Supporting Information

Development of Oseltamivir Phosphonate Congeners as Anti-Influenza Agents

Ting-Jen R. Cheng,¹ Steven Weinheimer,² E. Bart Tarbet,³ Jia-Tsrong Jan,¹ Yih-Shyun E. Cheng,¹ Jiun-Jie Shie,¹ Chun-Lin Chen,⁴ Chih-An Chen,⁴ Wei-Che Hsieh,⁴ Pei-Wei Huang,⁵ Wen-Hao Lin,⁵ Shi-Yun Wang,¹ Jim-Min Fang,^{1,4,*} Oliver Yoa-Pu Hu,^{5,*} and Chi-Huey Wong^{1,*}

- ¹ The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan.
- ² TaiMed Biologics, 5251 California Avenue, Suite 230, Irvine, CA 92617, United States.
- ³ Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States.
- ⁴ Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
- ⁵ School of Pharmacy, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Taipei 114, Taiwan.

To whom correspondence should be addressed. J. M. Fang, Tel: 8862-3366-1663. Fax: 8862-2363-7812. E-mail: jmfang@ntu.edu.tw. O. Y.-P. Hu, Tel: 8862-8792-3100 ext 18207. Fax: 8862-8792-4859. E-mail: hyp@ndmctsgh.edu.tw. C.-H. Wong, Tel: 8862-2789-9400. Fax 8862-2785-3852. E-mail: chwong@gate.sinica.edu.tw.

Contents	Page number
Figure s1. Stability tests.	S2
Figure s2. Plasma concentration-time curves after i.v. and oral	S 3
administration of compounds in normal saline to male rats.	
Figure s3. Plasma concentration-time curves after i.v. and oral	S 4
administration of compounds in normal saline to male mice.	
Table s1. In vitro metabolic stabilities of compounds in liver	S5
microsomes from various species.	
Table s2. Protein binding of 4c in plasma from various species.	S5
Table s3. Recovery of 4c and 4a from urine and feces after	S6
administration of compound 4c (5 mg/kg) to Sprague–Dawley rats.	
Table s4. Clinical observation on treatment of mice with	S6
compounds.	
¹ H, ¹³ C and ³¹ P NMR spectra	S7–S19

Figure s1. Stability tests. The stability results of control compounds, mevinolin (A) and diltiazem (B), were acceptable. Guanidino-tamiphosphor monoethyl ester **4c** (C) was stable in human, rat and dog whole blood.

Figure s2. Plasma concentration–time curves after i.v. and oral administration of compounds in normal saline to male rats: (A) **3a**, (B) **3c**, (C) **4a**, and (D) **4c**.

Figure s3. Plasma concentration–time curves after i.v. and oral administration of compounds in normal saline to male mice: (A) **4a** and (B) **4c**.

Table s1. In vitro metabolic stabilities of **4c** and control compounds (testosterone and midazolam) in liver microsomes from various species.

	4 c	Testosterone	Midazolam
HLM^{a}	96.62	35.01	10.91
MRLM ^a	92.54	0.33	1.74
MDLM ^a	104.68	11.34	1.3

(A) Remaining % at 60 min

(B) Intrinsic clearance (CL_{int}) (µL/min/mg proteins)

	4 c	Testosterone	Midazolam
HLM ^a	1.6	35.4	75.2
MRLM ^a	1.8	496.0	135.2
MDLM ^a	~ 0.0	72.6	141.4

(C) In vitro half life $(t_{1/2})$ (min)

	4 c	Testosterone	Midazolam
HLM ^a	866.25	39.15	18.43
MRLM ^a	770.00	2.79	10.25
MDLM ^a	∞	19.09	9.80

^{*a*} HLM: pooled human liver microsomes; MRLM: pooled male rat liver microsomes; MDLM pooled male dog liver microsomes.

Table s2. The measured % protein binding of 4c in plasma from various species.

	Mean% bound measured in plasma				
	4 c	Testosterone	Ranitidine		
Human plasma	8.93	95.52	21.16		
Rat plasma	13.57	92.76	16.80		
Dog plasma	12.14	94.01	20.63		

	Recovered amount (µg)				
	4 c	4a	4c + 4a		
Urine	$20.1\pm4.8~\mu g$	$5.7\pm2.5~\mu g$	$25.7\pm6.8~\mu g$		
	$(1.5 \pm 0.4 \ \%)^a$	$(0.4 \pm 0.2 \ \%)^a$	$(1.9 \pm 0.5)^{a}$		
Feces	$582.9\pm161.6~\mu g$	$364.4\pm39.9~\mu g$	$947.3\pm163.9~\mu g$		
	$(43.2 \pm 12.0 \%)^a$	$(27.0 \pm 3.0 \ \%)^a$	$(70.2 \pm 12.1 \ \%)^a$		
Urine +	$603.0\pm164.1~\mu g$	$370.1\pm38.0~\mu g$	$973.0\pm165.3~\mu g$		
Feces	$(44.7 \pm 12.2 \%)^a$	$(27.4 \pm 2.8 \ \%)^a$	$(72.1 \pm 12.2 \%)^a$		

Table s3. Recovery of **4c** and **4a** from urine and feces after administration of compound **4c** (5 mg/kg) to Sprague–Dawley rats.

^{*a*} The number in parenthesis indicates the percentage recovery.

Dose (mg/kg) Motality	Motality Tramor	Tramor	Convulsion	Body	Hypoactivity	Hunched	Piloerection
	Wotanty	Tremor		jerks		posture	
Compound 3a							
300	_	_	_	_			
500	_	+ (1/1)	_	_			
750	+ (1/4)	+ (3/4)	+ (3/4)	+ (1/4)			
800	+ (1/1)	_	_	_			
1000	+ (1/1)	_	_	_			
Compound 3c							
300	_	_	_	_	_	_	_
600	_	_	_	_	_	_	_
900	_	+ (3/3)	_	_	$+(3/3)^{a}$	$+(3/3)^{a}$	$+(3/3)^{a}$
1500	_	+(1/1)	+ (1/1)	+(1/1)	$+(1/1)^{a}$	$+(1/1)^{a}$	$+(1/1)^{a}$
2000	$+(1/1)^{b}$	+ (1/1)	+ (1/1)	+(1/1)	+(1/1)	+(1/1)	+(1/1)

Table s4. Clinical observation on treatment of mice with compounds 3a and 3c.

^{*a*} The clinical sign was observed till to the second day after dosing.

^b This animal was found dead in half hour later after dosing.

S8

¹H NMR spectrum of guanidino-oseltamivir carboxylate 2a (600 MHz, D₂O)

¹H NMR spectrum of guanidino-oseltamivir **2b** (as the TFA salt, 400 MHz, in D_2O)

 13 C NMR spectrum of guanidino-oseltamivir **2b** (as the TFA salt, 100 MHz, in D₂O)

¹⁹ F NMR spectrum of guanidino-oseltamivir **2b** (as the TFA salt, 400 MHz, in CD_3OD)

S12

¹H NMR spectrum of tamiphosphor diethyl ester **3b** (400 MHz, in CDCl₃)

 ^{31}P NMR spectrum of tamiphosphor diethyl ester **3b** (162 MHz, in CDCl₃)

¹H NMR spectrum of tamiphosphor monoethyl ester 3c (600 MHz, D₂O)

¹H NMR spectrum of guanidino-tamiphosphor diethyl ester **4b** (400 MHz, in CD₃OD)

 31 P NMR spectrum of guanidino-tamiphosphor diethyl ester **4b** (162 MHz, in CD₃OD)

¹H NMR spectrum of guanidino-tamiphosphor monoethyl ester 4c (600 MHz, D₂O)

