0.0025(3)$	$0.0012(4)$
$\mathrm{O}(4)$	$0.0221(5)$	$0.0468(6)$	$0.0223(4)$	$0.0069(4)$	$0.0067(4)$	$0.0023(4)$
$\mathrm{O}(5)$	$0.0122(4)$	$0.0258(4)$	$0.0159(4)$	$0.0044(3)$	$0.0009(3)$	$-0.0010(3)$
$\mathrm{O}(6)$	$0.0174(4)$	$0.0249(4)$	$0.0158(4)$	$-0.0024(3)$	$-0.0003(3)$	$0.0056(3)$
$\mathrm{O}(7)$	$0.0154(5)$	$0.0320(5)$	$0.0201(4)$	$0.0014(3)$	$0.0018(3)$	$0.0028(4)$
$\mathrm{O}(8)$	$0.0276(5)$	$0.0409(5)$	$0.0162(4)$	$-0.0070(4)$	$0.0015(4)$	$0.0105(4)$
$\mathrm{O}(9)$	$0.0349(6)$	$0.0199(4)$	$0.0361(5)$	$-0.0088(4)$	$0.0062(4)$	$-0.0045(4)$
$\mathrm{C}(1)$	$0.0235(7)$	$0.0256(6)$	$0.0161(5)$	$0.0048(4)$	$0.0022(5)$	$0.0025(5)$
$\mathrm{C}(2)$	$0.0174(6)$	$0.0227(5)$	$0.0134(5)$	$0.0004(4)$	$-0.0017(4)$	$0.0005(4)$
$\mathrm{C}(3)$	$0.0162(6)$	$0.0220(5)$	$0.0141(5)$	$0.0008(4)$	$-0.0007(4)$	$0.0004(4)$
$\mathrm{C}(4)$	$0.0237(7)$	$0.0272(6)$	$0.0143(5)$	$0.0006(4)$	$0.0027(5)$	$0.0028(5)$
$\mathrm{C}(5)$	$0.0150(6)$	$0.0207(5)$	$0.0123(5)$	$0.0008(4)$	$-0.0005(4)$	$0.0006(4)$
$\mathrm{C}(6)$	$0.0139(6)$	$0.0194(5)$	$0.0139(5)$	$-0.0015(4)$	$-0.0015(4)$	$0.0015(4)$

$\mathrm{C}(7)$	$0.0223(6)$	$0.0205(5)$	$0.0173(5)$	$-0.0029(4)$	$-0.0057(5)$	$-0.0016(5)$
$\mathrm{C}(8)$	$0.0239(7)$	$0.0243(6)$	$0.0151(5)$	$-0.0035(4)$	$-0.0038(5)$	$0.0015(5)$
$\mathrm{C}(9)$	$0.0154(6)$	$0.0161(5)$	$0.0148(5)$	$-0.0010(4)$	$-0.0007(4)$	$-0.0009(4)$
$\mathrm{C}(10)$	$0.0133(6)$	$0.0213(5)$	$0.0128(5)$	$0.0000(4)$	$0.0006(4)$	$0.0009(4)$
$\mathrm{C}(11)$	$0.0188(6)$	$0.0210(5)$	$0.0150(5)$	$-0.0033(4)$	$-0.0014(4)$	$0.0027(4)$
$\mathrm{C}(12)$	$0.0451(9)$	$0.0287(7)$	$0.0310(7)$	$-0.0002(5)$	$-0.0096(6)$	$0.0034(6)$
$\mathrm{C}(13)$	$0.0298(7)$	$0.0301(6)$	$0.0217(6)$	$0.0063(5)$	$-0.0019(5)$	$0.0042(5)$
$\mathrm{C}(14)$	$0.0150(6)$	$0.0202(5)$	$0.0187(5)$	$0.0000(4)$	$0.0000(4)$	$-0.0007(4)$
$\mathrm{C}(15)$	$0.0186(6)$	$0.0224(5)$	$0.0217(6)$	$0.0055(4)$	$-0.0032(5)$	$0.0002(5)$
$\mathrm{C}(16)$	$0.0154(6)$	$0.0184(5)$	$0.0146(5)$	$0.0014(4)$	$-0.0010(4)$	$0.0007(4)$
$\mathrm{C}(17)$	$0.0183(6)$	$0.0197(5)$	$0.0189(5)$	$0.0016(4)$	$0.0025(4)$	$-0.0007(5)$
$\mathrm{O}(12)$	$0.0195(5)$	$0.0303(4)$	$0.0244(4)$	$0.0095(4)$	$0.0052(4)$	$0.0000(4)$
$\mathrm{C}(18)$	$0.0234(6)$	$0.0195(5)$	$0.0195(5)$	$0.0009(4)$	$0.0039(5)$	$0.0018(5)$
$\mathrm{C}(19)$	$0.0261(7)$	$0.0173(5)$	$0.0213(6)$	$-0.0011(4)$	$-0.0005(5)$	$0.0007(5)$
$\mathrm{C}(19)$	$0.0257(5)$	$0.0282(4)$	$0.0197(4)$	$0.0064(3)$	$0.0041(4)$	$0.0064(4)$
$\mathrm{C}(20)$	$0.0221(7)$	$0.0231(6)$	$0.0288(6)$	$0.0000(5)$	$0.0034(5)$	$-0.0051(5)$
$\mathrm{C}(21)$	$0.0158(6)$	$0.0232(5)$	$0.0195(5)$	$0.0022(4)$	$0.0021(4)$	$0.0001(5)$
$\mathrm{C}(24)$	$0.0412(9)$	$0.0241(6)$	$0.0380(8)$	$-0.0119(6)$	$0.0098(7)$	$-0.0009(6)$
$0.0381(8)$	$0.0233(6)$	$0.0276(6)$	$-0.0053(5)$	$-0.0136(6)$	$0.0019(6)$	
	$0.0675(12)$	$0.0257(7)$	$0.0389(8)$	$0.0051(6)$	$-0.0154(8)$	$-0.0082(7)$

$\mathrm{O}(13)$	0.0232(6)	0.0674(7)	0.0274(5)	0.0149(5)	0.0090(4)	0.0044(5)
$\mathrm{O}(14)$	0.0146(4)	0.0249(4)	0.0164(4)	0.0037(3)	0.0014(3)	-0.0020(3)
$\mathrm{O}(15)$	0.0190(5)	0.0272(4)	0.0144(4)	-0.0018(3)	0.0004(3)	0.0046(3)
$\mathrm{O}(16)$	0.0163(5)	0.0316(5)	0.0228(4)	0.0006(3)	0.0027(3)	0.0008(4)
$\mathrm{O}(17)$	0.0307(6)	0.0478(6)	0.0161(4)	-0.0068(4)	0.0012(4)	0.0136(4)
$\mathrm{O}(18)$	0.0323(6)	0.0226(4)	0.0432(6)	-0.0118(4)	0.0039(4)	-0.0033(4)
C(25)	0.0196(6)	0.0301(6)	0.0184(6)	0.0088(5)	0.0003(5)	-0.0028(5)
C(26)	0.0172(6)	0.0228(5)	0.0141(5)	0.0024(4)	-0.0006(4)	-0.0009(4)
C(27)	0.0171(6)	0.0268(6)	0.0146(5)	0.0008(4)	-0.0008(4)	0.0001(5)
C(28)	0.0203(7)	0.0381(7)	0.0164(5)	0.0049(5)	-0.0008(5)	-0.0026(5)
C(29)	0.0156(6)	0.0227(6)	0.0137(5)	0.0014(4)	-0.0007(4)	0.0003(4)
C(30)	0.0174(6)	0.0205(5)	0.0146(5)	-0.0022(4)	-0.0014(4)	0.0007(4)
C(31)	0.0231(7)	0.0236(6)	0.0188(6)	-0.0039(5)	-0.0062(5)	0.0008(5)
C(32)	0.0266(7)	0.0279(6)	0.0183(6)	-0.0050(5)	-0.0054(5)	0.0020(5)
C(33)	0.0180(6)	0.0160(5)	0.0167(5)	-0.0014(4)	-0.0016(4)	-0.0029(4)
C(34)	0.0146(6)	0.0216(5)	0.0128(5)	0.0000(4)	0.0018(4)	-0.0019(4)
C(35)	0.0208(7)	0.0239(6)	0.0157(5)	-0.0020(4)	-0.0001(5)	0.0027(5)
C(36)	0.0351(8)	0.0303(7)	0.0303(7)	0.0098(6)	-0.0044(6)	0.0014(6)
C(37)	0.0248(7)	0.0340(7)	0.0201(6)	0.0058(5)	-0.0013(5)	-0.0051(5)
C(38)	0.0169(6)	0.0207(5)	0.0188(5)	0.0009(4)	-0.0002(4)	-0.0011(4)
C(39)	0.0216(7)	0.0221 (6)	0.0206(6)	0.0040(4)	-0.0019(5)	0.0007(5)

C(40)	0.0163(6)	0.0196(5)	0.0163(5)	0.0030(4)	-0.0014(4)	0.0006(4)
C(41)	0.0194(6)	0.0209(5)	0.0215(6)	0.0011 (4)	0.0015(5)	-0.0011(5)
C(42)	0.0228(7)	0.0204(5)	0.0214(6)	0.0009(4)	0.0030(5)	0.0004(5)
C(43)	0.0248(7)	0.0173(5)	0.0276(6)	-0.0001(5)	-0.0031(5)	0.0013(5)
C(44)	0.0204(7)	0.0227(6)	$0.0334(7)$	0.0031(5)	0.0007(5)	-0.0037(5)
C(45)	0.0176(6)	0.0230(6)	0.0225(6)	0.0037(4)	0.0012(5)	0.0007(5)
C(46)	0.0370(9)	0.0315(7)	0.0514(9)	-0.0201(7)	0.0041 (7)	0.0005(6)
C(47)	0.0406(9)	$0.0259(7)$	$0.0317(7)$	-0.0093(5)	-0.0150(6)	0.0037(6)
C(48)	0.0686(12)	0.0210(6)	0.0376(8)	-0.0021(6)	-0.0134(8)	-0.0030(7)
$\mathrm{O}(19)$	0.0399(6)	0.0366(5)	0.0212(4)	0.0116(4)	0.0101 (4)	0.0153(5)
$\mathrm{O}(20)$	0.0281(5)	0.0326(5)	0.0229(4)	0.0082(4)	0.0011 (4)	-0.0056(4)
$\mathrm{O}(21)$	0.0190(5)	0.0317(5)	0.0253(4)	0.0092(4)	0.0024(4)	0.0000(4)
$\mathrm{O}(22)$	0.0240(5)	0.0587(7)	0.0245(5)	0.0082(4)	0.0071 (4)	0.0005(5)
$\mathrm{O}(23)$	0.0140(4)	0.0275(4)	0.0153(4)	0.0022(3)	0.0010(3)	-0.0014(3)
$\mathrm{O}(24)$	0.0193(5)	0.0278(4)	0.0150(4)	-0.0039(3)	-0.0005(3)	0.0057(3)
$\mathrm{O}(25)$	0.0151(5)	0.0339(5)	0.0229(4)	0.0023(4)	0.0025(3)	0.0023(4)
$\mathrm{O}(26)$	0.0280(5)	0.0487(6)	0.0171(4)	-0.0081(4)	0.0015(4)	0.0111 (4)
$\mathrm{O}(27)$	0.0367(6)	0.0201 (4)	0.0395(5)	-0.0096(4)	0.0055(5)	-0.0045(4)
C(49)	0.0291(7)	$0.0312(7)$	0.0179(6)	0.0077(5)	0.0044(5)	0.0047(5)
C(50)	0.0194(6)	0.0239(6)	0.0145(5)	0.0019(4)	-0.0026(4)	-0.0004(5)
C(51)	0.0182(6)	0.0245(6)	0.0135(5)	0.0004(4)	-0.0012(4)	-0.0016(5)

$\mathrm{C}(52)$	$0.0234(7)$	$0.0315(6)$	$0.0151(5)$	$0.0008(5)$	$-0.0014(5)$	$-0.0031(5)$
$\mathrm{C}(53)$	$0.0160(6)$	$0.0211(5)$	$0.0133(5)$	$0.0009(4)$	$-0.0003(4)$	$-0.0021(4)$
$\mathrm{C}(54)$	$0.0160(6)$	$0.0201(5)$	$0.0137(5)$	$-0.0020(4)$	$-0.0007(4)$	$-0.0007(4)$
$\mathrm{C}(55)$	$0.0238(7)$	$0.0209(6)$	$0.0176(6)$	$-0.0027(4)$	$-0.0068(5)$	$-0.0020(5)$
$\mathrm{C}(56)$	$0.0247(7)$	$0.0252(6)$	$0.0160(5)$	$-0.0033(4)$	$-0.0054(5)$	$-0.0005(5)$
$\mathrm{C}(57)$	$0.0163(6)$	$0.0155(5)$	$0.0161(5)$	$-0.0009(4)$	$-0.0007(4)$	$-0.0021(4)$
$\mathrm{C}(58)$	$0.0144(6)$	$0.0206(5)$	$0.0129(5)$	$-0.0009(4)$	$0.0005(4)$	$0.0004(4)$
$\mathrm{C}(59)$	$0.0198(6)$	$0.0215(5)$	$0.0158(5)$	$-0.0033(4)$	$-0.0011(4)$	$0.0009(5)$
$\mathrm{C}(60)$	$0.0639(11)$	$0.0337(8)$	$0.0274(7)$	$0.0112(6)$	$0.0075(7)$	$0.0126(7)$
$\mathrm{C}(61)$	$0.0277(8)$	$0.0399(7)$	$0.0258(6)$	$0.0094(6)$	$-0.0013(5)$	$-0.0041(6)$
$\mathrm{C}(62)$	$0.0169(6)$	$0.0207(5)$	$0.0204(5)$	$0.0005(4)$	$-0.0016(4)$	$-0.0008(4)$
$\mathrm{C}(63)$	$0.0214(7)$	$0.0221(5)$	$0.0194(5)$	$0.0030(4)$	$-0.0031(5)$	$-0.0008(5)$
$\mathrm{C}(72)$	$0.0562(11)$	$0.0234(6)$	$0.0426(8)$	$0.0041(6)$	$-0.0174(8)$	$-0.0059(7)$
$\mathrm{C}(71)$	$0.0175(6)$	$0.0190(5)$	$0.0146(5)$	$0.0012(4)$	$-0.0012(4)$	$-0.0010(4)$
$\mathrm{C}(65)$	$0.0198(6)$	$0.0204(5)$	$0.0195(6)$	$0.0007(4)$	$0.0017(5)$	$-0.0020(5)$
$\mathrm{C}(66)$	$0.0239(7)$	$0.0199(5)$	$0.0200(5)$	$0.0008(4)$	$0.0032(5)$	$0.0011(5)$
$\mathrm{C}(67)$	$0.0264(7)$	$0.0166(5)$	$0.0239(6)$	$-0.0003(4)$	$-0.0017(5)$	$0.0005(5)$
	$0.0231(7)$	$0.0213(6)$	$0.0315(7)$	$0.0005(5)$	$0.0013(5)$	$-0.0050(5)$
	$0.0188(6)$	$0.0235(6)$	$0.0206(6)$	$0.0029(4)$	$0.0024(5)$	$-0.0014(5)$
	$0.0457(10)$	$0.0240(6)$	$0.0436(8)$	$-0.0114(6)$	$0.0112(7)$	$-0.0016(6)$
	$0.0223(6)$	$0.0290(7)$	$-0.0050(5)$	$-0.0135(6)$	$0.0022(6)$	

Table 4. Bond lengths $[\AA]$ for su1211.

atom-atom	distance	atom-atom	distance
$\mathrm{O}(1)-\mathrm{C}(2)$	1.3482(15)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.4416(15)
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.3547(16)$	$\mathrm{O}(2)-\mathrm{C}(1)$	1.4260(15)
$\mathrm{O}(3)-\mathrm{C}(2)$	1.1934(15)	$\mathrm{O}(4)-\mathrm{C}(4)$	1.1954(17)
$\mathrm{O}(5)-\mathrm{C}(9)$	$1.3456(14)$	$\mathrm{O}(5)-\mathrm{C}(10)$	1.4376(15)
$\mathrm{O}(6)-\mathrm{C}(11)$	$1.3427(15)$	$\mathrm{O}(6)-\mathrm{C}(10)$	1.4421(13)
$\mathrm{O}(7)-\mathrm{C}(9)$	$1.2003(16)$	$\mathrm{O}(8)-\mathrm{C}(11)$	1.1987(15)
$\mathrm{O}(9)-\mathrm{C}(19)$	$1.3680(15)$	$\mathrm{O}(9)-\mathrm{C}(22)$	1.4228(18)
$\mathrm{C}(1)-\mathrm{C}(13)$	$1.4993(17)$	$\mathrm{C}(1)-\mathrm{C}(12)$	1.5088(18)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.5252(17)$	$\mathrm{C}(3)-\mathrm{C}(4)$	1.5321(16)
$\mathrm{C}(3)-\mathrm{C}(8)$	1.5614(16)	$\mathrm{C}(3)-\mathrm{C}(5)$	1.5709(15)
$\mathrm{C}(5)-\mathrm{C}(16)$	1.5162(15)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.5964(15)
$\mathrm{C}(6)-\mathrm{C}(9)$	1.5277(15)	$\mathrm{C}(6)-\mathrm{C}(11)$	1.5377(17)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.5813(16)$	$\mathrm{C}(7)-\mathrm{C}(23)$	$1.5035(17)$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.5318(16)	$\mathrm{C}(10)-\mathrm{C}(15)$	1.5042(16)
$\mathrm{C}(10)-\mathrm{C}(14)$	1.5101(15)	C(16)-C(17)	1.3999(16)
$\mathrm{C}(16)-\mathrm{C}(21)$	1.4010(17)	C(17)-C(18)	$1.3960(16)$
$\mathrm{C}(18)-\mathrm{C}(19)$	1.3819(18)	C(19)-C(20)	1.3965(18)
C(20)-C(21)	$1.3838(17)$	C(23)-C(24)	1.319 (2)
$\mathrm{O}(10)-\mathrm{C}(26)$	$1.3541(15)$	$\mathrm{O}(10)-\mathrm{C}(25)$	1.4393(14)
$\mathrm{O}(11)-\mathrm{C}(28)$	1.3518(17)	$\mathrm{O}(11)-\mathrm{C}(25)$	1.4333(16)
$\mathrm{O}(12)-\mathrm{C}(26)$	1.1992(15)	$\mathrm{O}(13)-\mathrm{C}(28)$	1.1952(18)
$\mathrm{O}(14)-\mathrm{C}(33)$	$1.3485(15)$	$\mathrm{O}(14)-\mathrm{C}(34)$	1.4385(15)
$\mathrm{O}(15)-\mathrm{C}(35)$	1.3428(15)	$\mathrm{O}(15)-\mathrm{C}(34)$	$1.4436(13)$
$\mathrm{O}(16)-\mathrm{C}(33)$	1.2002(16)	$\mathrm{O}(17)-\mathrm{C}(35)$	1.2019(15)
$\mathrm{O}(18)-\mathrm{C}(43)$	$1.3699(15)$	$\mathrm{O}(18)-\mathrm{C}(46)$	1.4155(19)
C(25)-C(37)	1.5078(18)	C(25)-C(36)	1.5100(18)

C(26)-C(27)	$1.5233(17)$	C(27)-C(28)	1.5347(17)
$\mathrm{C}(27)-\mathrm{C}(32)$	1.5551(17)	C(27)-C(29)	1.5889(16)
C(29)-C(40)	$1.5166(16)$	C(29)-C(30)	1.5946(16)
$\mathrm{C}(30)-\mathrm{C}(33)$	$1.5296(16)$	$\mathrm{C}(30)-\mathrm{C}(35)$	1.5343(17)
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.5770(16)$	$\mathrm{C}(31)-\mathrm{C}(47)$	1.5046(17)
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.5294(17)$	$\mathrm{C}(34)-\mathrm{C}(39)$	1.5052(16)
$\mathrm{C}(34)-\mathrm{C}(38)$	1.5101(15)	$\mathrm{C}(40)-\mathrm{C}(41)$	1.3956(17)
$\mathrm{C}(40)-\mathrm{C}(45)$	1.4021(18)	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.3943(17)$
$\mathrm{C}(42)-\mathrm{C}(43)$	1.3852(18)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.3917(19)
C(44)-C(45)	$1.3806(18)$	$\mathrm{C}(47)-\mathrm{C}(48)$	1.323(2)
$\mathrm{O}(19)-\mathrm{C}(50)$	$1.3487(15)$	$\mathrm{O}(19)-\mathrm{C}(49)$	1.4325(15)
$\mathrm{O}(20)-\mathrm{C}(52)$	$1.3481(17)$	$\mathrm{O}(20)-\mathrm{C}(49)$	1.4387(18)
$\mathrm{O}(21)-\mathrm{C}(50)$	$1.1940(16)$	$\mathrm{O}(22)-\mathrm{C}(52)$	1.2004(18)
$\mathrm{O}(23)-\mathrm{C}(57)$	1.3448(15)	$\mathrm{O}(23)-\mathrm{C}(58)$	1.4386(15)
$\mathrm{O}(24)-\mathrm{C}(59)$	$1.3424(15)$	$\mathrm{O}(24)-\mathrm{C}(58)$	$1.4386(13)$
$\mathrm{O}(25)-\mathrm{C}(57)$	$1.1996(16)$	$\mathrm{O}(26)-\mathrm{C}(59)$	1.1955(15)
$\mathrm{O}(27)-\mathrm{C}(67)$	$1.3679(15)$	$\mathrm{O}(27)-\mathrm{C}(70)$	1.4174(19)
$\mathrm{C}(49)-\mathrm{C}(60)$	$1.5036(19)$	$\mathrm{C}(49)-\mathrm{C}(61)$	1.509(2)
$\mathrm{C}(50)-\mathrm{C}(51)$	$1.5263(18)$	C(51)-C(52)	1.5355(16)
C(51)-C(56)	$1.5486(16)$	C(51)-C(53)	1.5893(15)
C(53)-C(64)	$1.5149(15)$	C(53)-C(54)	1.5960(15)
C(54)-C(57)	$1.5297(15)$	C(54)-C(59)	1.5361(17)
C(54)-C(55)	$1.5786(16)$	C(55)-C(71)	1.5047(17)
C(55)-C(56)	1.5350(16)	C(58)-C(63)	1.5054(16)
C(58)-C(62)	1.5082(15)	$\mathrm{C}(64)-\mathrm{C}(65)$	1.3977(17)
$\mathrm{C}(64)-\mathrm{C}(69)$	$1.4066(17)$	$\mathrm{C}(65)-\mathrm{C}(66)$	1.3928(16)
C(66)-C(67)	$1.3875(18)$	$\mathrm{C}(67)-\mathrm{C}(68)$	1.3954(19)
$\mathrm{C}(68)-\mathrm{C}(69)$	$1.3824(18)$	$\mathrm{C}(71)-\mathrm{C}(72)$	1.318(2)
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000	$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800

$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500	$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800	$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9500	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9500
$\mathrm{C}(29)-\mathrm{H}(29)$	1.0000	$\mathrm{C}(31)-\mathrm{H}(31)$	1.0000
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9900	C(32)-H(32B)	0.9900
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9800	$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	0.9800
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	0.9800
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9800
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9800
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	0.9800
$\mathrm{C}(41)-\mathrm{H}(41)$	0.9500	$\mathrm{C}(42)-\mathrm{H}(42)$	0.9500
$\mathrm{C}(44)-\mathrm{H}(44)$	0.9500	$\mathrm{C}(45)-\mathrm{H}(45)$	0.9500
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	0.9800	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	0.9800
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	0.9800	$\mathrm{C}(47)-\mathrm{H}(47)$	0.9500
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9500	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9500
$\mathrm{C}(53)-\mathrm{H}(53)$	1.0000	$\mathrm{C}(55)-\mathrm{H}(55)$	1.0000
$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	0.9900	$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	0.9900
$\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~A})$	0.9800	$\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~B})$	0.9800
$\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	0.9800	$\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~A})$	0.9800
$\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	0.9800	$\mathrm{C}(61)-\mathrm{H}(61 \mathrm{C})$	0.9800
$\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~A})$	0.9800	$\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~B})$	0.9800
$\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	0.9800	$\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~A})$	0.9800
$\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	0.9800	$\mathrm{C}(63)-\mathrm{H}(63 \mathrm{C})$	0.9800
$\mathrm{C}(65)-\mathrm{H}(65)$	0.9500	$\mathrm{C}(66)-\mathrm{H}(66)$	0.9500
$\mathrm{C}(68)-\mathrm{H}(68)$	0.9500	$\mathrm{C}(69)-\mathrm{H}(69)$	0.9500

$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})$	0.9800	$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	0.9800
$\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	0.9800	$\mathrm{C}(71)-\mathrm{H}(71)$	0.9500
$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$	0.9500	$\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	0.9500

Symmetry transformations used to generate equivalent atoms:

Table 5. Bond angles [${ }^{\circ}$] for su1211.

atom-atom-atom	angle	atom-atom-atom	angle
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	119.76(10)	$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(1)$	118.97(9)
$\mathrm{C}(9)-\mathrm{O}(5)-\mathrm{C}(10)$	120.50(9)	$\mathrm{C}(11)-\mathrm{O}(6)-\mathrm{C}(10)$	120.75(9)
$\mathrm{C}(19)-\mathrm{O}(9)-\mathrm{C}(22)$	117.49(11)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	110.44(10)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	107.58(10)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	105.99(11)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(12)$	110.10(12)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)$	108.88(10)
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(12)$	113.77(11)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	117.79(12)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	124.03(11)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.74(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	114.07(10)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	106.79(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	107.77(9)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	115.43(9)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	109.34(10)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(5)$	102.48(9)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{O}(2)$	119.29(11)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	122.76(12)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	117.62(11)	$\mathrm{C}(16)-\mathrm{C}(5)-\mathrm{C}(3)$	115.73(9)
$\mathrm{C}(16)-\mathrm{C}(5)-\mathrm{C}(6)$	120.82(9)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	106.90(9)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(11)$	112.68(10)	$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)$	105.80(9)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	109.32(9)	$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(5)$	118.09(9)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)$	106.52(9)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	103.87(9)
$\mathrm{C}(23)-\mathrm{C}(7)-\mathrm{C}(8)$	114.52(10)	$\mathrm{C}(23)-\mathrm{C}(7)-\mathrm{C}(6)$	116.03(11)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	104.60(9)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	103.70(9)
$\mathrm{O}(7)-\mathrm{C}(9)-\mathrm{O}(5)$	117.44(10)	$\mathrm{O}(7)-\mathrm{C}(9)-\mathrm{C}(6)$	123.47(11)
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(6)$	118.77(10)	$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{O}(6)$	109.59(9)
$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(15)$	106.52(9)	$\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{C}(15)$	106.25(9)
$\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(14)$	109.21(9)	$\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{C}(14)$	111.78(9)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(14)$	113.30(10)	$\mathrm{O}(8)-\mathrm{C}(11)-\mathrm{O}(6)$	118.69(11)
$\mathrm{O}(8)-\mathrm{C}(11)-\mathrm{C}(6)$	121.88(11)	$\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{C}(6)$	119.38(10)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	117.52(11)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(5)$	124.90(10)
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(5)$	117.57(10)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	121.25(11)

$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	119.92(11)	$\mathrm{O}(9)-\mathrm{C}(19)-\mathrm{C}(18)$	124.58(12)
$\mathrm{O}(9)-\mathrm{C}(19)-\mathrm{C}(20)$	115.51(12)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	119.91(11)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	119.73(12)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	121.65(12)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(7)$	122.11(15)	$\mathrm{C}(26)-\mathrm{O}(10)-\mathrm{C}(25)$	119.58(10)
$\mathrm{C}(28)-\mathrm{O}(11)-\mathrm{C}(25)$	118.59(10)	$\mathrm{C}(33)-\mathrm{O}(14)-\mathrm{C}(34)$	120.40(9)
$\mathrm{C}(35)-\mathrm{O}(15)-\mathrm{C}(34)$	121.23(9)	$\mathrm{C}(43)-\mathrm{O}(18)-\mathrm{C}(46)$	117.53(11)
$\mathrm{O}(11)-\mathrm{C}(25)-\mathrm{O}(10)$	109.54(10)	$\mathrm{O}(11)-\mathrm{C}(25)-\mathrm{C}(37)$	109.91(11)
$\mathrm{O}(10)-\mathrm{C}(25)-\mathrm{C}(37)$	110.67(10)	$\mathrm{O}(11)-\mathrm{C}(25)-\mathrm{C}(36)$	106.94(11)
$\mathrm{O}(10)-\mathrm{C}(25)-\mathrm{C}(36)$	106.10(11)	C(37)-C(25)-C(36)	113.52(11)
$\mathrm{O}(12)-\mathrm{C}(26)-\mathrm{O}(10)$	118.08(12)	$\mathrm{O}(12)-\mathrm{C}(26)-\mathrm{C}(27)$	123.65(11)
$\mathrm{O}(10)-\mathrm{C}(26)-\mathrm{C}(27)$	118.24(10)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	113.82(11)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)$	109.69(10)	C(28)-C(27)-C(32)	111.88(10)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(29)$	112.65(9)	C(28)-C(27)-C(29)	105.82(10)
$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(29)$	102.38(9)	$\mathrm{O}(13)-\mathrm{C}(28)-\mathrm{O}(11)$	119.15(12)
$\mathrm{O}(13)-\mathrm{C}(28)-\mathrm{C}(27)$	122.00(13)	$\mathrm{O}(11)-\mathrm{C}(28)-\mathrm{C}(27)$	118.77(12)
$\mathrm{C}(40)-\mathrm{C}(29)-\mathrm{C}(27)$	116.28(10)	$\mathrm{C}(40)-\mathrm{C}(29)-\mathrm{C}(30)$	120.51(9)
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(30)$	106.82(9)	C(33)-C(30)-C(35)	112.48(10)
$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(31)$	105.50(10)	$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(31)$	109.70(9)
$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(29)$	118.35(9)	$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(29)$	106.55(9)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	103.73(9)	$\mathrm{C}(47)-\mathrm{C}(31)-\mathrm{C}(32)$	116.57(11)
$\mathrm{C}(47)-\mathrm{C}(31)-\mathrm{C}(30)$	114.42(11)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	104.92(10)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	103.90(9)	$\mathrm{O}(16)-\mathrm{C}(33)-\mathrm{O}(14)$	117.55(11)
$\mathrm{O}(16)-\mathrm{C}(33)-\mathrm{C}(30)$	123.55(11)	$\mathrm{O}(14)-\mathrm{C}(33)-\mathrm{C}(30)$	118.49(10)
$\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{O}(15)$	109.64(9)	$\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{C}(39)$	106.40(9)
$\mathrm{O}(15)-\mathrm{C}(34)-\mathrm{C}(39)$	106.09(9)	$\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{C}(38)$	109.35(10)
$\mathrm{O}(15)-\mathrm{C}(34)-\mathrm{C}(38)$	111.47(9)	$\mathrm{C}(39)-\mathrm{C}(34)-\mathrm{C}(38)$	113.71(10)
$\mathrm{O}(17)-\mathrm{C}(35)-\mathrm{O}(15)$	118.35(12)	$\mathrm{O}(17)-\mathrm{C}(35)-\mathrm{C}(30)$	121.92(11)
$\mathrm{O}(15)-\mathrm{C}(35)-\mathrm{C}(30)$	119.71(10)	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(45)$	117.70(11)
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(29)$	124.83(11)	$\mathrm{C}(45)-\mathrm{C}(40)-\mathrm{C}(29)$	117.47(11)
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(40)$	121.13(11)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	119.84(12)
$\mathrm{O}(18)-\mathrm{C}(43)-\mathrm{C}(42)$	124.40(12)	$\mathrm{O}(18)-\mathrm{C}(43)-\mathrm{C}(44)$	115.60(12)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	120.00(12)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	119.71(12)

$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(40)$	121.60(12)	$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(31)$	121.76(15)
$\mathrm{C}(50)-\mathrm{O}(19)-\mathrm{C}(49)$	120.44(10)	$\mathrm{C}(52)-\mathrm{O}(20)-\mathrm{C}(49)$	118.98(11)
$\mathrm{C}(57)-\mathrm{O}(23)-\mathrm{C}(58)$	121.12(9)	$\mathrm{C}(59)-\mathrm{O}(24)-\mathrm{C}(58)$	120.94(9)
$\mathrm{C}(67)-\mathrm{O}(27)-\mathrm{C}(70)$	117.65(11)	$\mathrm{O}(19)-\mathrm{C}(49)-\mathrm{O}(20)$	110.13(11)
$\mathrm{O}(19)-\mathrm{C}(49)-\mathrm{C}(60)$	105.96(11)	$\mathrm{O}(20)-\mathrm{C}(49)-\mathrm{C}(60)$	107.15(13)
$\mathrm{O}(19)-\mathrm{C}(49)-\mathrm{C}(61)$	110.66(12)	$\mathrm{O}(20)-\mathrm{C}(49)-\mathrm{C}(61)$	109.31(12)
$\mathrm{C}(60)-\mathrm{C}(49)-\mathrm{C}(61)$	113.53(12)	$\mathrm{O}(21)-\mathrm{C}(50)-\mathrm{O}(19)$	118.42(12)
$\mathrm{O}(21)-\mathrm{C}(50)-\mathrm{C}(51)$	123.82(11)	$\mathrm{O}(19)-\mathrm{C}(50)-\mathrm{C}(51)$	117.68(11)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	114.16(10)	$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(56)$	110.21(10)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)$	111.20(10)	C(50)-C(51)-C(53)	112.14(9)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(53)$	105.86(10)	C(56)-C(51)-C(53)	102.59(9)
$\mathrm{O}(22)-\mathrm{C}(52)-\mathrm{O}(20)$	118.84(12)	$\mathrm{O}(22)-\mathrm{C}(52)-\mathrm{C}(51)$	122.18(13)
$\mathrm{O}(20)-\mathrm{C}(52)-\mathrm{C}(51)$	118.91(12)	$\mathrm{C}(64)-\mathrm{C}(53)-\mathrm{C}(51)$	115.02(10)
$\mathrm{C}(64)-\mathrm{C}(53)-\mathrm{C}(54)$	121.18(9)	C(51)-C(53)-C(54)	106.44(9)
$\mathrm{C}(57)-\mathrm{C}(54)-\mathrm{C}(59)$	112.29(10)	C(57)-C(54)-C(55)	106.43(10)
C(59)-C(54)-C(55)	109.52(9)	C(57)-C(54)-C(53)	117.56(9)
C(59)-C(54)-C(53)	106.35(9)	C(55)-C(54)-C(53)	104.25(9)
$\mathrm{C}(71)-\mathrm{C}(55)-\mathrm{C}(56)$	114.21(10)	$\mathrm{C}(71)-\mathrm{C}(55)-\mathrm{C}(54)$	116.00(11)
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(54)$	104.32(10)	C(55)-C(56)-C(51)	104.28(9)
$\mathrm{O}(25)-\mathrm{C}(57)-\mathrm{O}(23)$	117.36(11)	$\mathrm{O}(25)-\mathrm{C}(57)-\mathrm{C}(54)$	123.49(11)
$\mathrm{O}(23)-\mathrm{C}(57)-\mathrm{C}(54)$	118.92(10)	$\mathrm{O}(24)-\mathrm{C}(58)-\mathrm{O}(23)$	109.84(9)
$\mathrm{O}(24)-\mathrm{C}(58)-\mathrm{C}(63)$	105.98(9)	$\mathrm{O}(23)-\mathrm{C}(58)-\mathrm{C}(63)$	106.42(10)
$\mathrm{O}(24)-\mathrm{C}(58)-\mathrm{C}(62)$	111.63(10)	$\mathrm{O}(23)-\mathrm{C}(58)-\mathrm{C}(62)$	109.42(10)
C(63)-C(58)-C(62)	113.37(10)	$\mathrm{O}(26)-\mathrm{C}(59)-\mathrm{O}(24)$	118.38(12)
$\mathrm{O}(26)-\mathrm{C}(59)-\mathrm{C}(54)$	122.31(11)	$\mathrm{O}(24)-\mathrm{C}(59)-\mathrm{C}(54)$	119.26(10)
$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(69)$	117.38(11)	C(65)-C(64)-C(53)	125.03(11)
$\mathrm{C}(69)-\mathrm{C}(64)-\mathrm{C}(53)$	117.59(10)	C(66)-C(65)-C(64)	121.60(11)
$\mathrm{C}(67)-\mathrm{C}(66)-\mathrm{C}(65)$	119.69(12)	$\mathrm{O}(27)-\mathrm{C}(67)-\mathrm{C}(66)$	124.37(12)
$\mathrm{O}(27)-\mathrm{C}(67)-\mathrm{C}(68)$	115.69(11)	$\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)$	119.94(11)
$\mathrm{C}(69)-\mathrm{C}(68)-\mathrm{C}(67)$	119.80(12)	$\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(64)$	121.57(12)
$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{C}(55)$	122.19(15)	$\mathrm{C}(16)-\mathrm{C}(5)-\mathrm{H}(5)$	103.7
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5)$	103.7	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	103.7

$\mathrm{C}(23)-\mathrm{C}(7)-\mathrm{H}(7)$	107.1	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	107.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	107.1	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	111.0
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	111.0	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	111.0
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	111.0	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.0
$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5	$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.4	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.4
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	120.1	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	120.1
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.2	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{H}(21)$	119.2
$\mathrm{O}(9)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5	$\mathrm{O}(9)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5	$\mathrm{O}(9)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	118.9	$\mathrm{C}(7)-\mathrm{C}(23)-\mathrm{H}(23)$	118.9
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	120.0	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	120.0
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	120.0	$\mathrm{C}(40)-\mathrm{C}(29)-\mathrm{H}(29)$	103.7
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29)$	103.7	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	103.7
$\mathrm{C}(47)-\mathrm{C}(31)-\mathrm{H}(31)$	106.8	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	106.8
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	106.8	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	111.0
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	111.0	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	111.0
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	111.0	$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.0
$\mathrm{C}(25)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	109.5	$\mathrm{C}(25)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5

$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5	$\mathrm{C}(25)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5	$\mathrm{H}(36 \mathrm{~B})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.5	$\mathrm{C}(25)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5	$\mathrm{C}(25)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5	$\mathrm{H}(37 \mathrm{~B})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{C}(34)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.5	$\mathrm{C}(34)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5	$\mathrm{C}(34)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5	$\mathrm{H}(38 \mathrm{~B})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.5	$\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5	$\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5	$\mathrm{H}(39 \mathrm{~B})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{H}(41)$	119.4	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{H}(41)$	119.4
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{H}(42)$	120.1	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{H}(42)$	120.1
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44)$	120.1	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44)$	120.1
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45)$	119.2	$\mathrm{C}(40)-\mathrm{C}(45)-\mathrm{H}(45)$	119.2
$\mathrm{O}(18)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.5	$\mathrm{O}(18)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5	$\mathrm{O}(18)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5	$\mathrm{H}(46 \mathrm{~B})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47)$	119.1	$\mathrm{C}(31)-\mathrm{C}(47)-\mathrm{H}(47)$	119.1
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	120.0	$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	120.0
$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	120.0	$\mathrm{C}(64)-\mathrm{C}(53)-\mathrm{H}(53)$	104.1
$\mathrm{C}(51)-\mathrm{C}(53)-\mathrm{H}(53)$	104.1	$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{H}(53)$	104.1
$\mathrm{C}(71)-\mathrm{C}(55)-\mathrm{H}(55)$	107.3	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55)$	107.3
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{H}(55)$	107.3	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	110.9
C(51)-C(56)-H(56A)	110.9	C(55)-C(56)-H(56B)	110.9
$\mathrm{C}(51)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	110.9	$\mathrm{H}(56 \mathrm{~A})-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	108.9
$\mathrm{C}(49)-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~A})$	109.5	$\mathrm{C}(49)-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~B})$	109.5
$\mathrm{H}(60 \mathrm{~A})-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~B})$	109.5	$\mathrm{C}(49)-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	109.5
$\mathrm{H}(60 \mathrm{~A})-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	109.5	$\mathrm{H}(60 \mathrm{~B})-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	109.5
$\mathrm{C}(49)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~A})$	109.5	$\mathrm{C}(49)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	109.5
$\mathrm{H}(61 \mathrm{~A})-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{~B})$	109.5	$\mathrm{C}(49)-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{C})$	109.5
$\mathrm{H}(61 \mathrm{~A})-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{C})$	109.5	$\mathrm{H}(61 \mathrm{~B})-\mathrm{C}(61)-\mathrm{H}(61 \mathrm{C})$	109.5

$\mathrm{C}(58)-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~A})$	109.5	$\mathrm{C}(58)-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~B})$	109.5
$\mathrm{H}(62 \mathrm{~A})-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{~B})$	109.5	$\mathrm{C}(58)-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	109.5
$\mathrm{H}(62 \mathrm{~A})-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	109.5	$\mathrm{H}(62 \mathrm{~B})-\mathrm{C}(62)-\mathrm{H}(62 \mathrm{C})$	109.5
$\mathrm{C}(58)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~A})$	109.5	$\mathrm{C}(58)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	109.5
$\mathrm{H}(63 \mathrm{~A})-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{~B})$	109.5	$\mathrm{C}(58)-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{C})$	109.5
$\mathrm{H}(63 \mathrm{~A})-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{C})$	109.5	$\mathrm{H}(63 \mathrm{~B})-\mathrm{C}(63)-\mathrm{H}(63 \mathrm{C})$	109.5
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{H}(65)$	119.2	$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{H}(65)$	119.2
$\mathrm{C}(67)-\mathrm{C}(66)-\mathrm{H}(66)$	120.2	$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{H}(66)$	120.2
$\mathrm{C}(69)-\mathrm{C}(68)-\mathrm{H}(68)$	120.1	$\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{H}(68)$	120.1
$\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{H}(69)$	119.2	$\mathrm{C}(64)-\mathrm{C}(69)-\mathrm{H}(69)$	119.2
$\mathrm{O}(27)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~A})$	109.5	$\mathrm{O}(27)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	109.5
$\mathrm{H}(70 \mathrm{~A})-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{~B})$	109.5	$\mathrm{O}(27)-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	109.5
$\mathrm{H}(70 \mathrm{~A})-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	109.5	$\mathrm{H}(70 \mathrm{~B})-\mathrm{C}(70)-\mathrm{H}(70 \mathrm{C})$	109.5
$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{H}(71)$	118.9	$\mathrm{C}(55)-\mathrm{C}(71)-\mathrm{H}(71)$	118.9
$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~A})$	120.0	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	120.0
$\mathrm{H}(72 \mathrm{~A})-\mathrm{C}(72)-\mathrm{H}(72 \mathrm{~B})$	120.0		

Symmetry transformations used to generate equivalent atoms:

Table 6. Torsion angles [${ }^{\circ}$] for su1211.
atom-atom-atom-atom angle atom-atom-atom-atom angle

$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	49.80(15)	$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	165.05(11)
$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(12)$	-70.47(14)	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	-48.47(14)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	-164.71(11)	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)$	72.53(14)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	-155.60(11)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	31.73(15)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	174.52(12)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-13.31(15)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	-66.54(14)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	105.64(12)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	46.63(16)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	-141.20(11)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	151.73(12)	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	-34.73(16)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	-171.98(12)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	69.64(16)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	-41.04(16)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	14.73(15)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	-103.66(12)	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	145.67(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(16)$	47.24(14)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(16)$	-82.97(12)
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(16)$	162.89(10)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	-90.57(11)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	139.22(10)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	25.08(11)
$\mathrm{C}(16)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	-18.86(15)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	116.35(11)
$\mathrm{C}(16)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	109.04(11)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$	-115.75(10)
$\mathrm{C}(16)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-135.58(11)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-0.37(11)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(23)$	82.57(13)	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(23)$	-39.02(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(23)$	-152.41(11)	$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-150.24(10)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	88.16(11)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-25.22(11)
$\mathrm{C}(23)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	169.94(11)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	41.83(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	80.49(11)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	-156.55(10)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	-41.26(12)	$\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{O}(7)$	163.03(11)
$\mathrm{C}(10)-\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(6)$	-23.32(15)	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(7)$	166.24(11)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(7)$	46.84(15)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(7)$	-68.85(15)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(5)$	-7.01(14)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(5)$	-126.41(10)

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{O}(5)$	117.90(11)	$\mathrm{C}(9)-\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{O}(6)$	48.17(13)
$\mathrm{C}(9)-\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(15)$	162.72(10)	$\mathrm{C}(9)-\mathrm{O}(5)-\mathrm{C}(10)-\mathrm{C}(14)$	-74.58(12)
$\mathrm{C}(11)-\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{O}(5)$	-44.31(14)	$\mathrm{C}(11)-\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{C}(15)$	-159.03(10)
$\mathrm{C}(11)-\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{C}(14)$	76.91(14)	$\mathrm{C}(10)-\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{O}(8)$	-166.04(12)
$\mathrm{C}(10)-\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{C}(6)$	16.39(16)	$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(8)$	-167.12(12)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(8)$	-49.78(15)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(8)$	61.87(14)
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(6)$	10.38(15)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(6)$	127.71(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{O}(6)$	-120.64(11)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{C}(17)$	-71.88(14)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{C}(17)$	59.68(16)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{C}(21)$	106.72(12)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{C}(21)$	-121.72(12)	C(21)-C(16)-C(17)-C(18)	0.78(17)
$\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	179.39(11)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-0.04(18)
$\mathrm{C}(22)-\mathrm{O}(9)-\mathrm{C}(19)-\mathrm{C}(18)$	2.41 (19)	$\mathrm{C}(22)-\mathrm{O}(9)-\mathrm{C}(19)-\mathrm{C}(20)$	-177.87(13)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(9)$	178.71(12)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-1.00(19)
$\mathrm{O}(9)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-178.46(12)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	1.28(19)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	-0.52(19)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	-0.50(18)
$\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	-179.21(11)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(23)-\mathrm{C}(24)$	120.96(15)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(23)-\mathrm{C}(24)$	-116.97(15)	$\mathrm{C}(28)-\mathrm{O}(11)-\mathrm{C}(25)-\mathrm{O}(10)$	-51.28(15)
$\mathrm{C}(28)-\mathrm{O}(11)-\mathrm{C}(25)-\mathrm{C}(37)$	70.52(14)	$\mathrm{C}(28)-\mathrm{O}(11)-\mathrm{C}(25)-\mathrm{C}(36)$	-165.85(11)
$\mathrm{C}(26)-\mathrm{O}(10)-\mathrm{C}(25)-\mathrm{O}(11)$	50.64(15)	$\mathrm{C}(26)-\mathrm{O}(10)-\mathrm{C}(25)-\mathrm{C}(37)$	-70.69(15)
$\mathrm{C}(26)-\mathrm{O}(10)-\mathrm{C}(25)-\mathrm{C}(36)$	165.74(11)	$\mathrm{C}(25)-\mathrm{O}(10)-\mathrm{C}(26)-\mathrm{O}(12)$	157.25(11)
$\mathrm{C}(25)-\mathrm{O}(10)-\mathrm{C}(26)-\mathrm{C}(27)$	-24.63(16)	$\mathrm{O}(12)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	175.44(12)
$\mathrm{O}(10)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	-2.56(16)	$\mathrm{O}(12)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)$	-58.36(15)
$\mathrm{O}(10)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)$	123.64(11)	$\mathrm{O}(12)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(29)$	54.97(16)
$\mathrm{O}(10)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(29)$	-123.03(11)	$\mathrm{C}(25)-\mathrm{O}(11)-\mathrm{C}(28)-\mathrm{O}(13)$	-156.63(13)
$\mathrm{C}(25)-\mathrm{O}(11)-\mathrm{C}(28)-\mathrm{C}(27)$	26.51(17)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(13)$	-175.17(13)
$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(13)$	59.80(17)	$\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(13)$	-50.93(17)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(11)$	1.59(17)	$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(11)$	-123.44(13)
$\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{O}(11)$	125.83(12)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(40)$	43.59(14)
C(28)-C(27)-C(29)-C(40)	-81.37(12)	$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(40)$	161.32(10)
C(26)-C(27)-C(29)-C(30)	-94.22(11)	C(28)-C(27)-C(29)-C(30)	140.82(10)
C(32)-C(27)-C(29)-C(30)	23.51(12)	$\mathrm{C}(40)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(33)$	-17.93(16)
C(27)-C(29)-C(30)-C(33)	117.72(11)	$\mathrm{C}(40)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(35)$	109.92(12)

$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(35)$	-114.43(10)	$\mathrm{C}(40)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	-134.32(11)
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	1.33(12)	$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(47)$	79.46(13)
$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(47)$	-41.92(15)	C(29)-C(30)-C(31)-C(47)	-155.43(11)
$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	-151.54(10)	$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	87.07(11)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	-26.44(12)	$\mathrm{C}(47)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	170.08(12)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	42.38(12)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	79.46(12)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	-153.25(11)	C(29)-C(27)-C(32)-C(31)	-40.36(12)
$\mathrm{C}(34)-\mathrm{O}(14)-\mathrm{C}(33)-\mathrm{O}(16)$	161.64(10)	$\mathrm{C}(34)-\mathrm{O}(14)-\mathrm{C}(33)-\mathrm{C}(30)$	-25.40(15)
$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(16)$	165.72(11)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(16)$	46.16(15)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(16)$	-69.28(15)	$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(14)$	-6.79(14)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(14)$	-126.35(10)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(33)-\mathrm{O}(14)$	118.21(11)
$\mathrm{C}(33)-\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{O}(15)$	48.79(13)	$\mathrm{C}(33)-\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{C}(39)$	163.11(10)
$\mathrm{C}(33)-\mathrm{O}(14)-\mathrm{C}(34)-\mathrm{C}(38)$	-73.69(12)	$\mathrm{C}(35)-\mathrm{O}(15)-\mathrm{C}(34)-\mathrm{O}(14)$	-41.15(14)
$\mathrm{C}(35)-\mathrm{O}(15)-\mathrm{C}(34)-\mathrm{C}(39)$	-155.67(11)	$\mathrm{C}(35)-\mathrm{O}(15)-\mathrm{C}(34)-\mathrm{C}(38)$	80.06(14)
$\mathrm{C}(34)-\mathrm{O}(15)-\mathrm{C}(35)-\mathrm{O}(17)$	-170.39(12)	$\mathrm{C}(34)-\mathrm{O}(15)-\mathrm{C}(35)-\mathrm{C}(30)$	11.39(16)
$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{O}(17)$	-164.50(12)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{O}(17)$	-47.41(16)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{O}(17)$	64.27(15)	$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{O}(15)$	13.66(15)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{O}(15)$	130.75(11)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{O}(15)$	-117.58(11)
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(40)-\mathrm{C}(41)$	-73.33(15)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(40)-\mathrm{C}(41)$	58.41(16)
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(40)-\mathrm{C}(45)$	107.08(12)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(40)-\mathrm{C}(45)$	-121.18(12)
$\mathrm{C}(45)-\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	1.24(17)	$\mathrm{C}(29)-\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	-178.35(11)
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	-0.15(19)	$\mathrm{C}(46)-\mathrm{O}(18)-\mathrm{C}(43)-\mathrm{C}(42)$	5.3(2)
$\mathrm{C}(46)-\mathrm{O}(18)-\mathrm{C}(43)-\mathrm{C}(44)$	-174.61(13)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{O}(18)$	179.11(12)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	-1.01(19)	$\mathrm{O}(18)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	-179.06(12)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	1.05(19)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(40)$	0.08(19)
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(45)-\mathrm{C}(44)$	-1.20(18)	C(29)-C(40)-C(45)-C(44)	178.42(11)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(47)-\mathrm{C}(48)$	131.14(15)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(47)-\mathrm{C}(48)$	-105.96(16)
$\mathrm{C}(50)-\mathrm{O}(19)-\mathrm{C}(49)-\mathrm{O}(20)$	49.53(17)	$\mathrm{C}(50)-\mathrm{O}(19)-\mathrm{C}(49)-\mathrm{C}(60)$	165.09(13)
$\mathrm{C}(50)-\mathrm{O}(19)-\mathrm{C}(49)-\mathrm{C}(61)$	-71.43(16)	$\mathrm{C}(52)-\mathrm{O}(20)-\mathrm{C}(49)-\mathrm{O}(19)$	-48.55(16)
$\mathrm{C}(52)-\mathrm{O}(20)-\mathrm{C}(49)-\mathrm{C}(60)$	-163.35(11)	$\mathrm{C}(52)-\mathrm{O}(20)-\mathrm{C}(49)-\mathrm{C}(61)$	73.22(14)
$\mathrm{C}(49)-\mathrm{O}(19)-\mathrm{C}(50)-\mathrm{O}(21)$	155.82(13)	$\mathrm{C}(49)-\mathrm{O}(19)-\mathrm{C}(50)-\mathrm{C}(51)$	-27.40(18)
$\mathrm{O}(21)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	179.00(12)	$\mathrm{O}(19)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)$	2.41(15)

$\mathrm{O}(21)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(56)$	-55.01(15)	$\mathrm{O}(19)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(56)$	128.40(11)
$\mathrm{O}(21)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(53)$	58.61(16)	$\mathrm{O}(19)-\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(53)$	-117.98(12)
$\mathrm{C}(49)-\mathrm{O}(20)-\mathrm{C}(52)-\mathrm{O}(22)$	-156.49(12)	$\mathrm{C}(49)-\mathrm{O}(20)-\mathrm{C}(52)-\mathrm{C}(51)$	26.60(17)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{O}(22)$	-179.11(12)	$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{O}(22)$	55.42(16)
$\mathrm{C}(53)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{O}(22)$	-55.27(15)	$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{O}(20)$	-2.31(16)
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{O}(20)$	-127.78(12)	$\mathrm{C}(53)-\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{O}(20)$	121.53(12)
$\mathrm{C}(50)-\mathrm{C}(51)-\mathrm{C}(53)-\mathrm{C}(64)$	42.57(13)	C(52)-C(51)-C(53)-C(64)	-82.53(12)
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{C}(53)-\mathrm{C}(64)$	160.81(10)	C(50)-C(51)-C(53)-C(54)	-94.59(11)
C(52)-C(51)-C(53)-C(54)	140.30(10)	C(56)-C(51)-C(53)-C(54)	23.64(12)
C(64)-C(53)-C(54)-C(57)	-15.25(16)	C(51)-C(53)-C(54)-C(57)	118.69(11)
C(64)-C(53)-C(54)-C(59)	111.55(11)	C(51)-C(53)-C(54)-C(59)	-114.51(10)
C(64)-C(53)-C(54)-C(55)	-132.75(11)	C(51)-C(53)-C(54)-C(55)	1.19(12)
C(57)-C(54)-C(55)-C(71)	82.52(13)	C(59)-C(54)-C(55)-C(71)	-39.10(15)
C(53)-C(54)-C(55)-C(71)	-152.56(11)	C(57)-C(54)-C(55)-C(56)	-150.95(10)
C(59)-C(54)-C(55)-C(56)	87.44(11)	C(53)-C(54)-C(55)-C(56)	-26.02(12)
C(71)-C(55)-C(56)-C(51)	169.74(12)	C(54)-C(55)-C(56)-C(51)	42.09(13)
C(50)-C(51)-C(56)-C(55)	79.09(12)	C(52)-C(51)-C(56)-C(55)	-153.27(11)
C(53)-C(51)-C(56)-C(55)	-40.50(12)	$\mathrm{C}(58)-\mathrm{O}(23)-\mathrm{C}(57)-\mathrm{O}(25)$	167.64(10)
$\mathrm{C}(58)-\mathrm{O}(23)-\mathrm{C}(57)-\mathrm{C}(54)$	-17.68(15)	$\mathrm{C}(59)-\mathrm{C}(54)-\mathrm{C}(57)-\mathrm{O}(25)$	162.13(11)
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(57)-\mathrm{O}(25)$	42.30(15)	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(57)-\mathrm{O}(25)$	-74.02(15)
$\mathrm{C}(59)-\mathrm{C}(54)-\mathrm{C}(57)-\mathrm{O}(23)$	-12.20(15)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(57)-\mathrm{O}(23)$	-132.03(10)
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(57)-\mathrm{O}(23)$	111.65(12)	$\mathrm{C}(59)-\mathrm{O}(24)-\mathrm{C}(58)-\mathrm{O}(23)$	-44.09(14)
$\mathrm{C}(59)-\mathrm{O}(24)-\mathrm{C}(58)-\mathrm{C}(63)$	-158.67(11)	$\mathrm{C}(59)-\mathrm{O}(24)-\mathrm{C}(58)-\mathrm{C}(62)$	77.46(14)
$\mathrm{C}(57)-\mathrm{O}(23)-\mathrm{C}(58)-\mathrm{O}(24)$	45.10(14)	$\mathrm{C}(57)-\mathrm{O}(23)-\mathrm{C}(58)-\mathrm{C}(63)$	159.40(10)
$\mathrm{C}(57)-\mathrm{O}(23)-\mathrm{C}(58)-\mathrm{C}(62)$	-77.76(12)	$\mathrm{C}(58)-\mathrm{O}(24)-\mathrm{C}(59)-\mathrm{O}(26)$	-166.41(12)
$\mathrm{C}(58)-\mathrm{O}(24)-\mathrm{C}(59)-\mathrm{C}(54)$	16.03(16)	$\mathrm{C}(57)-\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{O}(26)$	-164.44(12)
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{O}(26)$	-46.42(16)	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{O}(26)$	65.67(15)
$\mathrm{C}(57)-\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{O}(24)$	13.02(15)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{O}(24)$	131.04(11)
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{O}(24)$	-116.87(11)	C(51)-C(53)-C(64)-C(65)	-74.40(14)
C(54)-C(53)-C(64)-C(65)	55.94(16)	C(51)-C(53)-C(64)-C(69)	104.87(12)
C(54)-C(53)-C(64)-C(69)	-124.79(12)	C(69)-C(64)-C(65)-C(66)	1.37(18)
C(53)-C(64)-C(65)-C(66)	-179.36(11)	C(64)-C(65)-C(66)-C(67)	-0.17(18)

$C(70)-\mathrm{O}(27)-\mathrm{C}(67)-\mathrm{C}(66)$	$2.9(2)$	$\mathrm{C}(70)-\mathrm{O}(27)-\mathrm{C}(67)-\mathrm{C}(68)$	$-177.33(13)$
$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{O}(27)$	$178.72(12)$	$\mathrm{C}(65)-\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)$	$-1.06(19)$
$\mathrm{O}(27)-\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)$	$-178.76(12)$	$\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)$	$1.03(19)$
$\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{C}(69)-\mathrm{C}(64)$	$0.22(19)$	$\mathrm{C}(65)-\mathrm{C}(64)-\mathrm{C}(69)-\mathrm{C}(68)$	$-1.40(18)$
$\mathrm{C}(53)-\mathrm{C}(64)-\mathrm{C}(69)-\mathrm{C}(68)$	$179.28(11)$	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(71)-\mathrm{C}(72)$	$123.01(15)$
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(71)-\mathrm{C}(72)$	$-115.60(15)$		

Appendix B - Crystal Structure of compound 15

The compound crystallizes as colorless block-like crystals from a solvent mixture of chloroform, ethyl acetate, diethyl ether, benzene and pentane. There are two crystallographically independent, yet chemically identical, molecules of the compound in the asymmetric unit of the primitive, acentric, orthorhombic space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$.

Two methods of determining the absolute stereochemistry were applied to the data. The comparison of intensities of Friedel pairs of reflections gave an absolute structure parameter (Flack parameter) of $0.002(6)$. A value of zero indicates the correct enantiomorph of the space group; a value of one the inverted absolute stereochemistry. The second analysis is the Hooft analysis (see additional article for further information). The Hooft y parameter was measured to be: 0.009(6) (a value of zero indicates the correct stereochemistry) and the P2(true) and P3(true) values (measures of racemic twin components) were both 1.000 , indicating no racemic twinning within the sample. The correct absolute stereochemistry is depicted in the Figures.

The structure of each of the two molecules is essentially identical and only differs in that one of the two molecules has some disorder present in one of the acetyl groups (C24A/C24B). The other differences are changes in torsional angles. They are otherwise identical in connectivity and stereochemistry. Significant differences are the orientation of the vinyl group and the orientation of the major component of the disordered acetyl with respect to the ordered molecule.

The structure of the molecules is as expected. The two independent amide moieties form H -bonds to nearby acceptor atoms. N1 forms an H-bond to the amide oxygen, O1A, of a neighboring molecule while the second molecule (N1A) forms an H-bond to an acetyl oxygen (O4) of a symmetry related "first" molecule. This results in a one-dimensional chain of molecules that run through the lattice parallel to the c-axis.

The disorder was refined with the two components having an occupancy summed to unity, giving an approximately $0.64: 0.36$ occupancy ratio. This disorder does have some effect on the C-O bond distances of the acetyl group, resulting in an average of the single and double-bond character.

CRYSTAL SUMMARY

Crystal data for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{7} ; \mathrm{M}_{\mathrm{r}}=544.3$; Orthorhombic; space group $\mathrm{P}_{1} 2_{1} 2_{1} ; a=11.9755(7) \AA ; b$ $=19.1059(12) \AA ; c=22.4599(14) \AA ; \alpha=90^{\circ} ; \beta=90^{\circ} ; \gamma=90^{\circ} ; \mathrm{V}=5138.9(5) \AA^{3} ; Z=8 ; \mathrm{T}=120(2)$ $\mathrm{K} ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.644 \mathrm{~mm}^{-1} ; \mathrm{d}_{\text {calc }}=1.407 \mathrm{~g} \cdot \mathrm{~cm}^{-3} ; 67562$ reflections collected; 10488 unique $\left(\mathrm{R}_{\text {int }}=0.0817\right)$; giving $\mathrm{R}_{1}=0.0392$, $\mathrm{wR}_{2}=0.0749$ for 8071 data with $[I>2 \sigma(\mathrm{I})]$ and R_{1} $=0.0671, \mathrm{wR}_{2}=0.0900$ for all 10488 data. Residual electron density $\left(\mathrm{e}^{-} . \AA^{-3}\right) \mathrm{max} / \mathrm{min}: ~ 0.410 /-0.428$.

An arbitrary sphere of data were collected on a colorless block-like crystal, having approximate dimensions of $0.38 \times 0.19 \times 0.12 \mathrm{~mm}$, on a Bruker Kappa X8-APEX-II diffractometer using a combination of ω - and φ-scans of 0.5°. Data were corrected for absorption and polarization effects and analyzed for space group determination. The structure was solved by direct methods and expanded routinely. The model was refined by full-matrix least-squares analysis of F^{2} against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Unless otherwise noted, hydrogen atoms were included in calculated positions. Thermal parameters for the hydrogens were tied to the isotropic thermal parameter of the atom to which they are bonded ($1.5 \times$ for methyl, $1.2 \times$ for all others).

Table 1. Crystal data and structure refinement for su038.

Independent reflections
Completeness to $\theta=26.39^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$10488\left[\mathrm{R}_{\mathrm{int}}=0.0817\right]$
99.8 \%
empirical
0.9427 and 0.7836

Full-matrix least-squares on F^{2}

10488 / 0 / 648
1.026
$\mathrm{R}_{1}=0.0392, \mathrm{wR}_{2}=0.0749$
$\mathrm{R}_{1}=0.0671, \mathrm{wR}_{2}=0.0900$
0.002(6)
0.410 and $-0.428 \mathrm{e}^{-} . \AA^{-3}$

Table 2. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for su038. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\operatorname{Br}(1)$	0.35400(3)	0.05798(2)	0.05995(2)	0.028(1)
$\mathrm{O}(1)$	0.7724(2)	0.14114(13)	-0.09452(10)	0.024(1)
$\mathrm{O}(2)$	0.9329(2)	0.01860(14)	-0.16764(11)	0.030(1)
$\mathrm{O}(3)$	1.0094(2)	0.10654(13)	-0.11610(11)	0.024(1)
$\mathrm{O}(4)$	0.7202(2)	-0.10988(13)	-0.17290(11)	0.023(1)
$\mathrm{O}(5)$	0.8538(2)	-0.18739(12)	-0.14783(10)	0.025(1)
$\mathrm{O}(6)$	0.8119(3)	-0.15552(15)	0.01488(12)	0.039(1)
$\mathrm{O}(7)$	0.6652(2)	-0.16036(14)	-0.04703(12)	0.034(1)
N(1)	0.8734(3)	0.08528(14)	-0.02395(12)	0.019(1)
$\mathrm{C}(1)$	0.7842(3)	-0.01754(18)	-0.07883(15)	0.019(1)
C(2)	0.8919(3)	0.02596(18)	-0.06300(16)	0.018(1)
C(3)	0.9712(3)	-0.02905(19)	-0.03324(17)	0.022(1)
C(4)	0.9497(3)	-0.09462(19)	-0.07007(17)	0.023(1)
C(5)	0.8233(3)	-0.09653(19)	-0.08031(15)	0.019(1)
C(6)	0.6813(3)	-0.00094(19)	-0.04260(16)	0.020(1)
C(7)	0.6764(3)	-0.0053(2)	0.01958(16)	0.024(1)

C(8)	0.5788(3)	0.0114(2)	0.04987(17)	0.026(1)
C(9)	0.4862(3)	0.03370(19)	0.01880(17)	0.023(1)
C(10)	0.4886(3)	0.03916(19)	-0.04309(16)	0.022(1)
C(11)	0.5862(3)	0.02142(19)	-0.07210(16)	0.021(1)
C(12)	0.8127(3)	0.14041(18)	-0.04437(16)	0.019(1)
C(13)	0.7987 (3)	0.20074(18)	-0.00297(15)	0.016(1)
C(14)	0.8875(3)	0.2258(2)	0.03067(16)	0.023(1)
C(15)	0.8744(3)	0.28546(18)	0.06587(17)	0.024(1)
C(16)	0.7719 (3)	0.31890 (19)	0.06753(16)	0.024(1)
C(17)	0.6831 (3)	0.29324(19)	0.03528(16)	0.023(1)
C(18)	0.6962(3)	0.23441 (19)	0.00006(15)	0.020(1)
C(19)	0.9439 (3)	0.05019(19)	-0.12165(16)	0.021(1)
C(20)	1.0607(4)	0.1289(2)	-0.17136(17)	0.032(1)
C(21)	1.0918(3)	-0.0073(2)	-0.02852(18)	0.028(1)
C(22)	$1.1756(3)$	-0.0374(2)	-0.0549(2)	0.043(1)
C(23)	0.7916(3)	-0.13034(19)	-0.13923(16)	0.020(1)
C(24)	0.8309(4)	-0.2276(2)	-0.20145(17)	0.032(1)
C(25)	0.7681 (4)	-0.14058(19)	-0.03118(17)	0.026(1)
C(26)	0.6032(4)	-0.1987(3)	-0.0021(2)	0.061 (2)
$\mathrm{Br}(2)$	0.64198(4)	-0.23606(2)	0.21692(2)	0.036(1)
$\mathrm{O}(1 \mathrm{~A})$	0.8903(2)	0.07177(12)	0.11314(10)	0.021(1)

$\mathrm{O}(2 \mathrm{~A})$	1.1681(2)	0.07169(13)	0.14012(12)	0.033(1)
$\mathrm{O}(3 \mathrm{~A})$	1.0691(2)	0.16320(12)	0.17143(11)	0.019(1)
$\mathrm{O}(4 \mathrm{~A})$	1.3347 (2)	-0.07974(15)	0.20077(13)	0.037(1)
$\mathrm{O}(5 \mathrm{~A})$	1.2056(2)	-0.09853(14)	0.12960(12)	0.030(1)
$\mathrm{O}(6 \mathrm{~A})$	1.0962(2)	-0.11088(13)	0.31737(11)	0.027(1)
$\mathrm{O}(7 \mathrm{~A})$	1.1130(2)	-0.17520(12)	0.23394(11)	0.024(1)
$\mathrm{N}(1 \mathrm{~A})$	0.9076(2)	$0.07396(14)$	0.21340(13)	0.016(1)
C(1A)	1.0359(3)	-0.02809(18)	0.19091(15)	0.016(1)
C(2A)	1.0227(3)	0.05060(18)	0.21125(15)	0.016(1)
C(3A)	1.0791(3)	0.05214(18)	0.27365(15)	0.019(1)
C(4A)	1.1845(3)	0.00784(19)	0.26348(17)	0.023(1)
C(5A)	1.1449(3)	-0.05395(17)	0.22442(14)	0.019(1)
$\mathrm{C}(6 \mathrm{~A})$	0.9344(3)	-0.07371(18)	0.19862(16)	0.017(1)
C(7A)	0.8748(3)	-0.08114(18)	0.25156(15)	0.020(1)
C(8A)	0.7875(3)	-0.12802(19)	0.25743(17)	0.023(1)
C(9A)	0.7581 (3)	-0.16845(19)	0.20943 (17)	0.022(1)
C(10A)	0.8105(3)	-0.1611(2)	0.15483(18)	0.026(1)
C(11A)	0.8992(3)	-0.1145(2)	0.14978(17)	0.025(1)
C(12A)	0.8464(3)	0.07987(17)	0.16298(15)	0.017(1)
C(13A)	0.7258(3)	0.09647(18)	0.17109(15)	0.017(1)
C(14A)	0.6777(3)	0.14972(19)	0.13734(16)	0.020(1)

C(15A)	0.5659(3)	0.1655(2)	0.14353(17)	0.023(1)
C(16A)	0.4999(3)	0.1272(2)	0.18293(16)	0.025(1)
C(17A)	0.5466(3)	0.0736(2)	0.21597(17)	0.026(1)
C(18A)	0.6601 (3)	0.05866(19)	0.21075(15)	0.020(1)
C(19A)	1.0923(3)	0.09548(19)	0.16859(16)	0.019(1)
C(20A)	1.1450(4)	0.20774(19)	0.13873(17)	0.029(1)
C(21A)	1.1041(3)	0.1228(2)	0.30011 (17)	0.024(1)
C(22A)	1.0603(4)	0.1457(2)	0.35017(19)	0.034(1)
C(23A)	1.2364(3)	-0.07848(19)	0.18198(18)	0.024(1)
C(24A)	1.2865(5)	-0.1278(3)	0.0901 (3)	0.030(2)
C(24B)	1.4237(12)	-0.0948(8)	0.1635(6)	0.051(5)
C(25A)	1.1165(3)	-0.11604(19)	0.26482(17)	0.020(1)
C(26A)	1.0687(4)	-0.2350(2)	0.26584(19)	0.035(1)
H(1B)	0.9011	0.0856	0.0124	0.022
H(1A)	0.7652	-0.0051	-0.1209	0.023
H(3A)	0.9431	-0.0380	0.0080	0.027
H(4A)	0.9745	-0.1369	-0.0483	0.027
H(4B)	0.9900	-0.0922	-0.1085	0.027
H(7A)	0.7404	-0.0198	0.0413	0.029
H(8A)	0.5760	0.0075	0.0920	0.031
H(10A)	0.4250	0.0546	-0.0647	0.026

H(11A)	0.5882	0.0247	-0.1143	0.025
H(14A)	0.9574	0.2023	0.0297	0.028
H(15A)	0.9354	0.3030	0.0885	0.029
H(16A)	0.7627	0.3598	0.0911	0.028
H(17A)	0.6126	0.3160	0.0372	0.027
H(18A)	0.6347	0.2170	-0.0222	0.024
H(20A)	1.1040	0.1717	-0.1644	0.048
H(20B)	1.0026	0.1381	-0.2010	0.048
H(20C)	1.1104	0.0919	-0.1860	0.048
H(21A)	1.1080	0.0320	-0.0041	0.034
H(22A)	1.1634	-0.0768	-0.0798	0.051
H(22B)	1.2491	-0.0199	-0.0493	0.051
H(24A)	0.8881	-0.2638	-0.2063	0.048
H(24B)	0.8319	-0.1964	-0.2361	0.048
H(24C)	0.7573	-0.2497	-0.1981	0.048
H(26A)	0.5352	-0.2182	-0.0198	0.091
H(26B)	0.5829	-0.1670	0.0305	0.091
H(26C)	0.6495	-0.2368	0.0135	0.091
$\mathrm{H}(1 \mathrm{AB})$	0.8771	0.0844	0.2479	0.019
H(1AA)	1.0538	-0.0274	0.1474	0.019
H(3AA)	1.0298	0.0263	0.3021	0.022

H(4AA)	1.2151	-0.0092	0.3018	0.027
$\mathrm{H}(4 \mathrm{AB})$	1.2427	0.0354	0.2427	0.027
H(7AA)	0.8948	-0.0530	0.2848	0.024
H(8AA)	0.7485	-0.1322	0.2941	0.027
H(10B)	0.7863	-0.1875	0.1214	0.032
H(11B)	0.9367	-0.1100	0.1127	0.030
H(14B)	0.7222	0.1753	0.1099	0.024
H(15B)	0.5339	0.2025	0.1210	0.028
H(16B)	0.4228	0.1378	0.1871	0.030
H(17B)	0.5013	0.0470	0.2423	0.031
H(18B)	0.6926	0.0227	0.2343	0.024
H(20D)	1.1144	0.2553	0.1368	0.044
H(20E)	1.1545	0.1894	0.0983	0.044
H(20F)	1.2175	0.2088	0.1589	0.044
H(21B)	1.1545	0.1526	0.2795	0.029
H(22C)	1.0097	0.1171	0.3718	0.041
H(22D)	1.0793	0.1909	0.3647	0.041
H(24D)	1.2572	-0.1274	0.0494	0.045
H(24E)	1.3026	-0.1762	0.1020	0.045
H(24F)	1.3553	-0.1001	0.0919	0.045
H(24G)	1.4929	-0.0962	0.1868	0.076

$\mathrm{H}(24 \mathrm{H})$	1.4297	-0.0585	0.1328	0.076
$\mathrm{H}(24 \mathrm{I})$	1.4116	-0.1404	0.1445	0.076
$\mathrm{H}(26 \mathrm{D})$	1.0725	-0.2766	0.2404	0.052
$\mathrm{H}(26 \mathrm{E})$	0.9908	-0.2259	0.2768	0.052
$\mathrm{H}(26 \mathrm{~F})$	1.1128	-0.2429	0.3020	0.052

Table 3. Anisotropic displacement parameters $\left(\AA^{2}\right)$ for su038.
The anisotropic displacement factor exponent takes the form:

$$
-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{*} \mathrm{U}_{11}+\ldots+2 \mathrm{hka} \mathrm{a}^{*} * \mathrm{U}_{12}\right]
$$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\operatorname{Br}(1)$	0.0173(2)	0.0443(2)	0.0223(2)	-0.0059(2)	0.0044(2)	0.0006(2)
$\mathrm{O}(1)$	0.0282(16)	0.0363 (16)	0.0083(13)	-0.0016(11)	-0.0024(12)	0.0025(13)
$\mathrm{O}(2)$	0.0273 (17)	0.0449(17)	0.0187(15)	-0.0134(13)	0.0046(13)	$-0.0069(13)$
$\mathrm{O}(3)$	0.0269(16)	0.0300(15)	0.0139(13)	-0.0043(11)	0.0041(12)	$-0.0055(12)$
$\mathrm{O}(4)$	0.0238(15)	0.0322(15)	0.0130(14)	-0.0015(11)	-0.0020(12)	$-0.0025(12)$
$\mathrm{O}(5)$	0.0253(14)	0.0250(13)	$0.0236(14)$	-0.0091(10)	$-0.0034(14)$	0.0018(13)
$\mathrm{O}(6)$	0.050(2)	0.0500(19)	0.0184(16)	0.0084(13)	$-0.0055(15)$	0.0014(15)
$\mathrm{O}(7)$	0.0293(18)	0.0485(18)	0.0243(16)	0.0096(12)	0.0036(14)	$-0.0136(14)$
N(1)	0.0195(18)	0.0273 (16)	0.0091(14)	-0.0040(12)	$-0.0035(14)$	0.0020(14)
C(1)	0.017(2)	0.028(2)	0.0109(19)	-0.0012(15)	-0.0022(16)	$-0.0007(16)$
C(2)	0.0166(19)	0.0228(18)	0.0143(18)	-0.0041(15)	$-0.0006(17)$	0.0004(15)
C(3)	0.022(2)	0.026(2)	0.018(2)	-0.0023(16)	$-0.0062(18)$	0.0033 (17)
C(4)	0.021 (2)	0.024(2)	0.022(2)	-0.0034(16)	-0.0049(18)	0.0008(16)
C(5)	0.015(2)	0.027(2)	0.0158(19)	-0.0036(15)	$-0.0009(15)$	$-0.0008(16)$
C(6)	0.018(2)	0.026(2)	0.017(2)	-0.0043(15)	0.0019(16)	$-0.0022(16)$

C(7)	0.021 (2)	0.035(2)	0.016(2)	-0.0032(16)	$-0.0039(17)$	0.0050(17)
C(8)	0.022(2)	0.041 (2)	0.015(2)	-0.0035(17)	0.0016(18)	-0.0004(18)
C(9)	0.019(2)	0.030(2)	0.021 (2)	-0.0054(17)	0.0054(18)	$-0.0027(17)$
C(10)	0.013(2)	0.031(2)	0.020(2)	0.0007(16)	$-0.0018(16)$	0.0005(16)
C(11)	0.024(2)	0.029(2)	0.0101(19)	-0.0013(15)	$-0.0003(17)$	-0.0009(17)
C(12)	0.018(2)	0.023(2)	0.016(2)	-0.0005(15)	0.0033(16)	$-0.0010(16)$
C(13)	0.020(2)	0.0204(19)	0.0090(18)	0.0012(14)	0.0009(16)	-0.0032(16)
C(14)	0.022(2)	0.031(2)	0.017(2)	-0.0005(16)	0.0048(17)	0.0019(17)
C(15)	0.022(2)	0.030(2)	0.021 (2)	-0.0035(16)	0.0010(19)	-0.0065(17)
C(16)	0.033(2)	0.022(2)	0.016(2)	-0.0041(16)	$0.0039(19)$	-0.0023(18)
C(17)	0.025(2)	0.025(2)	0.0184(19)	0.0018(16)	0.0007(17)	0.0014(17)
C(18)	0.020(2)	0.0250(19)	0.0145(19)	0.0018(16)	$-0.0041(16)$	0.0027(17)
C(19)	0.018(2)	0.029(2)	0.0149(19)	-0.0059(17)	$-0.0025(16)$	0.0043(17)
C(20)	0.031(3)	0.045(3)	0.020(2)	0.0019(19)	0.005(2)	-0.007(2)
C(21)	0.022(2)	0.029(2)	0.033(2)	-0.0088(18)	-0.014(2)	0.0052(18)
C(22)	0.021(2)	0.054(3)	0.054(3)	-0.018(2)	-0.006(2)	-0.004(2)
C(23)	0.016(2)	0.025(2)	0.017(2)	0.0041(16)	0.0024(18)	-0.0054(17)
C(24)	0.037(3)	0.030(2)	0.029(2)	-0.0152(18)	$-0.0028(19)$	-0.0023(19)
C(25)	0.033(3)	0.028(2)	0.017(2)	$0.0019(17)$	0.001(2)	0.0016(19)
C(26)	0.055(4)	0.082(4)	0.046(3)	0.024(3)	0.009(3)	-0.026(3)
$\operatorname{Br}(2)$	0.0248(2)	0.0356(2)	0.0465(3)	-0.0009(2)	0.0028(2)	-0.0098(2)

$\mathrm{O}(1 \mathrm{~A})$	0.0226(15)	$0.0296(14)$	0.0109(12)	0.0006(10)	0.0029(11)	0.0035(11)
$\mathrm{O}(2 \mathrm{~A})$	0.0298(18)	0.0283 (15)	0.0412(17)	0.0082(12)	0.0212(14)	0.0048(13)
O(3A)	0.0224(15)	0.0178(14)	0.0179(14)	0.0042(10)	0.0057(12)	0.0011(11)
$\mathrm{O}(4 \mathrm{~A})$	0.0233(18)	0.0528(19)	$0.0353(17)$	0.0106(14)	0.0034(14)	0.0105(14)
$\mathrm{O}(5 \mathrm{~A})$	0.0348(18)	0.0355(16)	0.0201(15)	$-0.0014(12)$	0.0093(13)	0.0124(13)
O(6A)	0.0352(17)	0.0293(15)	0.0174(15)	0.0066(11)	0.0028(13)	0.0026(13)
O (7A)	0.0293(17)	0.0183(13)	$0.0233(14)$	0.0041(10)	0.0073(12)	0.0025(11)
N(1A)	0.0143(15)	0.0221 (16)	0.0115(15)	0.0005(12)	0.0051(13)	0.0048(12)
$\mathrm{C}(1 \mathrm{~A})$	0.017(2)	0.0212(19)	0.0095(18)	0.0027(14)	0.0020(15)	0.0001(15)
C(2A)	0.0172(19)	0.0219(19)	0.0099 (17)	0.0023(16)	0.0011(16)	-0.0004(15)
C(3A)	0.0159(19)	0.0218(19)	0.0184(19)	0.0019 (16)	$-0.0014(16)$	-0.0020(16)
C(4A)	0.019(2)	0.027(2)	0.023(2)	0.0037(16)	$-0.0046(17)$	$-0.0013(16)$
C(5A)	0.0169(17)	0.0213 (17)	0.0191(18)	0.0027(15)	0.0031(18)	0.0028(18)
C(6A)	0.019(2)	0.017(2)	0.0163(19)	0.0028(14)	-0.0022(16)	0.0012(15)
C(7A)	0.021(2)	0.026(2)	0.0122(18)	0.0016(14)	0.0007(16)	0.0027(16)
C(8A)	0.021 (2)	0.027(2)	0.020(2)	0.0027(16)	0.0062(18)	0.0027(17)
C(9A)	0.014(2)	0.026(2)	0.025(2)	0.0053(17)	$-0.0014(18)$	0.0007(16)
C(10A)	0.029(2)	0.029(2)	0.020(2)	-0.0011(17)	-0.0066(18)	-0.0059(18)
C(11A)	0.029(2)	0.031(2)	0.014(2)	0.0064(17)	0.0012(17)	0.0028(18)
$\mathrm{C}(12 \mathrm{~A})$	0.019(2)	0.0192(18)	0.0140(18)	0.0005(13)	0.0043(18)	-0.0010 (16)
C(13A)	0.0162(19)	0.0222(19)	0.0116(18)	$-0.0038(15)$	-0.0048(16)	0.0016(16)

$\mathrm{C}(14 \mathrm{~A})$	$0.021(2)$	$0.024(2)$	$0.0151(19)$	$0.0013(15)$	$0.0000(16)$	$-0.0005(16)$
$\mathrm{C}(15 \mathrm{~A})$	$0.023(2)$	$0.029(2)$	$0.018(2)$	$0.0038(17)$	$-0.0029(18)$	$0.0080(18)$
$\mathrm{C}(16 \mathrm{~A})$	$0.015(2)$	$0.042(2)$	$0.017(2)$	$-0.0034(18)$	$0.0001(17)$	$0.0044(18)$
$\mathrm{C}(17 \mathrm{~A})$	$0.022(2)$	$0.037(2)$	$0.018(2)$	$0.0043(18)$	$0.0038(18)$	$-0.0023(18)$
$\mathrm{C}(18 \mathrm{~A})$	$0.020(2)$	$0.0264(19)$	$0.0123(17)$	$0.0051(16)$	$0.0027(17)$	$0.0009(17)$
$\mathrm{C}(19 \mathrm{~A})$	$0.018(2)$	$0.024(2)$	$0.015(2)$	$0.0051(15)$	$0.0008(17)$	$0.0014(17)$
$\mathrm{C}(20 \mathrm{~A})$	$0.029(2)$	$0.026(2)$	$0.033(2)$	$0.0097(16)$	$0.009(2)$	$-0.002(2)$
$\mathrm{C}(21 \mathrm{~A})$	$0.023(2)$	$0.027(2)$	$0.023(2)$	$-0.0003(16)$	$-0.0034(18)$	$-0.0021(17)$
$\mathrm{C}(22 \mathrm{~A})$	$0.037(3)$	$0.032(2)$	$0.033(3)$	$-0.0057(19)$	$0.000(2)$	$-0.007(2)$
$\mathrm{C}(23 \mathrm{~A})$	$0.020(2)$	$0.018(2)$	$0.034(2)$	$0.0091(17)$	$0.0049(19)$	$0.0050(16)$
$\mathrm{C}(24 \mathrm{~A})$	$0.037(4)$	$0.035(4)$	$0.018(3)$	$-0.004(3)$	$0.014(3)$	$0.015(3)$
$\mathrm{C}(24 \mathrm{~B})$	$0.037(9)$	$0.063(10)$	$0.053(10)$	$0.022(7)$	$0.026(7)$	$0.015(7)$
$\mathrm{C}(25 \mathrm{~A})$	$0.016(2)$	$0.024(2)$	$0.021(2)$	$0.0032(15)$	$-0.0025(16)$	$0.0049(16)$
$\mathrm{C}(26 \mathrm{~A})$	$0.040(3)$	$0.024(2)$	$0.041(3)$	$0.0114(19)$	$0.011(2)$	$-0.002(2)$

Table 4. Bond lengths $[\AA]$ for su038.

atom-atom	distance	atom-atom	distance
$\mathrm{Br}(1)-\mathrm{C}(9)$	1.891(4)	$\mathrm{O}(1)-\mathrm{C}(12)$	1.226(4)
$\mathrm{O}(2)-\mathrm{C}(19)$	1.204(4)	$\mathrm{O}(3)-\mathrm{C}(19)$	1.338(4)
$\mathrm{O}(3)-\mathrm{C}(20)$	$1.450(4)$	$\mathrm{O}(4)-\mathrm{C}(23)$	$1.207(4)$
$\mathrm{O}(5)-\mathrm{C}(23)$	1.334(4)	$\mathrm{O}(5)-\mathrm{C}(24)$	1.454(4)
$\mathrm{O}(6)-\mathrm{C}(25)$	1.194(5)	$\mathrm{O}(7)-\mathrm{C}(25)$	$1.337(5)$
$\mathrm{O}(7)-\mathrm{C}(26)$	1.452(5)	$\mathrm{N}(1)-\mathrm{C}(12)$	$1.360(4)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.450(4)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.510(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.576(5)$	$\mathrm{C}(1)-\mathrm{C}(5)$	$1.580(5)$
$\mathrm{C}(2)-\mathrm{C}(19)$	$1.529(5)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.566(5)$
$\mathrm{C}(3)-\mathrm{C}(21)$	1.506(5)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.523(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.532(5)	$\mathrm{C}(5)-\mathrm{C}(23)$	$1.521(5)$
$\mathrm{C}(5)-\mathrm{C}(25)$	$1.537(5)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.386(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.400 (5)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.390(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1.378(5)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.394(5)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(5)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1.490 (5)
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.388(5)$	$\mathrm{C}(13)-\mathrm{C}(14)$	1.390 (5)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.396(5)$	C(15)-C(16)	$1.385(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.377 (5)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.384(5)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.300 (5)	$\operatorname{Br}(2)-\mathrm{C}(9 \mathrm{~A})$	$1.906(4)$
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.246 (4)	$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	1.200 (4)
$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	1.325(4)	$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	1.445 (4)
$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	1.252(5)	$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(24 \mathrm{~B})$	1.386(13)
$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	1.291 (5)	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})$	1.428(6)
$\mathrm{O}(6 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	1.209 (4)	$\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	1.327(4)
$\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})$	1.449(4)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$1.353(4)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$1.450(4)$	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.506(5)
		S111	

$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.579(5)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.585(5)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	1.532(5)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	$1.556(5)$
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	$1.506(5)$	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.537 (5)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	$1.546(5)$	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	1.526(5)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	1.532(5)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	$1.394(5)$
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.410 (5)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	$1.383(5)$
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	$1.372(5)$	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.385(5)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.391 (5)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.490 (5)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	1.391 (5)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	1.393 (5)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$1.380(5)$	C(15A)-C(16A)	$1.394(5)$
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	$1.382(5)$	C(17A)-C(18A)	$1.394(5)$
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$	1.316(5)	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	1.0000	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	1.0000
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9500	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9500	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9500
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9500	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800	$\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AB})$	0.8800
$\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	1.0000	$\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{AA})$	1.0000
$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AA})$	0.9900	$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	0.9900
$\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AA})$	0.9500	$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{AA})$	0.9500
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B})$	0.9500	$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	0.9500
$\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	0.9500	$\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	0.9500
$\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~B})$	0.9500	$\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~B})$	0.9500
$\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~B})$	0.9500	$\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{D})$	0.9800

C(20A)-H(20E)	0.9800	C(20A)-H(20F)	0.9800
C(21A)-H(21B)	0.9500	C(22A)-H(22C)	0.9500
C(22A)-H(22D)	0.9500	C(24A)-H(24D)	0.9800
C(24A)-H(24E)	0.9800	C(24A)-H(24F)	0.9800
C(24B)-H(24G)	0.9800	C(24B)-H(24H)	0.9800
C(24B)-H(24I)	0.9800	$C(26 A)-H(26 D)$	0.9800
$C(26 A)-H(26 E)$	0.9800	$C(26 A)-H(26 F)$	0.9800

Symmetry transformations used to generate equivalent atoms:

Table 5. Bond angles [${ }^{\circ}$] for su038.
atom-atom-atom
angle
atom-atom-atom
angle

$\mathrm{C}(19)-\mathrm{O}(3)-\mathrm{C}(20)$	113.9(3)	$\mathrm{C}(23)-\mathrm{O}(5)-\mathrm{C}(24)$	116.5(3)
$\mathrm{C}(25)-\mathrm{O}(7)-\mathrm{C}(26)$	115.4(3)	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(2)$	118.9(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	115.8(3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)$	117.0(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	105.4(3)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(19)$	110.3(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.0(3)	$\mathrm{C}(19)-\mathrm{C}(2)-\mathrm{C}(3)$	108.9(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	115.1(3)	$\mathrm{C}(19)-\mathrm{C}(2)-\mathrm{C}(1)$	107.4(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	103.8(3)	$\mathrm{C}(21)-\mathrm{C}(3)-\mathrm{C}(4)$	115.3(3)
$\mathrm{C}(21)-\mathrm{C}(3)-\mathrm{C}(2)$	115.2(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	102.6(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	105.6(3)	$\mathrm{C}(23)-\mathrm{C}(5)-\mathrm{C}(4)$	112.8(3)
$\mathrm{C}(23)-\mathrm{C}(5)-\mathrm{C}(25)$	106.6(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(25)$	109.3(3)
$\mathrm{C}(23)-\mathrm{C}(5)-\mathrm{C}(1)$	110.5(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	105.5(3)
$\mathrm{C}(25)-\mathrm{C}(5)-\mathrm{C}(1)$	112.4(3)	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	117.4(3)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(1)$	118.5(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	124.0(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	120.7(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	120.0(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.7(4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Br}(1)$	120.1(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\operatorname{Br}(1)$	119.1(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	118.0(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	123.1(3)	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{N}(1)$	122.0(3)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	121.4(3)	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	116.7(3)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	119.4(3)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	119.3(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	121.3(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.2(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	119.4(4)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.4(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.2(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	120.3(3)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{O}(3)$	123.2(3)	$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(2)$	122.9(3)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(2)$	113.7(3)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(3)$	125.9(4)
$\mathrm{O}(4)-\mathrm{C}(23)-\mathrm{O}(5)$	124.7(3)	$\mathrm{O}(4)-\mathrm{C}(23)-\mathrm{C}(5)$	125.8(3)
$\mathrm{O}(5)-\mathrm{C}(23)-\mathrm{C}(5)$	109.5(3)	$\mathrm{O}(6)-\mathrm{C}(25)-\mathrm{O}(7)$	124.6(4)

$\mathrm{O}(6)-\mathrm{C}(25)-\mathrm{C}(5)$	124.3(4)	$\mathrm{O}(7)-\mathrm{C}(25)-\mathrm{C}(5)$	111.1(3)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})$	114.7(3)	$\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(24 \mathrm{~B})$	121.6(7)
$\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})$	119.2(4)	$\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})$	115.1(3)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	120.8(3)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	115.9(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	115.4(3)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	104.0(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	111.5(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	112.2(3)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	108.4(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	113.5(3)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	107.3(3)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	103.6(3)
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	112.9(3)	$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	117.3(3)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	102.3(3)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	104.6(3)
$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	107.0(3)	$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	111.6(3)
$\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	108.9(3)	$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	113.0(3)
$\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	109.9(3)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	106.5(3)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	117.0(3)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	124.8(3)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	118.2(3)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	122.3(3)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	118.9(3)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	121.5(3)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{Br}(2)$	120.0(3)	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\operatorname{Br}(2)$	118.5(3)
C(9A)-C(10A)-C(11A)	118.9(4)	C(10A)-C(11A)-C(6A)	121.3(4)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	120.9(3)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	123.0(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	116.1(3)	$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	119.6(3)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	121.0(3)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	119.3(3)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	120.4(4)	C(14A)-C(15A)-C(16A)	119.9(4)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	120.0(4)	C(16A)-C(17A)-C(18A)	120.1(4)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	119.9(3)	$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	123.7(3)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	122.2(3)	$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	113.7(3)
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	123.8(4)	$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$	124.8(4)
$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	118.1(4)	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	117.1(3)
$\mathrm{O}(6 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})$	125.0(3)	$\mathrm{O}(6 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	124.0(3)
$\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	110.9(3)	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	120.6
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~B})$	120.6	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	105.9
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	105.9	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	105.9
$\mathrm{C}(21)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	107.8	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	107.8

$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	107.8	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110.6	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.6	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.8
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	119.7	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	119.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	121.0	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	121.0
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	118.4	$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	118.4
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	119.9	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	119.9
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.3	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.3
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	119.8	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	119.8
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	119.9	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	119.9
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.8	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.8
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	117.1	$\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	117.1
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	120.0	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	120.0
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	120.0	$\mathrm{O}(5)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{O}(5)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{O}(5)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{O}(7)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{O}(7)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{O}(7)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5	$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AB})$	119.6
$\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AB})$	119.6	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	107.0
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	107.0	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	107.0
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{AA})$	108.0	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{AA})$	108.0
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{AA})$	108.0	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AA})$	110.8
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AA})$	110.8	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	110.8
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	110.8	$\mathrm{H}(4 \mathrm{AA})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	108.9
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AA})$	118.8	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{AA})$	118.8
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{AA})$	120.5	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{AA})$	120.5

C(9A)-C(10A)-H(10B)	120.6	C(11A)-C(10A)-H(10B)	120.6
C(10A)-C(11A)-H(11B)	119.4	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	119.4
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	119.8	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	119.8
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	120.0	$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	120.0
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~B})$	120.0	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~B})$	120.0
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~B})$	120.0	$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~B})$	120.0
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 B)$	120.0	$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~B})$	120.0
$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{D})$	109.5	$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{E})$	109.5
$\mathrm{H}(20 \mathrm{D})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{E})$	109.5	$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{~F})$	109.5
$\mathrm{H}(20 \mathrm{D})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{~F})$	109.5	$\mathrm{H}(20 \mathrm{E})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{~F})$	109.5
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{H}(21 \mathrm{~B})$	118.1	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{H}(21 \mathrm{~B})$	118.1
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})-\mathrm{H}(22 \mathrm{C})$	120.0	$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})-\mathrm{H}(22 \mathrm{D})$	120.0
$\mathrm{H}(22 \mathrm{C})-\mathrm{C}(22 \mathrm{~A})-\mathrm{H}(22 \mathrm{D})$	120.0	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})-\mathrm{H}(24 \mathrm{D})$	109.5
$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})-\mathrm{H}(24 \mathrm{E})$	109.5	$\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(24 \mathrm{~A})-\mathrm{H}(24 \mathrm{~F})$	109.5
$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(24 \mathrm{~B})-\mathrm{H}(24 \mathrm{G})$	109.5	$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(24 \mathrm{~B})-\mathrm{H}(24 \mathrm{H})$	109.5
$\mathrm{H}(24 \mathrm{G})-\mathrm{C}(24 \mathrm{~B})-\mathrm{H}(24 \mathrm{H})$	109.5	$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(24 \mathrm{~B})-\mathrm{H}(24 \mathrm{I})$	109.5
$\mathrm{H}(24 \mathrm{G})-\mathrm{C}(24 \mathrm{~B})-\mathrm{H}(24 \mathrm{I})$	109.5	$\mathrm{H}(24 \mathrm{H})-\mathrm{C}(24 \mathrm{~B})-\mathrm{H}(24 \mathrm{I})$	109.5
$\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})-\mathrm{H}(26 \mathrm{D})$	109.5	$\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})-\mathrm{H}(26 \mathrm{E})$	109.5
$\mathrm{H}(26 \mathrm{D})-\mathrm{C}(26 \mathrm{~A})-\mathrm{H}(26 \mathrm{E})$	109.5	$\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})-\mathrm{H}(26 \mathrm{~F})$	109.5
$\mathrm{H}(26 \mathrm{D})-\mathrm{C}(26 \mathrm{~A})-\mathrm{H}(26 \mathrm{~F})$	109.5	$\mathrm{H}(26 \mathrm{E})-\mathrm{C}(26 \mathrm{~A})-\mathrm{H}(26 \mathrm{~F})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 6. Torsion angles [${ }^{\circ}$] for su038.
atom-atom-atom-atom
angle
54.7(4)
-67.0(4)
-142.4(3)
94.4(3)
-20.8(3)
49.9(4)
162.2(3)
38.0(4)
-41.3(4)
-92.8(3)
103.6(4)
-134.2(3)
-15.3(4)
121.3(4)
-57.3(5)
0.9(6)
-1.1(6)
-179.0(3)
179.7(3)
-0.1(6)
0.7(5)
40.9(5)
-136.2(4)
-1.8(5)
0.8(5)
-1.1(6)
atom-atom-atom-atom

$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(19)$	$54.7(4)$	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$175.5(3)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$-67.0(4)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$-11.4(4)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$-142.4(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(19)$	$-134.6(3)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(19)$	$94.4(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110.2(3)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-20.8(3)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)$	$-71.7(4)$
$\mathrm{C}(19)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)$	$49.9(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)$	$164.1(3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$162.2(3)$	$\mathrm{C}(19)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-76.2(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$38.0(4)$	$\mathrm{C}(21)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-167.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-41.3(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(23)$	$148.9(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(25)$	$-92.8(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$28.2(4)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(23)$	$103.6(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(23)$	$-126.1(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$-3.9(4)$	
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(25)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(25)$	$115.1(3)$	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$-15.3(4)$	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$-113.4(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.3(4)$	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$68.0(5)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-57.3(5)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$179.5(4)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$0.6(6)$	
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Br}(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.2(6)$	
$\mathrm{Br}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	C	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$-0.4(6)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$-179.0(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$-178.8(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{O}(1)$	$-0.1(6)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$-178.5(3)$
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$0.7(5)$	$-139.9(3)$	
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$40.9(5)$	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	$42.9(5)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-136.2(4)$	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$175.4(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-1.8(5)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$0.7(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$0.8(5)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.1(5)$
	$-1.1(6)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	

$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	1.3 (5)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	-175.9(3)
$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{O}(2)$	3.6(5)	$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{C}(2)$	178.8(3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(19)-\mathrm{O}(2)$	-153.7(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(19)-\mathrm{O}(2)$	84.2(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(19)-\mathrm{O}(2)$	-27.6(5)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(19)-\mathrm{O}(3)$	31.1 (4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(19)-\mathrm{O}(3)$	-91.0(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(19)-\mathrm{O}(3)$	157.2(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{C}(22)$	3.3 (6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(21)-\mathrm{C}(22)$	-116.0(5)
$\mathrm{C}(24)-\mathrm{O}(5)-\mathrm{C}(23)-\mathrm{O}(4)$	-1.1(5)	$\mathrm{C}(24)-\mathrm{O}(5)-\mathrm{C}(23)-\mathrm{C}(5)$	177.8(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{O}(4)$	-138.5(4)	$\mathrm{C}(25)-\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{O}(4)$	101.6(4)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{O}(4)$	-20.8(5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{O}(5)$	42.6(4)
$\mathrm{C}(25)-\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{O}(5)$	-77.3(4)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(23)-\mathrm{O}(5)$	160.4(3)
$\mathrm{C}(26)-\mathrm{O}(7)-\mathrm{C}(25)-\mathrm{O}(6)$	4.1(6)	$\mathrm{C}(26)-\mathrm{O}(7)-\mathrm{C}(25)-\mathrm{C}(5)$	-176.4(4)
$\mathrm{C}(23)-\mathrm{C}(5)-\mathrm{C}(25)-\mathrm{O}(6)$	139.4(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(25)-\mathrm{O}(6)$	17.3(5)
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(25)-\mathrm{O}(6)$	-99.4(4)	$\mathrm{C}(23)-\mathrm{C}(5)-\mathrm{C}(25)-\mathrm{O}(7)$	-40.1(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(25)-\mathrm{O}(7)$	-162.2(3)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(25)-\mathrm{O}(7)$	81.0(4)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	54.6(4)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	176.4(3)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	-66.6(4)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	-21.6(4)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	-149.4(3)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	-145.2(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	87.0(3)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	100.2(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	-27.6(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	-70.6(4)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	52.9(4)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	166.7(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	165.3(3)	$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	-71.2(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	42.6(3)	$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	-168.1(3)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	-41.1(3)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	147.5(3)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	-94.7(3)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	23.8(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	111.6(3)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	-120.3(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	-7.7(4)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	120.4(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	-125.5(3)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	2.6 (3)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	-52.5(5)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	69.5(4)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	130.5(3)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	-107.6(4)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	2.4(5)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	-174.7(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	-0.3(6)	C(7A)-C(8A)-C(9A)-C(10A)	-2.9(6)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{Br}(2)$	177.6(3)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$3.7(6)$

| $\mathrm{Br}(2)-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | $-176.7(3)$ | $\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | $-1.5(6)$ |
| :--- | ---: | :--- | :--- | ---: |
| $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | $-1.5(6)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | $175.8(3)$ |
| $\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ | $-6.8(5)$ | $\mathrm{C}(2 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | $173.3(3)$ |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$ | $130.7(4)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$ | $-49.4(4)$ |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$ | $-47.9(5)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$ | $132.0(3)$ |
| $\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$ | $0.7(5)$ | $\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$ | $179.2(3)$ |
| $\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$ | $-1.2(6)$ | $\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$ | $0.3(6)$ |
| $\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$ | $1.1(6)$ | $\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$ | $0.8(5)$ |
| $\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$ | $-177.8(3)$ | $\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | $-1.7(6)$ |
| $\mathrm{C}(20 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$ | $-1.9(5)$ | $\mathrm{C}(20 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | $170.8(3)$ |
| $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$ | $-146.8(4)$ | $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$ | $89.3(4)$ |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$ | $-22.0(5)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$ | $40.4(4)$ |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$ | $-83.5(4)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$ | $165.2(3)$ |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$ | $-123.4(4)$ | $\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$ | $118.1(4)$ |
| $\mathrm{C}(24 \mathrm{~B})-\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$ | $8.6(9)$ | $\mathrm{C}(24 \mathrm{~B})-\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | $-173.7(7)$ |
| $\mathrm{C}(24 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | $3.3(6)$ | $\mathrm{C}(24 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | $-174.4(4)$ |
| $\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | $-80.2(4)$ | $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | $38.8(4)$ |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | $158.8(3)$ | $\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$ | $97.7(4)$ |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$ | $-143.3(3)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})$ | $-23.3(4)$ |
| $\mathrm{C}(26 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(6 \mathrm{~A})$ | $7.5(5)$ | $\mathrm{C}(26 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | $-170.1(3)$ |
| $\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(6 \mathrm{~A})$ | $141.0(4)$ | $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(6 \mathrm{~A})$ | $20.2(5)$ |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(6 \mathrm{~A})$ | $-96.1(4)$ | $\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})$ | $-41.4(4)$ |
| $\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})$ | $-162.2(3)$ | $\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})-\mathrm{O}(7 \mathrm{~A})$ | $81.5(3)$ |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for su038 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	d(D-H)	d(H...A)	$d(D . . . A)$	$<(D H A)$
N(1)-H(1B) ...O(1A)	0.88	2.28	$3.096(4)$	153.7
$\mathrm{~N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AB}) \ldots \mathrm{O}(4) \# 1$	0.88	2.18	$3.055(4)$	172.2

Symmetry transformations used to generate equivalent atoms:
$\# 1-x+3 / 2,-y, z+1 / 2$

References

[^0]${ }^{19}$ Chuang, W.-T.; Hsieh, C.-C.; Lai, C.-H.; Lai, C.-H.; Shih, C.-W.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Hsu, Y.-H.; Chou, P.-T. J. Org. Chem. 2011, 76, 8189-8202.
${ }^{20}$ Sasaki, Y.; Watanabe, H.; Igarashi, T.; Sakurai, T. Heterocycles, 2011, 83, 1329-1353.
${ }^{21}$ Barros, T. G.; Muri, E. M. F.; Pinheiro, S.; Williamson, J. S.; Tanuri, A.; Pereira, H. S.; Brindeiro, R. M.; Neto, J. B. A.; Antunes, O. A. C. Synthesis 2009, 620-626.
${ }^{22}$ Kumar, P.; Mishra, H. D.; Mukerjee, A. K. Synthesis 1980, 836-839.
${ }^{23}$ Bland, J. M.; Stammer, C. H.; Varughese, K. I. J. Org. Chem. 1984, 49, 1634-1636.
${ }^{24}$ Boltze, K. H.; Etschenberg, E.; Opitz, W.; Raddatz, S.; Vollbrecht, D. Ger. Offen. 1978, DE 2659543 A1 19780713
${ }^{25}$ Conway, P.; Devine, K.; Paradisi, F. Tetrabedron 2009, 65, 2935-2938.
${ }^{26}$ Chandrasekhar, S.; Karri, P. Tetrahedron Lett. 2007, 48, 785-786.

[^0]: ${ }^{1}$ Ukai, T.; Kawazura, H; Ishii, Y.; Bonnet, J.J.; Ibers, J.A.; J. Organomet. Chem. 1974, 65, 253.
 ${ }^{2}$ Trost, B.M.; Bunt, R.C.; Lemoine, R.C.; Calkins, T.L. J. Am. Chem. Soc. 2000, 122, 5968-5976.
 ${ }^{3}$ Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573-576.
 ${ }^{4}$ Fillion, E.; Dumas, A. M.; Hogg, S. A. J. Org. Chem. 2006, 71, 9899-9902.
 ${ }^{5}$ Frost, C. G.; Hartley, B. C. Org. Lett. 2007, 9, 4259-4261.
 ${ }^{6}$ Cornelis, A.; Lambert, S.; Laszlo, P.; Schaus, P. J. Org. Chem. 1981, 46, 2130-2134.
 ${ }^{7}$ Dumas, A. M.; Fillion, E. Ory. Lett. 2009, 11, 1919-1922.
 ${ }^{8}$ Ghosh, S.; Das, J.; Chattopadhyay, S. Tetrahedron Lett. 2011, 52, 2869-2872.
 ${ }^{9}$ Ziegler, F. E.; Guenther, T.; Nelson, R. V. Synth. Commun. 1980, 10, 661-666.
 ${ }^{10}$ Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett. 2001, 42, 5203-5205.
 ${ }^{11}$ Rostami, M.; Khosropour, A.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I. Appl. Catal. A-Gen. 2011, 397, 27-34.
 ${ }^{12}$ Takacs, J. M.; Xu, Z.; Jiang, X.; Leonov, A. P.; Theriot, G. C. Org. Lett. 2002, 4, 3843.
 ${ }^{13}$ Danishefsky, S.; Singh, R. K. J. Ory. Chem. 1975, 40, 3807-3808.
 ${ }^{14}$ Murase T.; Nishijima, Y.; Fujita, M. J. Am. Chem. Soc. 2012, 134, 162-164.
 ${ }^{15}$ Shi, D.; Wang, Y.; Lu, Z.; Dai, G. Synth. Commun. 2000, 30, 713-726.
 ${ }^{16}$ Cleary, T.; Rawalpally, T.; Kennedy, N.; Chavez, F. Tetrahedron Lett. 2010, 51, 1533-1536.
 ${ }^{17}$ Mesaik, M. A.; Rahat, S.; Khan, K. M.; Ullah, Z.; Choudhary, M. I.; Murad, S.; Ismail, Z.; Rahman A.; Ahmad A. Bioory. Med. Chem. 2004, 12, 2049-2058.
 ${ }^{18}$ Maekawa, K.; Fujita, K.; Iizuka, K.; Igarashi, T.; Sakuari, T. Heterocycles, 2005, 65, 117-131.

