Supporting Information for

Hybrid Solar Cells with Outstanding Short-Circuit Currents Based on a Room Temperature Soft-Chemical Strategy: the Case of P3HT:Ag₂S

Yan Lei, †,‡ Huimin Jia, † Weiwei He, † Yange Zhang, † Liwei Mi, † Hongwei Hou, ‡ Guangshan Zhu, $^{\dagger,\delta}$ and Zhi Zheng*. †

[†]Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province and Institute of Surface Micro and Nano Materials, Xuchang University Henan 461000, China [‡]Department of Chemistry, Zhengzhou University Zhengzhou 450000, China ^δState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012, China

*Authors to whom correspondence should be addressed. E- mail: zhengzhi99999@gmail.com

Experimental Details

All of the reactants were commercial available. First, to avoid local short circuits, $15\Omega\text{cm}^{-2}$ ITO substrate was etched to form an insulate gap by photoengraving. Second, the ITO substrates with a insulate gap was cleaned in solution of detergent and water, mixed NH₃·H₂O:H₂O₂:H₂O (volume ratio, 1:2:5) solution and distilled water, orderly. After that, the ITO substrate was dried at 120°C for 2h. A 250 nm silver layer was coated on the ITO substrate by magnetron sputtering in the present of a mask. The pressure in the chamber was about 7.0×10^{-3} mbar.

The above silver film on the ITO substrate and 0.01g sulfur powders were put into a 20ml vessel, then 15ml N,N-dimethylformamide (DMF) was added. The container

was maintained at 25 °C for 8h, after that a black thin film on the ITO substrate was obtained. This thin film was washed with ethanol for several times, and dried in the vacuum drying oven at 80°C for 24h.

The Ag_2S thin film on the ITO substrate was spin-coated with P3HT (Aldrich: regioregular with an average molecular weight, MW=87000) in chloroform or chlorobenzene solution ($10mgmL^{-1}$), then dried at room temperature in glove-box for 24h. Top gold electrode was thermally evaporated on the film through a shadow mask at a pressure around 9.0×10^{-5} mbar. Finally, a hybrid solar cell device with a $\sim0.15cm^2$ active area was obtained.

Characterization

The obtained thin film was characterized by X-ray diffraction (XRD, Bruker D8 Advance diffractometer) with nickel-filtered CuK α radiation. Morphology of the film was investigated by scanning electron microscopy (SEM, Hitachi S-4800) and atomic force microscope (AFM, Veeco Digital Instruments, Nanoscope IIId). High-resolution transmission electron microscopy (HRTEM) data were obtained from a JEM-2100 transmission electron microscopy (TEM). The samples for TEM analysis were prepared by dispersing the powders scraped from the Ag₂S film in ethanol. The photovoltaic performance of the hybrid solar cell device was measured under illumination of AM 1.5G 100mW/cm² by using a solar simulator (Newport Inc.). Quantum efficiency data were recorded from Newport QE system, and the Uv-Vis spectrum was obtained from Cary 5000 Uv-Vis-NIR.

Figure S1. Growth process of the Ag₂S nanocrystal on ITO substrate at 25°C. a) 2h; b) 4h; c) 6h; d) 8h; e) 10h.

Figure S2. XRD patterns of Ag₂S nanosheet film and the standard data.

Figure S2 shows the X-ray diffraction (XRD) pattern of the resulting Ag_2S thin film on the ITO substrate, the diffraction peaks can be well indexed with standard data of the Ag_2S (JCPDS File No. 14-72, monoclinic), all other diffraction peaks come from the ITO substrate.

Figure S3. Photographs of a) Ag thin film; b) Ag₂S thin film; c) P3HT:Ag₂S composite thin film on patterned ITO substrate; d) hybrid solar cell model based on P3HT:Ag₂S.

Figure S4. Dark current density of P3HT:Ag₂S hybrid solar cell.

Figure S4 reveals that the dark current of the chloroform-device was higher than chlorobenzene-device, according to eqn (1), the chlorobenzene-device will bring out a higher open voltage.

$$Voc = \frac{nKT}{q} \ln \left(\frac{J_{sc}}{J_{o}} \right)$$
(1)

where, n is the ideality factor, k is the Boltzmann constant, T is the temperature, q is the charge of an electron, J_{sc} is the short-circuit current density and J_o is the saturation current density of the device.

Figure S5. XRD pattern of elemental Ag film on ITO substrate after two weeks storage.

Figure S6. The absorption spectrum of Ag₂S thin film in the near-IR region.

Table S1 Testing data of P3HT:Ag₂S hybrid solar cells

Solvent	P3HT Concentration (mg/mL)	$V_{oc}\left(V\right)$	J_{sc} (mA/cm ²)	FF (%)	PCE (%)
Chlorobenzene	15	0.21	9.15	45.37	0.89
Chlorobenzene	5	Short Circuit			
Chloroform	15	0.13	6.19	27.49	0.22
Chloroform	5	Short Circuit			

In order to demonstrate the feasility of our stretergy for hybrid thin film solar cell devices, we also added a video file as supporting information, in which we demonstrated that our solar cell model could drive a LED even after 8 months storage in a general desiccator without encapsulation. Please download from the following

adress: http://www.gmail.com

Account: videomail0000 Password: videomail1111