Accommodation of a Central Arginine in a Transmembrane Peptide by Changing the Placement of Anchor Residues Vitaly V. Vostrikov¹, Benjamin A. Hall², Mark S. P. Sansom² and Roger E. Koeppe II¹* ¹Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA ²Department of Biochemistry & Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK ## Supporting Information. ## Figures. - S1. Analytical HPLC of GW^{3,21}ALP23-R^z. - S2. MALDI mass spectra of GW^{3,21}ALP23-R^z, containing two ²H-labeled alanine residues. - S3. Difference 2 H NMR spectra between double and single labeled peptides used to assign overlapping peaks. Sample is GW 3,21 ALP23-R12 in DLPC; β =90 $^{\circ}$. - S4. Helical wave plots for $C_{\alpha}D$ groups of $GW^{5,19}ALP23$ -R14 in DOPC with different $\epsilon_{//}$ values. - S5. Circular dichroism spectra of GW^{3,21}ALP23 and -Arg^Z peptides in DLPC. - S6. Deuterium NMR spectra of GW^{3,21}ALP23-R12 in DLPC, DMPC, DOPC. - S7. Deuterium NMR spectra of GW^{3,21}ALP23-R14 in DLPC, DMPC, DOPC. - S8. Deuterium NMR spectra of GW^{5,19}ALP23-R14 in DLPC, DMPC, DOPC. - S9. Snapshots following 50 ns of atomistic simulations in DPPC of N-terminally snorkeling Arg in GW^{5,19}ALP23-R12 and GW^{3,21}ALP23-R12. Figure S1. Analytical HPLC of GW^{3,21}ALP23-R^z. <u>Figure S2</u>. MALDI mass spectra of GW^{3,21}ALP23-R^z, containing two ²H-labeled alanine residues. <u>Figure S3</u>. Difference spectra between double and single labeled peptides were used to assign the overlapping peaks. Sample is $GW^{3,21}ALP23-R12$ in DLPC; $\beta=90^{\circ}$. <u>Figure S4</u>. Helical wave plots for $C_{\alpha}D$ groups of $GW^{5,19}ALP23$ -R14 in DOPC with different $\epsilon_{//}$ values: 119° (black), 122° (red), 125° (blue). <u>Figure S5</u>. Circular dichroism spectra of $GW^{3,21}ALP23$ and $-Arg^Z$ peptides in DLPC. Black: native sequence; Red: Z = 12; Blue: Z = 14. <u>Figure S6</u>. Deuterium NMR spectra of GW^{3,21}ALP23-R12 in DLPC, DMPC, DOPC. Sample orientation is $\beta = 0^{\circ}$. <u>Figure S7</u>. Deuterium NMR spectra of GW^{3,21}ALP23-R14 in DLPC, DMPC, DOPC. Sample orientation is β =0°. <u>Figure S8</u>. Deuterium NMR spectra of GW^{5,19}ALP23-R14 in DLPC, DMPC, DOPC. Sample orientation is $\beta = 0^{\circ}$. <u>Figure S9</u>. Final snapshots from 50 ns atomistic MD simulations in DPPC of N-terminally snorkeling forms of R12 modified peptides GW^{5,19}ALP23-R12 and GW^{3,21}ALP23-R12, with peptide backbone in grey cartoon, Trp residues green, and Arg residues blue. Bilayer phosphate head groups are rendered as a grey network.