The Direct Catalytic Enantioselective Vinylogous Aldol Reaction of α-Branched Enals with Isatins

Carlo Cassani, ${ }^{1}$ \& Paolo Melchiorre ${ }^{1,2^{*}}$
${ }^{1}$ ICIQ - Institute of Chemical Research of Catalonia, Avenida Països Catalans 16-43007 Tarragona, Spain
${ }^{2}$ ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23-08010
Barcelona, Spain
*To whom correspondence should be addressed. E-mail: pmelchiorre@iciq.es

Supporting Information

Table of Contents
A. General Information S3
General Procedures and MaterialsDetermination of Diastereomeric and Enantiomeric Ratios
B. Optimization studies S5
C. General Procedure for the Vinylogous Aldol Reaction S11
D. General Procedure for the Reduction of Products 3 S17
E. General Procedure for the Hetero-Diels-Alder-type Reaction of $\boldsymbol{\alpha}$-Aryl Substituted Enals S18
F. Preparation of Adduct 7 S24
G. Conformational Investigations on the Dienamine Intermediates S26
I. X-ray Crystallographic Data S32
J. NMR spectra S37
K. HPLC Traces S66

A. General Information

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz and 500 MHz for ${ }^{1} \mathrm{H}$ or at 100 MHz and 125 MHz for ${ }^{13} \mathrm{C}$, respectively. The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm relative to residual signals of the solvents ($\mathrm{CHCl}_{3} @ 7.26 \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR, $77.16 \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR). Coupling constants are given in Hz . When necessary, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals were assigned by means of g-COSY, g-HSQC and g-HMBC 2D-NMR sequences. The following abbreviations are used to indicate the multiplicity: s , singlet; d , doublet; t , triplet; q, quartet; qn, quintet; m, multiplet; bs, broad signal.
High-resolution mass spectra (HRMS) were obtained from the ICIQ High Resolution Mass Spectrometry Unit on Waters GCT gas chromatograph coupled time-of-flight mass spectrometer (GC/MS-TOF) with electron ionization (EI). X-ray data were obtained from the ICIQ X-Ray Unit using a Bruker-Nonius diffractometer equipped with an APPEX 24 K CCD area detector. Optical rotations are reported as follows: $[\alpha]_{D}{ }^{\text {rt }}(c$ in g per 100 mL , solvent).
The authors are indebted to the team of the Research Support Area at ICIQ, in particular to Dr. Marta Martínez and Eduardo Escudero-Adan (X-ray Unit). We thank Grace Fox for proofreading the manuscript. Mattia Silvi is acknowledged for initial spectroscopic experiments.

General Procedures. All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted - open air chemistry on the benchtop.
Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silica gel (35-70 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$) were used, using UV light as the visualizing agent and an acidic mixture of ceric ammonium molybdate or basic aqueous potassium permangante $\left(\mathrm{KMnO}_{4}\right)$, and heat as developing agents. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

Determination of Diastereomeric Ratios

The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.
Determination of Enantiomeric Purity. HPLC analysis on a chiral stationary phase column was performed on an Agilent 1200 -series instrumentation. Daicel Chiralpak AD-H, IA, IB or IC columns and Daicel Chiralcel OD-H with $i-\mathrm{PrOH} /$ hexane as the eluent were used, as specified in the individual experiment. HPLC traces were compared to racemic samples prepared by using a racemic mixture of the commercial available chiral amine \mathbf{C}.

Determination of Yield and Conversion in the Optimization Studies. The conversion of the starting materials and the yield of product in the optimization studies related to the model reaction depicted in Table 1 of the main manuscript were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy adding an internal standard in the crude reaction: 2,5-dimethylfuran: $\delta 2.26 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H})$. Since in all instances the conversion of isatin 1a was equal to the yield of product 3a, in some cases the yield was determined by integration of the signals of the unreacted isatin 1a in the ${ }^{1} \mathrm{H}$ NMR spectra (N-benzyl isatin 1a NMR signal @ $\delta 4.92 \mathrm{ppm}$ (s) and product 3a signal @ 9.34 (s) and 9.21 (s); double checked with the product signals @ 6.42 (d) and 6.16 (d)).

Materials. Commercial grade reagents and solvents were purchased from Sigma Aldrich, Fluka, and Alfa Aesar and used as received, without further purification; otherwise, where necessary, they were purified as
recommended. ${ }^{1}$ The cinchona-based primary amine catalysts, 9-amino(9-deoxy)epi-quinine \mathbf{A}^{2} and 6'-hydroxy-9-amino-9-deoxyepiquinine $\mathbf{B},{ }^{3}$ were both prepared from commercially available quinine following the literature procedure. Chiral secondary amine catalyst \mathbf{C} is commercially available (Aldrich or Alfa Aeser); it was purified by flash column chromatography prior to use and stored at $4^{\circ} \mathrm{C}$ under argon to avoid undesired desilylation that would affect the catalytic potential of the amine. Catalysts \mathbf{D}^{4} and \mathbf{E}^{5} have been synthesized following the procedure reported in the literature.

The N-benzyl protected isatins $\mathbf{1}$ were easily synthesized from the corresponding, commercially available unprotected isatins, according to the following procedure: a solution of $\mathrm{N}-\mathrm{H}$ isatin (5 mmol in 40 ml of dry DMF) was slowly added to a suspension of sodium-hydride ($1.04 \mathrm{~g}, 60 \%$ dispersion in paraffin liquid, 1.3 equiv) in dry DMF (100 ml) at $0^{\circ} \mathrm{C}$ over a period of 10 minutes. The mixture was stirred at the same temperature for further 30 minutes. Then benzylbromide ($6 \mathrm{mmol}, 1.2$ equiv) was added dropwise at the same temperature. The mixture was slowly warmed up at room temperature and stirring continued until the reaction was over (complete consumption of the starting $\mathrm{N}-\mathrm{H}$ isatin, as judge by analytical TLC). The reaction was cooled at $0^{\circ} \mathrm{C}$ and quenched with water (750 ml). The suspension was then filtered and the filtrated recrystallized from EtOAc and hexane to give the final product 1.

Most of the α-branched unsaturated aldehydes 2 are commercially available and were purchased from Aldrich or Alfa Aeser and used as received. Otherwise, they were synthesized according to the following procedure.

Preparation of $\boldsymbol{\alpha}$-Branched Enals ${ }^{6}$

A mixture of linear aliphatic aldehyde (1 equiv) and the appropriate triphenylphosphorane (1.5 equiv) was dissolved in THF and refluxed for 16 h . The solution was then allowed to reach room temperature; the solvent was removed under reduced pressure and the crude mixture was purified by flash column chromatography (silica gel) to yield the desired product α-branched enals 2 (yield 40-50 \%).

Note: For all the α-branched enals 2, a E / Z ratio $>95: 5$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis. No double bond scrambling was observed neither during the catalytic reaction (checked by analysis of the crude reaction mixture) nor mixing the enal with a catalytic amount of catalyst \mathbf{C}.

[^0]
B. Optimization Studies

Table S1. Catalyst Screening - Primary Amines

Primary Amines

catalyst	additive	solvent	conv. (\%) ${ }^{\text {b }}$	dr $^{\text {b }}$	ee $_{3 \mathrm{a}}(\%)^{\text {c }}$	ee $_{\text {minor }}(\%)^{\text {c }}$
A' $^{\prime}$	BA	toluene	28	$1.3: 1$	6	0
B'	BA	toluene	66	$1: 1.9$	20	20
C'	TFA	toluene	55	$1: 1.2$	-	-
D'	BA	toluene	55	$1: 1$	15	23
E'	TFA	toluene	47	$1: 1$	0	0
E'	BA	toluene	n.r.	-	-	-
F'	TFA	toluene	23	$1.3: 1$	55	43
A	TFA	$\mathrm{CH}_{3} \mathrm{Cl}$	42	$6: 1$	<5	<5
A	p-TSA	$\mathrm{CH}_{3} \mathrm{Cl}$	40	$4.5: 1$	<5	<5
B	TFA	$\mathrm{CH}_{3} \mathrm{Cl}$	67	$2.8: 1$	42	65
B	TFA	toluene	744^{d}	$2.5: 1$	40	51
B	TFA	THF	43	$3.1: 1$	46	58

BA: benzoic acid; TFA: trifluoroacetic acid; p-TSA: p-toluensulfonic acid. The absolute configuration of the minor isomer was not univocally determined. a Reactions performed at $40^{\circ} \mathrm{C}$ on a 0.05 mmol scale using 2 equivalents of (E)-2-methylpent-2-enal $\mathbf{2 a}$ with $[1 \mathrm{a}]_{0}=0.5 \mathrm{M}$, reaction time 16h. ${ }^{\text {b }}$ Both conversion and diastereomeric ratios (dr) were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{\mathrm{c}}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{\text {d Reaction time } 40 \mathrm{~h} .}$

Table S2. Catalyst screening - Secondary Amines

n.r.: no reaction. BA: benzoic acid; TFA: trifluoroacetic acid; p-TSA: p-toluensulfonic acid. a Reactions performed at $40^{\circ} \mathrm{C}$ on a 0.05 mmol scale using 2 equivalents of (E)-2-methylpent-2-enal 2 a with $[1 \mathrm{a}]_{0}=0.5 \mathrm{M}$, reaction time 16 h . ${ }^{\mathrm{b}}$ Both conversion and diastereomeric ratios (dr) were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d}$ Reaction carried out at $25^{\circ} \mathrm{C}$.

Table S3. Catalyst screening - Bifunctional Secondary Amines

catalyst	additive	solvent	conv. (\%) ${ }^{\text {b }}$	dr ${ }^{\text {b }}$	ее ${ }_{31}(\%)^{\text {c }}$	$\mathrm{ee}_{\text {minor }}(\%)^{\text {c }}$
K	none	EtOH	n.r. ${ }^{\text {b }}$	-	-	-
E	none	DCM	n.r.	-	-	-
E	DEAc	DCM	n.r.	-	-	-
$\mathrm{E}^{\text {f }}$	DEA/ $/ \mathrm{H}_{2} \mathrm{O}$ c.de	DCM	n.r.	-	-	-
E	none	toluene	n.r.	-	-	-
E	none	EtOH	n.r.	-	-	-

n.r.: no reaction. DCM dichloromethane; DEA N,N-diethylacetamide. a Reactions performed at $25^{\circ} \mathrm{C}$ on a 0.05 mmol scale using 2 equivalents of (E)-2-methylpent-2-enal 2 a with $[1 \mathrm{a}]_{0}=0.5 \mathrm{M}$, reaction time 16 h . ${ }^{\mathrm{b}}$ Reactions performed at $40^{\circ} \mathrm{C} . \mathrm{c}^{\mathrm{c}} 1 \mathrm{eq}(0.05 \mathrm{mmol})$ of DEA was used. d 2.8 eq of water were used. e Reactions performed with $[1 \mathbf{a}]_{0}=0.25 \mathrm{M}$. ${ }^{\mathrm{f}}$ These reaction conditions (selected for entry 4, Table 1 of the main manuscript) reflect the optimized system as reported in the original papers describing the preparation and the synthesis of catalyst $\mathbf{E} .5,7$

Table S4. Solvent screening

solvent	conv. (\%) ${ }^{\text {b }}$	dr ${ }^{\text {b }}$	ee3a (\%) ${ }^{\text {c }}$	eeminor (\%) ${ }^{\text {c }}$
EtOH	>95	1.2	83	76
DCE	10	2.5:1	92	67
dioxane	n.r.	-	-	-
CHCl_{3}	n.r.	-	-	-
$\mathrm{Et}_{2} \mathrm{O}$	n.r.	-	-	-
THF	n.r.	-	-	-
EtOAc	n.r.	-	-	-
$\mathrm{CH}_{3} \mathrm{CN}$	30	3:1	92	77
2,2,2-trifluoroethanol	n.r.	-	-	-
$\mathrm{EtOH} / \mathrm{CH}_{3} \mathrm{CN}(1 / 1)$	75	2.2:1	91	79
$\mathrm{EtOH} / \mathrm{CH}_{3} \mathrm{CN}(1 / 9)$	49	2.7:1	92	76

n.r.: no reaction. a Reactions performed at $25^{\circ} \mathrm{C}$ on a 0.05 mmol scale using 2 equiv. of $\mathbf{2 a}$ with $[1 \mathbf{a}]_{0}=0.5 \mathrm{M}$, reaction time $16 \mathrm{~h} .20 \mathrm{~mol} \%$ of amine \mathbf{D} and benzoic acid was were used. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{\mathrm{c}}$ Determined by HPLC analysis.

[^1]Table S5. Acidic additive screening

Additive	Conv. (\%) ${ }^{\text {b }}$	dr ${ }^{\text {b }}$	ее3a (\%) ${ }^{\text {c }}$	eeminor (\%) ${ }^{\text {c }}$
AcOH	45	2.8:1	92	81
$\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CO}_{2} \mathrm{H}$	44	2.9:1	88	80
$2-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	45	2.8:1	88	78
(L)-N-Boc-PhGly	52	3.2:1	83	75
(D)-N-Boc-PhGly	52	3.2:1	83	70
(S)-Binol	38	2:1	91	83
(R)-Binol	47	2.2:1	91	82
Salicylic Acid	50	2.5:1	89	81
$2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	60	2.6:1	84	74
$\mathrm{p}-\mathrm{NO}_{2}$-Phenol	65	1.6:1	80	60
$2,6-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	57	3.1:1	87	77
2,4,6-Me- $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{H}$	50	2.7:1	88	73
$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	43	3:1	89	73
2,6-CF3- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	59	3.2:1	91	77
3,5-t-butyl- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	45	2.8:1	90	73
2-Ph-C6 $\mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	44	2.8:1	90	73
2,6-MeO- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	60	2.7:1	91	75

a Reactions performed at $25^{\circ} \mathrm{C}$ on a 0.05 mmol scale using $20 \mathrm{~mol} \%$ of amine D and 2 equiv. of (E)-2-methylpent-2-enal 2 a with $[1 \mathrm{a}]_{0}=0.5 \mathrm{M}$, reaction time $16 \mathrm{~h} .{ }^{\mathrm{b}}$ Both conversion and diastereomeric ratios (dr) were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

Table S6. Amine $\mathbf{D} / 2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$ ratio

X	Conv. (\%)	Dr $_{3 \mathrm{a}: 4 \mathrm{ad}}{ }^{\mathrm{b}}$	ee $_{3 \mathrm{a}}(\%)^{\text {c }}$	ee $_{\text {minor }}(\%)^{\text {c }}$
40	35	$3.2 / 1$	90	77
20	59	$3.2 / 1$	91	77
10	48	$3.2 / 1$	91	78
0	20	$3.3 / 1$	91	76

${ }^{\text {a }}$ Reactions performed on a 0.05 mmol scale using $20 \mathrm{~mol} \%$ of amine \mathbf{D} in combination with different amount of 2,6-bis (trifluoromethyl) benzoic acid. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{\mathrm{c}}$ Determined by HPLC analysis.

Table S7. Temperature effect

T (${ }^{\circ} \mathrm{C}$)	Conv. (\%) ${ }^{\text {b }}$	dr ${ }^{\text {b }}$	ее3a (\%) ${ }^{\text {c }}$	ee ${ }_{\text {minor }}(\%)^{\text {c }}$
40	100	2/1	83	64
30	74	2.7/1	89	70
r.t.	59	3.2/1	91	77
10	<10	3.5/1	n.d.	n.d.

${ }^{\text {a }}$ Reactions performed on a 0.05 mmol scale using $20 \mathrm{~mol} \%$ of amine \mathbf{D} in combination with $20 \mathrm{~mol} \%$ of 2,6-bis (trifluoromethyl) benzoic acid. ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{c}$ Determined by HPLC analysis

Table S8. Concentration effect.

[1a]	Conv. (\%) ${ }^{\text {b }}$	Dr $3 \mathrm{a}: 4 \mathrm{a}^{\text {b }}$	еe3a (\%) ${ }^{\text {c }}$	eeminor (\%) ${ }^{\text {c }}$
2	>95	2.8/1	89	70
2	95 (87) ${ }^{\text {d }}$	3.2/1	90	76
1	>95	2.9/1	89	72
0.5	55	3.2/1	91	77
0.25	30	3.3/1	91	79

a Reactions performed on a 0.05 mmol scale using 2 equivalents of 2-methyl pentenal 1, reaction time 16 h . ${ }^{\mathrm{b}}$ Yield and d.r. determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. c Determined by HPLC analysis on a chiral stationary phase. $10 \mathrm{~mol} \%$ of \mathbf{D} and $10 \mathrm{~mol} \%$ of acid, reaction time 36 h . Value between brackets refers to the yield of the isolated compound 3 a after chromatography.

Table S9. The importance of different N -protecting groups on the isatin derivatives $\mathbf{1}$

${ }^{\text {a }}$ Reactions performed on a 0.05 mmol scale using 2 equivalents of 2 with $[1]_{0}=0.5 \mathrm{M}$, reaction time 16 h . A combination of catalyst D and benzoic acid was used. ${ }^{b}$ the formation of the hemiacetal deriving from the attack of ethanol on the isatin derivatives was oserved.

Table S10. Optimizing the reaction conditions for the vinylogous aldolization with unprotected N-H isatin.

additive	solvent	conv. (\%) ${ }^{\text {b }}$	dr ${ }^{\text {b }}$	ee 3 (\%) ${ }^{\text {c }}$	ee ${ }_{\text {minor }}(\%)^{\text {c }}$
BA	DCM	n.r.	-	-	-
BA	$\mathrm{CH}_{3} \mathrm{CN}$	41	2.5:1	85	81
BA	EtOH	72	1.1:1	85	80
BA	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{EtOH}$ (9/1)	43	2:1	84	81
BA	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{EtOH}$ (1/1)	53	1.6:1	79	60
AcOH	$\mathrm{CH}_{3} \mathrm{CN}$	38	2:1	85	81
(L)-N-Boc-PhGly	$\mathrm{CH}_{3} \mathrm{CN}$	30	2.8:1	88	80
(D)-N-Boc-PhGly	$\mathrm{CH}_{3} \mathrm{CN}$	25	$3: 1$	87	80
2,6-F- $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CN}$	35	3.3:1	88	-
2,4,6-Me- $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CN}$	46	2.2:1	81	-
$4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CN}$	14	3.3:1	90	82
$2,6-\mathrm{OH}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CN}$	n.r.	-	-	-

n.r.: no reaction. BA: benzoic acid; N -Boc-PhGly: N -Boc phenylglycine, see Table S 5 for the structure.
${ }^{\text {a }}$ Reactions performed at $25^{\circ} \mathrm{C}$ on a 0.05 mmol scale using 2 equivalents of enal 2 a with [1 a$]_{0}=0.5 \mathrm{M}$, reaction time 16 h . ${ }^{\mathrm{b}}$ Both conversion and diastereomeric ratios (dr) were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{\mathrm{c}}$ Determined by HPLC analysis on a chiral stationary phase.

Table S11. Scope of the Direct Vinylogous Aldolization - ee of the minor diastereoisomer

entry	R^{1}	R^{2}	R^{3}	R^{4}	3	yield (\%) ${ }^{\text {b }}$	dr ${ }^{\text {c }}$	e.e. \% ${ }^{d}$ major/minor
1	Me	Me	H	H	a	87	3.2:1	90/76
2	Bn	Me	H	H	b	68	2.5:1	95 / 77
3	CH_{2}-SMe	Me	H	H	c	89	1.6:1	$94 / 70$
4	$\mathrm{CH}_{2} \mathrm{NHCbz}$	Me	H	H	d	63	3:1	$94 / 74$
5	Bn	Bn	H	H	e	65	1.5:1	$90 / 78$
$6{ }^{\text {e }}$	Et	Et	H	H	f	$28{ }^{\text {f }}$	1.5:1	94/-
7	Me	Me	Cl	H	g	92	1.7:1	$86 / 73$
8	Bn	Me	Cl	H	h	69	1.6:1	$92 / 78$
9	Me	Me	Br	H	i	68	1.9:1	$85 / 78$
10	Me	Me	Me	H	j	76	3.8:1	92/81
11	Me	Me	NO_{2}	H	k	87	1.5:1	87 / 75
12	Me	Me	$\mathrm{CF}_{3} \mathrm{O}$	H	I	71	2.9:1	89 / 63
13	Me	Me	Me	Me	m	65	3.9:1	91 / 77
14	Me	Me	H	Br	n	88	2.4:1	92/71

[^2]
C. General Procedure for the Vinylogous Aldol Reaction

All the reactions were carried out in a $9 / 1$ mixture of acetonitrile and ethanol without any precaution for excluding air and moisture (open air chemistry on the benchtop). An ordinary vial equipped with a Tefloncoated stir bar and a plastic screw cap was charged with $(S)-(-)-\alpha, \alpha$-diphenyl-2-pyrrolidinemethanol methyldiphenylsilyl ether $\mathbf{D}(9.00 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and 2,6-bis(trifluromethyl)benzoic acid (5.2 $\mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. Then the solvent mixture $(100 \mu \mathrm{~L})$ and the α-branched enal $2(0.4 \mathrm{mmol})$ were sequentially added and the resulting solution stirred at ambient temperature for 5 minutes. The reaction was started by the addition of the N-benzyl protected isatin derivative $\mathbf{1}(0.2 \mathrm{mmol})$. The vial was sealed and immerged in a water bath (thermostated at $25^{\circ} \mathrm{C}$) and stirring continued over 40 hours. Then the crude mixture was flushed through a short plug of silica, using dichloromethane/diethyl ether 1:1 as the eluent (5 ml). Solvent was removed under reduced pressure and the crude mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio. The product $\mathbf{3}$ was isolated by flash column chromatography using the specified eluent.

(S,E)-4-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-2-methylpent-2-enal (3a)

The reaction was carried out according to the general procedure to furnish the crude product as a 3.2:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.42 \mathrm{ppm}$ (d), $\delta_{\text {minor }} 6.21 \mathrm{ppm}$ (d).
The title compound was isolated as a mixture of diastereoisomers ($\mathrm{R}_{f}=0.24$ hexane/ethyl acetate $9 / 1$) in 87% yield (white solid). The enantiomeric excess was determined to be 90% for the major diasteroisomer $(76 \%$ EE for the minor) by HPLC analysis on a Daicel Chiralpak IB column: 95:5 hexane/i-PrOH, flow rate 1.00 $\mathrm{mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=26.7 \mathrm{~min}, \tau_{\text {minor }}=62.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=+61.0\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right.$, d.r. $3.2 / 1$, major $90 \% \mathrm{ee}$, minor 76% ee $)$. HRMS calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}+\mathrm{Na}\right): 358.1419$, found 358.1419 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 7.39\left(\mathrm{~d}, 1 \mathrm{H}, J_{l}=7.3 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}\right.$), 7.35-7.19 (m, 7H, overlap with the signal from the minor diastereomer), $7.08\left(\mathrm{dt}, 1 \mathrm{H}, J_{d}=7.6 \mathrm{~Hz}, J_{t}=0.9 \mathrm{~Hz}\right), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $6.42\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.5 \mathrm{~Hz}, J_{q}=1.3 \mathrm{~Hz}\right), 5.05(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.6 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.71(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.49-3.39(\mathrm{~m}$, 1 H , overlap with the signal from the minor diastereomer), $1.74(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$ $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.2,177.3,151.7,142.9,141.3,135.5,130.2,129.0,128.3,128.1$, $127.6,127.5,124.7,123.3,109.7,78.4,44.2,41.5,14.1,9.8 \mathrm{ppm}$.

(S,E)-4-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-2-methyl-5-phenylpent-2-enal (3b)

The reaction was carried out following the general procedure to furnish the crude products
 as a 2.5:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 9.18 \mathrm{ppm}(\mathrm{s}), \delta_{\text {minor }} 9.11 \mathrm{ppm}(\mathrm{s})$.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.3\right.$ hexane/ethyl acetate $8 / 2$) in 68% yield (white solid). The enantiomeric excess was determined to be 95%
for the major diasteroisomer (77% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: $90 / 10$ hexane $/ \mathrm{i}-\mathrm{PrOH}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=22.9 \mathrm{~min}, \tau_{\text {minor }}=41.0 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{26}=+149.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$, d.r. $2.5 / 1$, major 95% ee, minor 77% ee $)$. HRMS calc. for $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{Na}\right)$: 434.1732 , found 434.1740 .
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 7.46\left(\mathrm{~d}, 1 \mathrm{H}, J_{1}=7.4 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}\right), 7.37-6.69(\mathrm{~m}, 12 \mathrm{H}$, overlap with the signal from the minor diastereomer), $6.81(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.31\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.8 \mathrm{~Hz}\right.$, $\left.J_{q}=1.2 \mathrm{~Hz}\right), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.73(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.8 \mathrm{~Hz}), 3.66\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=11.0 \mathrm{~Hz}, J_{d}=3.3 \mathrm{~Hz}\right.$, overlap with the signal from the minor diastereomer), 3.08 $\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=13.4 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}\right), 1.26(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 194.8,177.2,149.5,143.2,142.8,138.4,135.4,130.4$, $129.1,129.0,128.6,128.5,128.0,127.6,127.5,126.6,124.5,123.5,109.9,78.1,49.5,44.2,35.1,9.5 \mathrm{ppm}$

(S,E)-4-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-2-methyl-5-(methylthio)pent-2-enal (3c)

The reaction was carried out following the general procedure \mathbf{A} to furnish the crude products as a 1.6:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.14 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 5.89 \mathrm{ppm}(\mathrm{d})$.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.28\right.$ hexane/ethyl acetate $8 / 2$) in 89% yield (colourless solid). The enantiomeric excess was determined to be 95% for the major diasteroisomer (77% ee for the minor) by HPLC analysis on a Daicel Chiralpak IB column: 95:5 hexane/i-PrOH, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=32.0 \mathrm{~min}, \tau_{\text {minor }}=97.4 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+103.5$ (c $=0.68, \mathrm{CHCl}_{3}$, d.r. $1.6 / 1$, major 95% ee, minor 77% ee $)$. HRMS calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{Na}\right): 404.1296$, found 404.1286. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.34-7.15(\mathrm{~m}, 5 \mathrm{H}$, overlap with the signal from the minor diastereomer), $7.06\left(\mathrm{dt}, 1 \mathrm{H}, J_{d}=7.6 \mathrm{~Hz}, J_{t}=0.8 \mathrm{~Hz}\right), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $6.14\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.9 \mathrm{~Hz}, J_{q}=1.4 \mathrm{~Hz}\right), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.70(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 3.68(\mathrm{bs}, 1 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), $2.94\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=13.1 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}\right), 2.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=13.0 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}\right), 2.07$ $(\mathrm{s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.8,176.7,148.8,143.3,143.3$, $142.5,135.4,130.4,129.0,128.2,127.4,124.3,123.5,109.7,77.9,46.5,44.2,33.3,16.1,10.1 \mathrm{ppm}$.

benzyl ((R,E)-2-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-4-methyl-5-oxopent-3-en-
1-yl)carbamate (3d). The reaction was carried out following the general procedure to furnish the crude products as a $3.0: 1$ mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.10 \mathrm{ppm}(\mathrm{bd}), \delta_{\text {minor }} 5.91 \mathrm{ppm}(\mathrm{bd})$.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.25\right.$ hexane/ethyl acetate $7 / 3$) in 63% yield (white solid). The enantiomeric excess was determined to be 94% for the major diasteroisomer by HPLC analysis on a Daicel Chiralpak IB column: 85/15 hexane/i-PrOH, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=27.4 \mathrm{~min}, \tau_{\text {minor }}=45.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+55.5(\mathrm{c}$ $=0.90, \mathrm{CHCl}_{3}$, d.r. $\left.3.0 / 1,94 \% \mathrm{ee}_{\text {major }}, 74 \% \mathrm{ee}_{\text {minor }}\right)$. HRMS calc. for $\left(\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\right)$: 507.1896 , found 507.1911. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.04(\mathrm{bs}, 1 \mathrm{H}), 7.50-7.13(\mathrm{~m}, 14 \mathrm{H}$, overlap with the signal from the minor diastereomer), $7.05\left(\mathrm{t}, 1 \mathrm{H}, J_{t}=7.4 \mathrm{~Hz}\right), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.10(\mathrm{bd}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.34-5.25$ $(\mathrm{m}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), $4.99(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.66(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}$, overlap
with the signal from the minor diastereomer), 3.64-3.47 ($\mathrm{m}, 2 \mathrm{H}$, overlap with the signal from the minor diastereomer), $1.50(\mathrm{bs}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.7,176.6,153.7,147.2,143.3,142.2$, $136.4,135.4,130.3,129.4,129.0,128.6,128.2,127.5,124.1,123.6,109.6,77.2,66.9,47.2,44.0,40.0,9.7$ ppm.

(S,E)-2-benzyl-4-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-5-phenylpent-2-enal
(3e). The reaction was carried out following the general procedure (using $20 \% \mathrm{~mol}$ of catalyst loading) to furnish the crude products as a 1.5:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 9.32 \mathrm{ppm}(\mathrm{s}), \delta_{\text {minor }} 9.24 \mathrm{ppm}(\mathrm{s})$.
The title compound was isolated as a mixture of diastereoisomers (hexane/ethyl acetate 10/1) in 65% yield (white solid). The enantiomeric excess was determined to be 90% for the major diasteroisomer by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=$ $215,254 \mathrm{~nm}: \tau_{\text {major }}=9.3 \mathrm{~min}, \tau_{\text {minor }}=11.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+92.5\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right.$, d.r. $1.5 / 1$, major $90 \% \mathrm{ee}$, minor 76% ee $)$. HRMS calc. for $\left(\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{3}+\mathrm{Na}\right)$: 510.2045, found 510.2021.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.32(\mathrm{bs}, 1 \mathrm{H}), 7.36-6.93(\mathrm{~m}, 20 \mathrm{H}$, overlap with the signal from the minor diastereomer), 6.79 ($\mathrm{bd}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), 6.76-6.71 (m , $2 \mathrm{H}), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.72(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.72\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=11.0 \mathrm{~Hz}, J_{d}=3.4 \mathrm{~Hz}\right), 3.41(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz})$, 3.02-2.95 (m, 1H, overlap with the signal from the minor diastereomer), $2.92(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}$, signal overlapped with minor isomer), $2.87(\mathrm{bs}, 1 \mathrm{H}), 2.39\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=13.3 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.1,177.0,150.9,146.0,142.4,138.3,138.1,135.3,130.2,129.1,129.0,128.7,128.6$, $128.5,128.4,128.3,128.2,128.0,127.5,126.6,126.0,124.7,123.4,109.8,77.9,49.3,44.1,35.4,29.7 \mathrm{ppm}$.

(S,E)-4-((R)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)-2-ethylhex-2-enal (3f)

The reaction was carried out following the general procedure (using $20 \% \mathrm{~mol}$ of the catalyst D/acid combination) to furnish the crude products as a 1.5:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.22 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 5.87 \mathrm{ppm}(\mathrm{d})$. The title compound was isolated as a single diastereoisomer (hexane/ethyl acetate 10:1) in 28% yield (white solid). The enantiomeric excess was determined to be 94% by HPLC analysis on a Daicel Chiralpak IA column: $49.5 / 1 / 49.5$ hexane $/ \mathrm{i}-\mathrm{PrOH} / \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}$: $\tau_{\text {major }}=9.1$ $\min , \tau_{\text {minor }}=12.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+84.5\left(\mathrm{c}=1.45, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$. HRMS calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{Na}\right): 386.1732$, found 386.1739 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.37\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=7.4 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}\right), 7.34-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.07$ $\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=7.5 \mathrm{~Hz}, J_{d}=1.0 \mathrm{~Hz}\right), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.22(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=15.4$ $\mathrm{Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 3.26\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=11.1 \mathrm{~Hz}, J_{d}=3.0 \mathrm{~Hz}\right), 2.96(\mathrm{bs}, 1 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 0.76(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 194.9,177.4,150.4,149.3,142.9,135.5,1302,129.0,128.0,127.6,124.7$, $123.3,109.8,78.2,48.6,44.2,21.7,18.1,13.4,12.1 \mathrm{ppm}$.

(S,E)-4-((R)-1-benzyl-5-chloro-3-hydroxy-2-oxoindolin-3-yl)-2-methylpent-2-enal (3g)

The reaction was carried out following the general procedure to furnish the crude products as a 1.7:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.39 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 6.17 \mathrm{ppm}(\mathrm{d})$.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.30\right.$ hexane/ethyl acetate $\left.8 / 2\right)$ in 92% yield (white solid). The enantiomeric excess was determined to be 86% for the major diasteroisomer (73% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 90:10 hexane/i-PrOH, flow rate 1.00 $\mathrm{mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=15.3 \mathrm{~min}, \tau_{\text {minor }}=22.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+31.0\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right.$, d.r. $1.7 / 1$, major $\left.86 \% \mathrm{ee},{ }_{\text {minor }} 73 \% \mathrm{ee}\right)$. HRMS calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Cl}+\mathrm{Na}\right)$: 392.1029, found 392.1038.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 7.37-7.18(\mathrm{~m}, 7 \mathrm{H}$, overlap with the signal from the minor diastereomer), $6.72(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $6.39\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.2 \mathrm{~Hz}, J_{q}=1.3 \mathrm{~Hz}\right), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.72(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.49-3.39(\mathrm{~m}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), $1.77(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.0$, $176.9,150.8,141.6,141.4,135.0,130.1,129.1,128.9,128.3,127.5,127.4,125.2,110.7,78.4,44.3,41.5$, 14.0, 9.9 ppm .

(S,E)-4-((R)-1-benzyl-5-chloro-3-hydroxy-2-oxoindolin-3-yl)-2-methyl-5-phenylpent-

 2-enal (3h)The reaction was carried out following the general procedure to furnish the crude products as a $1.6: 1$ mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.42 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 5.97 \mathrm{ppm}(\mathrm{d})$.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.30\right.$ hexane/ethyl acetate $\left.8 / 2\right)$ in 69% yield (white solid). The enantiomeric excess was determined to be 92% for the major diasteroisomer (78% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 52.5/2.5/50 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=7.9 \mathrm{~min}, \tau_{\text {minor }}=9.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+80.0\left(\mathrm{c}=0.77, \mathrm{CHCl}_{3}\right.$, d.r. $1.6 / 1$, major 92% ee, minor 78% ee $)$. HRMS calc. for $\left(\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{Cl}+\mathrm{Na}\right)$: 468.1342 , found 468.1358 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.36-7.12(\mathrm{~m}, 9 \mathrm{H}$, overlap with the signal from the minor diastereomer), 7.05-7.01 ($\mathrm{m}, 2 \mathrm{H}$ overlap with the signal from the minor diastereomer), $6.71\left(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}\right.$, overlap with the signal from the minor diastereomer), $6.42\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.9 \mathrm{~Hz}, J_{q}=\right.$ $1.3 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.73(\mathrm{~d}, 1 \mathrm{H}, J=15.4$ $\mathrm{Hz}), 3.62\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=10.9 \mathrm{~Hz}, J_{d}=3.6 \mathrm{~Hz}\right.$, overlap with the signal from the minor diastereomer), 3.34 (bs, $1 \mathrm{H}), 3.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=13.6 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}\right), 2.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=13.6 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}\right), 1.27(\mathrm{~s}, 3 \mathrm{H}$, signal overlapped with minor isomer) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 194.6,176.8,148.7,143.5,141.2$, $138.1,134.9,130.4,130.3,129.2,129.0,128.6,128.3,127.6,126.7,125.0,110.9,78.0,49.5,44.3,34.9,9.5$ ppm.

(S,E)-4-((R)-1-benzyl-5-bromo-3-hydroxy-2-oxoindolin-3-yl)-2-methylpent-2-enal (3i). The reaction was carried out following the general procedure to furnish the crude products as a 1.9:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.36 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 6.19 \mathrm{ppm}(\mathrm{d})$. The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.30\right.$ hexane/ethyl acetate $8 / 2$) in 68% yield (white solid). The enantiomeric excess
was determined to be 85% for the major diasteroisomer (78% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 90:10 hexane $/ \mathrm{i}-\mathrm{PrOH}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=8.3$ $\min , \tau_{\text {minor }}=11.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+51.0\left(\mathrm{c}=1.33, \mathrm{CHCl}_{3}\right.$, d.r. $1.9 / 1$, major 85% ee, minor 78% ee $)$. HRMS calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}+\mathrm{Na}\right): 436.0524$, found 436.0533 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.39-7.23(\mathrm{~m}, 7 \mathrm{H}$, overlap with the signal from the minor diastereomer), $6.64(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $6.36\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.4 \mathrm{~Hz}, J_{q}=1.4 \mathrm{~Hz}\right), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.67(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.51(\mathrm{bs}, 1 \mathrm{H}), 3.47-3.36(\mathrm{~m}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), $1.74(\mathrm{~d}, 3 \mathrm{H}, J=1.4 \mathrm{~Hz}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 195.1,176.9,150.9,141.9,141.6,134.9,132.9,130.6,129.1,128.2,127.9,127.5,116.1,111.2$, 78.4, 44.2, 41.5, 14.1, 9.8 ppm .

(S,E)-4-((R)-1-benzyl-3-hydroxy-5-methyl-2-oxoindolin-3-yl)-2-methylpent-2-enal (3j). The reaction was carried out following the general procedure to furnish the crude products as a 3.8:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.46 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 6.22 \mathrm{ppm}(\mathrm{d})$. The title compound was isolated as a mixture of diastereoisomers ($\mathrm{R}_{f}=0.30$ hexane/ethyl acetate $8 / 2$) in 76% yield (white solid). The enantiomeric excess was determined to be 95% for the major diasteroisomer (81% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 49:2:49 hexane $/ \mathrm{i}-\mathrm{PrOH} / \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}$: $\tau_{\text {major }}=$ $7.4 \mathrm{~min}, \tau_{\text {minor }}=10.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+66.7\left(\mathrm{c}=1.345, \mathrm{CHCl}_{3}\right.$, d.r. $3.8 / 1$, major 95% ee, minor 81% ee $)$. HRMS calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}+\mathrm{Na}\right): 372.1576$, found 372.1586 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 6 \mathrm{H}$, overlap with the signal from the minor diastereomer), $7.06(\mathrm{bd}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $6.46\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.5 \mathrm{~Hz}, J_{q}=1.3 \mathrm{~Hz}\right), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $4.69(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}$, overlap with the signal from the minor diastereomer), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 195.2,177.4,152.1,141.2,140.5,135.6,132.9,130.4,128.9,128.5,127.9,127.6,127.4,125.4$, 109.5, 78.6, 44.1, 41.5, 21.2, 14.2, 9.8 ppm .

(S,E)-4-((R)-1-benzyl-3-hydroxy-5-nitro-2-oxoindolin-3-yl)-2-methylpent-2-enal (3k)

The title compound was isolated as a mixture of diastereoisomers ($\mathrm{R}_{f}=0.30$ hexane/ethyl acetate $7 / 3$) in 87% yield (white solid). The enantiomeric excess was determined to be 87% for the major diasteroisomer (75% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 49/2/49 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=10.7 \mathrm{~min}, \tau_{\text {minor }}=14.0 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+80.3\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right.$, d.r. $1.5 / 1$, ${ }_{\text {major }} 87 \%$ ee, minor 75% ee $)$. HRMS calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\right): 403.1270$, found 403.1270 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.25(\mathrm{~m}, 2 \mathrm{H}$, overlap with the signal from the minor diastereomer), $7.39-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $6.33\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.4 \mathrm{~Hz}, J_{q}=1.4 \mathrm{~Hz}\right), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}$, signal overlapped with minor isomer), $4.78(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 3.55-3.39(\mathrm{~m}, 1 \mathrm{H}$, signal overlap with the signal from the minor diastereomer), 3.26 (bs, 1 H , overlap with the signal from the minor diastereomer), $1.71(\mathrm{~d}, 3 \mathrm{H}, J=1.4 \mathrm{~Hz}$),
$1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 195.1,178.3,151.2,141.3,140.3,136.9$, 136.1, 132.0, 128.7, 127.5, 126.8, 124.6, 123.8, 103.1, 77.4, 44.8, 41.8, 14.0, 9.8 ppm .
(S,E)-4-((R)-1-benzyl-3-hydroxy-2-oxo-5-(trifluoromethoxy)indolin-3-yl)-2-methylpent-2-enal (31)

The reaction was carried out following the general procedure to furnish the crude products as a 2.9:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.28 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 6.16 \mathrm{ppm}(\mathrm{d})$.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.30\right.$ hexane/ethyl acetate $\left.8 / 2\right)$ in 71% yield (white solid). The enantiomeric excess was determined to be 89% for the major diasteroisomer (63% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 49/2/49 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=8.2 \mathrm{~min}, \tau_{\text {minor }}=10.5 \mathrm{~min}$. HRMS calc. for $\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~F}_{3}+\mathrm{Na}\right)$: 442.1242 , found 442.1259 .
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 6 \mathrm{H}$, overlap with the signal from the minor diastereomer), $7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $6.28\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.3 \mathrm{~Hz}, J_{q}=1.2 \mathrm{~Hz}\right), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}$, signal overlap with the signal from the minor diastereomer), $4.70(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}$, signal overlapped with minor isomer), 3.02 (bs, 1 H , overlap with the signal from the minor diastereomer), $1.70(\mathrm{~d}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}$), $1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 194.9,177.1,150.5,145.1,141.6,1414$, $134.9,129.2,128.4,127.6,123.3,118.6,110.3,78.3,44.4,41.7,13.9,9.8 \mathrm{ppm}$.
(S,E)-4-((R)-1-benzyl-3-hydroxy-5,7-dimethyl-2-oxoindolin-3-yl)-2-methylpent-2-enal (3m)

The reaction was carried out following the general procedure to furnish the crude products as a 3.9:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.47 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 6.39 \mathrm{ppm}(\mathrm{d})$ in deutereted toluene.
The title compound was isolated as a mixture of diastereoisomers $\left(\mathrm{R}_{f}=0.30\right.$ hexane/ethyl acetate $\left.10 / 1\right)$ in 65% yield (pale-pink solid). The enantiomeric excess was determined to be 91% for the major diasteroisomer (77% for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 48.5:3:48.5 hexane $/ \mathrm{i}-\mathrm{PrOH} / \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=6.4 \mathrm{~min}, \tau_{\text {minor }}=7.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=$ $+64.5\left(\mathrm{c}=1.40, \mathrm{CHCl}_{3}\right.$, d.r. $3.9 / 1$, major 90% ee, minor 77% ee $)$. HRMS calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{Na}\right): 386.1732$, found 386.1751 .
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}$, overlap with the signal from the minor diastereomer), 7.17-7.12 ($\mathrm{m}, 2 \mathrm{H}$, overlap with the signal from the minor diastereomer), $7.08(\mathrm{bs}, 1 \mathrm{H}$, signal overlap with the signal from the minor diastereomer), $6.81(\mathrm{bs}, 1 \mathrm{H}), 6.47\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.4 \mathrm{~Hz}, J_{q}=1.4 \mathrm{~Hz}\right)$, $5.15(\mathrm{~s}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), $5.10(\mathrm{~s}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), 3.48-3.38 ($\mathrm{m}, 2 \mathrm{H}$, overlap with the signal from the minor diastereomer), 2.28 (s , $3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}$, overlap with the signal from the minor diastereomer), $1.73(\mathrm{~d}, 3 \mathrm{H}, J=1.4 \mathrm{~Hz}), 1.06(\mathrm{~d}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 195.3,178.5,152.4,141.1,138.5,137.3,134.6,132.9$, $129.0,127.5,125.9,123.3,120.2,77.6,45.3,41.6,20.9,18.8,14.3,9.8 \mathrm{ppm}$.

(S,E)-4-((R)-1-benzyl-7-bromo-3-hydroxy-2-oxoindolin-3-yl)-2-methylpent-2-enal (3n)

The reaction was carried out following the general procedure to furnish the crude products as a 2.4:1 mixture of diastereoisomers; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 5.46 \mathrm{ppm}(\mathrm{d}), \delta_{\text {minor }} 5.40 \mathrm{ppm}(\mathrm{d})$. The title compound was isolated as a mixture of diastereoisomers ($\mathrm{R}_{f}=0.30$ hexane/ethyl acetate $8 / 2$) in 88% yield (white solid). The enantiomeric excess was determined to be 92% for the major diasteroisomer (71% ee for the minor) by HPLC analysis on a Daicel Chiralpak IA column: 49:2:49 hexane $/ \mathrm{i}-\mathrm{PrOH} / \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=$ $8.2 \mathrm{~min}, \tau_{\text {minor }}=10.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+38.6\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right.$, d.r. $2.4 / 1$, major $92 \% \mathrm{ee}$, minor 71% ee $)$. HRMS calc. for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}+\mathrm{Na}\right)$: 436.0524 , found 436.0508 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.30$ ($\mathrm{s}, 1 \mathrm{H}$, overlap with the signal from the minor diastereomer), 7.43 (dd, $1 \mathrm{H}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), $7.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.4 \mathrm{~Hz}\right.$, $J_{2}=1.2 \mathrm{~Hz}$), $7.33-7.21(\mathrm{~m}$, overlap with the signal from the minor diastereomer), 6.97 (dd, 1 $\mathrm{H}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}$, signal overlapped with minor isomer), $6.35\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=10.6 \mathrm{~Hz}, J_{q}=1.5 \mathrm{~Hz}\right.$, overlap with the signal from the minor diastereomer), $5.46(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=16.1 \mathrm{~Hz}$, overlap with the signal from the minor diastereomer), 3.45-3.33 ($\mathrm{m}, 2 \mathrm{H}$, overlap with the signal from the minor diastereomer), $1.69(\mathrm{~d}, 3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 195.1,178.3,151.1,141.4,140.3,136.9,136.2,132.0,127.6,126.8,126.5,124.6,123.7,103.1$, $77.4,44.8,41.8,14.0,9.8 \mathrm{ppm}$.

D. General Procedure for the Reduction of Products 3

0.1 mmol of adducts $\mathbf{3 a}, \mathbf{3 h}$, and $\mathbf{3 j}$ were transferred in a vial and dissolved in 1 mL of a DCM/ethanol mixture (1 to $1 \mathrm{v} / \mathrm{v}$) and cooled to $0^{\circ} \mathrm{C}$ (ice bath). After the addition of NaBH_{4} (1.5 equivalents, added in small portions) the mixture was stirred until the reaction was considered complete by TLC analysis (typically $1-2 h$). The reaction was then quenched with water and the compound extracted with diethyl ether. The aqueous phase was washed three times with diethyl ether and the combined organic phases dried over sodium sulphate. Solvent was removed under reduced pressure and the crude mixture was purified by chromatography column. Separation of the two diastereoisomers was straightforward, securing access to diastereomerically pure alcohol adducts.

Compound 3a was reduced to the corresponding alcohol following the general procedure. The crude was purified by flash column chromatography (gradient from hexane/ethyl acetate $7 / 3$ to $1 / 1, \mathrm{R}_{f}=0.15$ in hexane/ethyl acetate $7 / 3$) to afford compound 3a-red as a single diastereoisomer in 71% yield (colorless solid, 47% overall yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.22\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=7.9 \mathrm{~Hz}, J_{d}=1.3 \mathrm{~Hz}\right)$, $7.05\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=7.9 \mathrm{~Hz}, J_{d}=1.3 \mathrm{~Hz}\right), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.48(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.3 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 4.02(\mathrm{bs}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{bs}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}$, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 177.9,143.1,139.0,135.8,129.6,129.1,128.9,127.9$, $127.6,124.9,123.8,122.9,109.4,78.9,68.6,44.1,40.2,15.1,14.4 \mathrm{ppm}$.

Compound 3h was reduced to the corresponding alcohol following the general procedure. Chromatographic purification on silica gel (gradient from hexane/ethyl acetate $8: 2$ to $6 / 4$, $\mathrm{R}_{f}=0.2$ in hexane/ethyl acetate $7 / 3$) afforded the reduced adduct $\mathbf{3 h}$-red as single diasteroisomer in 55% yield (colorless solid, 35% overall yield). Since the alchohl was not solid, the major diasteroisomer was then re-oxidized to the aldehyde adduct $\mathbf{3 h}$ in order to get suitable crystals for X-ray crystallographic analysis. Oxidation of the alcohol 3h-red: compound 3h-red was transferred in a round bottom flask, then $\operatorname{DCM}(1.5 \mathrm{ml}, 0.05 \mathrm{M})$ and activated MnO_{2} (10 equivalents) were added and the stirring continued over a period of 16 hours. The mixture was filtered on celite and the solvent removed under reduced pressure. The crude product was purified by flash chromatography (hexane/ethyl acetate 7/3) to give the pure $\mathbf{3 h}$ as single diastereoisomer in a 32% overall yield.

Compound $\mathbf{3} \mathbf{j}$ was reduced to the corresponding alcohol following the general procedure. Chromatographic purification on silica gel (gradient from hexane/ethyl acetate $7 / 3$ to hexane/ethyl acetate $1 / 1, \mathrm{R}_{f}=0.15$ in hexane/ethyl acetate $7 / 3$) to afford compound $\mathbf{3 j}$-red as single diastero isomer in 74% yield (colorless solid, 44% overall yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.5 \mathrm{~Hz}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.02(\mathrm{bs}, 1 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{bs}$, $1 \mathrm{H}), 2.95(\mathrm{bs}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}): $\delta 177.8,140.7,138.9,135.9,132.6,129.8,129.2,129.1,128.9,127.8,127.6,125.6,124.0,109.1$, $78.9,68.7,44.1,40.2,21.2,15.1,14.4 \mathrm{ppm}$

E. General Procedure for the Hetero-Diels-Alder-type Reaction of α-Aryl Substituted Enals

All the reactions were carried out in toluene (synthesis grade, $>99 \%$) without any precaution for excluding air and moisture (open air chemistry on the benchtop). An ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap was charged with (S)-(-)- α, α-diphenyl-2-pyrrolidinemethanol trimethylsilyl ether $\mathbf{C}(6.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,6-bis(trifluromethyl)benzoic acid ($5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). Then the solvent $(200 \mu \mathrm{~L})$ and the α-branched enal $2(0.4 \mathrm{mmol})$ were sequentially added and the resulting solution stirred at ambient temperature for 5 minutes. The reaction was started by the addition of the N benzyl protected isatin derivative $1(0.2 \mathrm{mmol})$. The vial was sealed and immerged in a water bath (thermostated at $25^{\circ} \mathrm{C}$) and stirring continued over 40 hours. Then the crude mixture was flushed through a short plug of silica, using dichloromethane/diethyl ether $1: 1$ as the eluent (5 ml). Solvent was removed under reduced pressure and the crude mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio. The two diastereoisomers for product $\mathbf{4}$ were isolated by flash column chromatography using the specified eluent.

While the major isomers, the spirooxindole lactols $(2 R, 3 R)-4$ are stable compounds that can be stored after isolation, the minor isomers (the $(2 S, 3 R)-\mathbf{4}$ adducts) are stable on the bench only for 2-3 days. In addition, given the difficulties of determining their enantiomeric excess by HPLC analysis, spirooxindole lactols $(2 S, 3 R)-\mathbf{4}$ were oxidized suddenly after their isolation. The procedure for the oxidation is as follows:

Procedure for the Oxidation of Lactol 4 to Lactons 5

The oxidation of compounds $\mathbf{4}$ to the corresponding lactones $\mathbf{5}$ was performed following a slightly modified procedure reported in literature. ${ }^{8} 0.1 \mathrm{mmol}$ of compound $\mathbf{4}$ were placed and dried in a 5 ml vial, followed by the sequential addition of acetone (0.5 mL) and the Jones reagent (dropwise, 0.2 mL). The mixture was stirred at room temperature over 2 hours, then diluted with diethyl ether and quenched with water. The aqueous phase was washed three times with diethyl ether and the combined organic phases dried over sodium sulphate. Solvent was removed under reduced pressure and the crude mixture was purified by chromatography on silica gel (typically with hexane/ethyl acetate $9 / 1$ as the eluent) to afford the pure spirooxindole dihydropyran-2-ones $(2 S, 3 R)-5$.
Jones reagent was prepared carefully diluting a solution of $\mathrm{CrO}_{3}(5 \mathrm{~g})$ in 5 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with 25 mL of water at $0^{\circ} \mathrm{C}$.

The reaction was carried out following the general procedure to furnish the crude products as a mixture of $2.2: 1$ diastereoisomers $(2 R, 3 R)-\mathbf{4 a} /(2 S, 3 R)-\mathbf{4 a}$; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.13 \mathrm{ppm}$ (bs), $\delta_{\text {minor }}$ 6.22 ppm and $6.25 \mathrm{ppm}(\mathrm{bs}) .(2 R, 3 R)-\mathbf{4 a} /(2 S, 3 R)-\mathbf{4 a}$ were individually isolated by chromatographic purification on silica gel (gradient from hexane/diethyl
ether 9/1 to $8 / 2$).

(2R,3R)-4a

The major diastereoisomer $(2 R, 3 R)$-4a was isolated as single diastereoisomer $\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether 8/2) in 45% yield (white solid). The enantiomeric excess was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=4.8 \mathrm{~min}, \tau_{\text {minor }}=5.7$ $\min .[\alpha]_{D}^{26}=-59.0\left(c=1.60, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$. HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3}+\mathrm{Na}\right): 420.1576$, found 420.1571.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.06\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{t}=\right.$ $\left.7.5 \mathrm{~Hz}, J_{d}=0.9 \mathrm{~Hz}\right), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.06-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=$ $12.7 \mathrm{~Hz}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.9,142.8,137.7,137.2,135.4,130.1,129.7,129.0,128.6,127.9$, $127.5,126.7,126.6,124.0,123.9,109.5,92.1,78.6,44.3,36.9,14.8 \mathrm{ppm}$.

The minor $(2 S, 3 R)-4$ a isomer was isolated as a $1 / 1$ mixture of anomers $\left(\mathrm{R}_{f}=0.20\right.$ hexane/ethyl acetate $8 / 2$) in 22% yield (white solid). The title compound was directly oxidized to the corresponding lactone ($2 S, 3 R$)-5a using Jones reagent following the reported procedure. The corresponding lactone was obtained as a

[^3]single diasteroisomer and isolated after chromatography column ($\mathrm{R}_{f}=0.3$ hexane/diethyl ether $8 / 2$) in 95% yield.
($2 S, 3 R$)-5a. The enantiomeric excess was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: $50 / 50$ hexane $/ \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=5.1 \mathrm{~min}, \tau_{\text {minor }}=6.1 \mathrm{~min}$. HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3}+\mathrm{Na}\right)$: 418.1419, found 418.1407.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.97\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=7.7 \mathrm{~Hz}, J_{d}=0.9\right.$ $\mathrm{Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.66\left(\mathrm{qd}, 1 \mathrm{H}, J_{q}=7.2 \mathrm{~Hz}\right.$, $\left.J_{d}=2.4 \mathrm{~Hz}\right), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,162.1,144.9,143.4,135.1$, $134.8,132.5,131.2,129.1,128.8,128.3,128.3,128.1,127.4,125.1,125.0,123.3,110.3,84.6,44.3,34.6$, 14.6 ppm .

The reaction was carried out following the general procedure to furnish the crude products as a mixture of $2.3: 1$ diastereoisomers $(2 R, 3 R)-\mathbf{4 b} /(2 S, 3 R)-\mathbf{4 b}$; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.12 \mathrm{ppm}(\mathrm{bs}), \delta_{\text {minor }}$ 6.19 ppm and $6.23 \mathrm{ppm}(\mathrm{bs}) .(2 R, 3 R)-4 \mathbf{b} /(2 S, 3 R)-\mathbf{4 b}$ were individually isolated by chromatographic purification on silica gel (gradient from hexane/diethyl ether 9/1 to 8/2).

$(2 R, 3 R)-4 b$
$(2 R, 3 R)-\mathbf{4 b}$ was isolated as a single diastereoisomer $\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether $\left.8 / 2\right)$ in 47% yield (white solid). The enantiomeric excess was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=5.5 \mathrm{~min}, \tau_{\text {minor }}=6.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=-20.7(\mathrm{c}=1.3$, $\mathrm{CHCl}_{3}, 99 \%$ ee $)$. HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{Cl}+\mathrm{Na}\right)$: 454.1186 , found 454.1183 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.18(\mathrm{~m}, 11 \mathrm{H}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.12-6.09$ $(\mathrm{m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.07-2.99(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.4 \mathrm{~Hz})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.4,141.2,137.4,137.2,134.9,131.4,130.0,129.4,129.1$, 128.6, 128.1, 127.9, 127.5, 126.7, 126.3, 124.6, 110.5, 92.1, 44.4, 36.9, 14.7 ppm.

$(2 S, 3 R) \mathbf{- 4 b}$ was isolated as a $1 / 1$ mixture of anomers $\left(\mathrm{R}_{f}=0.20\right.$ hexane/ethyl acetate $8 / 2$) in 17% yield (white solid). The title compound was directly oxidized to the corresponding lactone $(2 S, 3 R)-\mathbf{5 b}$ using the Jones reagent following the reported procedure. The corresponding lactone was obtained as a single diasteroisomer and isolated after chromatography column $\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether $8 / 2$) in 98% yield. $(2 S, 3 R)-\mathbf{5 b}$. The enantiomeric excess was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 40/60 hexane/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254$ $\mathrm{nm}: \tau_{\text {major }}=7.3 \mathrm{~min}, \tau_{\text {minor }}=9.3 \mathrm{~min}$. HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3}+\mathrm{Na}\right): 418.1419$, found 418.1407.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 8 \mathrm{H}), 6.84(\mathrm{t}, 1 \mathrm{H}, J=2.8$ $\mathrm{Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.65\left(\mathrm{qd}, 1 \mathrm{H}, J_{q}=7.5 \mathrm{~Hz}\right.$, $\left.J_{d}=2.9 \mathrm{~Hz}\right), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.7,161.6,144.6,141.8,134.6$, $134.6,132.6,131.1,129.2,128.9,128.7,128.7,128.3,128.3,127.4,126.6,125.5,111.4,84.3,44.4,34.5$, 14.5 ppm .

$(2 R, 3 R)-4 c$ and $(2 S, 3 R)-4 c$. The reaction was carried out following the general procedure, using $20 \mathrm{~mol} \%$ of the catalyst, to furnish the crude products as a mixture of $3.0: 1$ diastereoisomers $(2 R, 3 R)-\mathbf{4 c} /(2 S, 3 R)-4 \mathbf{c}$; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.11 \mathrm{ppm}(\mathrm{bs}), \delta_{\text {minor }} 6.19 \mathrm{ppm}$ and 6.22 $\mathrm{ppm}(\mathrm{bs}) .(2 R, 3 R)-\mathbf{4 c} /(2 S, 3 R)-4 \mathrm{c}$ were individually isolated by chromatographic purification on silica gel (gradient from hexane/diethyl ether $9 / 1$ to $8 / 2$) as described below.

$(2 R, 3 R)-\mathbf{4 c}$ was isolated as a single diastereoisomer $\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether $\left.8 / 2\right)$ in 63% yield (white solid). The enantiomeric excess was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=$ $215,254 \mathrm{~nm}: \tau_{\text {major }}=4.5 \mathrm{~min}, \tau_{\text {minor }}=5.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{27}=-30.8\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $) . \mathrm{HRMS}$ calc. for $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{Na}\right)$: 434.1732, found 434.1716.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.11-6.09(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{bs}, 1 \mathrm{H}), 5.89\left(\mathrm{dq}, 1 \mathrm{H}, J_{d}=12.6 \mathrm{~Hz}, J_{q}=1.2 \mathrm{~Hz}\right)$, $5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.08-$ $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 177.8,140.3,137.7,137.2,135.5,133.7,130.4,129.7,129.0,128.6,127.9$, $127.8,127.5,126.7,126.7,124.7,109.3,92.2,78.7,44.3,36.9,21.2,14.9 \mathrm{ppm}$.

(2S,3R)-4c

(2S,3R)-5c
$(2 S, 3 R)-4 \mathbf{c}$ was isolated as a $1 / 1$ mixture of anomers $\left(\mathrm{R}_{f}=0.20\right.$ hexane/ethyl acetate $8 / 2$) in 17% yield (white solid). The title compound was directly oxidized to the corresponding lactone $(2 S, 3 R)$-5c using the Jones reagent following the reported procedure. The corresponding lactone 5c was obtained as a single diasteroisomer and isolated after chromatography column $\left(\mathrm{R}_{f}=0.3\right.$ hexane/ethyl acetate $\left.9 / 1\right)$ in 94% yield.
$(2 S, 3 R)-5 c$. The enantiomeric excess was determined to be 98% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH $/ \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=4.5 \mathrm{~min}, \tau_{\text {minor }}=$ $5.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=-73.63\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{bs}, 1 \mathrm{H}), 7.05(\mathrm{bd}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 6.65(\mathrm{~d}$, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 3.65\left(\mathrm{qd}, 1 \mathrm{H}, J_{q}=7.4 \mathrm{~Hz}, J_{d}=2.7 \mathrm{~Hz}\right)$, $2.63(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,162.2,145.1,140.9,135.2$, $135.0,132.9,132.5,131.4,129.1,128.8,128.7,128.4,128.0,127.4,125.8,125.0,110.1,84.8,44.4,34.6$, 21.3, 14.6 ppm .

$(2 R, 3 R)-\mathbf{4 d}$ and $(2 S, 3 R)-\mathbf{4 d}$. The reaction was carried out following the general procedure, using $20 \mathrm{~mol} \%$ of the catalyst, to furnish the crude products as a mixture of 1.3:1 diastereoisomers $(2 R, 3 R)-\mathbf{4 d} /(2 S, 3 R)-\mathbf{4 d}$; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.14 \mathrm{ppm}(\mathrm{bs}), \delta_{\text {minor }} 6.18$ ppm and $6.22 \mathrm{ppm}(\mathrm{bs}) .(2 R, 3 R)-\mathbf{4 d} /(2 S, 3 R)-\mathbf{4 d}$ were individually isolated by chromatographic purification on silica gel (gradient hexane/ethyl acetate $9 / 1$ to hexane/ethyl acetate $7 / 3$) as described below.

$(2 R, 3 R)-\mathbf{4 d}$ was isolated as mixture of diastereoisomers $(18 / 1)\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether $7 / 3$) in 45% yield (white solid). The enantiomeric excess of $(2 R, 3 R)-\mathbf{4 d}$ was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=6.3 \mathrm{~min}, \tau_{\text {minor }}=9.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=+15.4(\mathrm{c}=$ $0.85, \mathrm{CHCl}_{3}, 99 \%$ ee $)$. HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\right): 465.1426$, found $465.1429 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.7 \mathrm{~Hz}, J_{l}=2.3 \mathrm{~Hz}\right), 7.60-7.55(\mathrm{~m}$, $5 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 9 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.12-6.09(\mathrm{bs}, 1 \mathrm{H}), 5.93(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 5.10(\mathrm{~d}, 1 \mathrm{H}$, $J=15.5 \mathrm{~Hz}), 4.77(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 3.16-3.07(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.0,148.3,144.5,137.3,137.2,134.2,130.8,129.3,128.7,128.5$, $128.1,127.5,127.1,126.7,125.9,120.1,109.3,77.9,11.6,36.8,14.7 \mathrm{ppm}$.

$(2 S, 3 R)-\mathbf{4 d}$ was isolated as a $1 / 1$ mixture of anomers $\left(\mathrm{R}_{f}=0.20\right.$ hexane/ethyl acetate $8 / 2$) in 17% yield (white solid). The title compound was directly oxidized to the corresponding lactone $(2 S, 3 R)-\mathbf{5 d}$ using the Jones reagent and following the reported procedure. The corresponding lactone was obtained as a single diasteroisomer and isolated after chromatography column $\left(\mathrm{R}_{f}=0.3\right.$ hexane/ethyl acetate 8/2) in 94% yield.
$(2 S, 3 R)-5 d$. The enantiomeric excess was determined to be 97% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=7.3 \mathrm{~min}, \tau_{\text {minor }}=$ 9.3 min. $[\alpha]_{\mathrm{D}}{ }^{27}=-122.75$ ($\mathrm{c}=0.75, \mathrm{CHCl}_{3}, 97 \%$ ee). HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\right)$: 463.1270, found 463.1266. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 831(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 8.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=8.6 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}\right.$), $7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.27(\mathrm{~m}, 9 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.8 \mathrm{~Hz}), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 3.67\left(\mathrm{qd}, 1 \mathrm{H}, J_{q}=7.3 \mathrm{~Hz}, J_{d}=2.0 \mathrm{~Hz}\right), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,162.2,145.1,140.9,135.2,135.0,132.9,132.5,131.4,129.1,128.8$, $128.7,128.4,128.0,127.4,125.8,125.0,110.1,84.8,44.4,34.6,21.3,14.6 \mathrm{ppm}$.

$(2 R, 3 R)-4 \mathbf{e}$ and $(2 S, 3 R)-4 \mathbf{e}$. The reaction was carried out following the general procedure \mathbf{B}, using $20 \mathrm{~mol} \%$ of the catalyst, to furnish the crude products as a mixture of $2.2: 1$ diastereoisomers $(2 R, 3 R)-\mathbf{4 e} /(2 S, 3 R)-\mathbf{4 e}$; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.31 \mathrm{ppm}(\mathrm{bs}), \delta_{\text {minor }} 6.38 \mathrm{ppm}$ and 6.40 ppm (bs). The reaction conversion was approximately 60% after 72 hours reaction time.

$(2 R, 3 R)-4 \mathrm{e}$
$(2 R, 3 R)-4 \mathbf{e}$ was isolated as a single diastereoisomer $\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether $\left.8 / 2\right)$ in 36% yield (white solid). The enantiomeric excess of $(2 R, 3 R)-4 \mathbf{e}$ was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate 1.00 $\mathrm{mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=4.8 \mathrm{~min}, \tau_{\text {minor }}=5.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{26}=-51.5\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}, 99 \%\right.$ ee). HRMS calc. for $\left(\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}+\mathrm{Na}\right): 434.1737$, found 434.1716 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.21\left(\mathrm{td}, 1 \mathrm{H} J_{t}=\right.$ $\left.2.8 \mathrm{~Hz}, J_{d}=0.7 \mathrm{~Hz}\right), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.31-6.28(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{bd}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 5.08(\mathrm{bd}, 1 \mathrm{H}, J=$ $11.8 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 2.80-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.16-$ $1.06(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.1,142.9,137.9,137.4,135.3$, ppm.

$(2 R, 3 R)-\mathbf{4 f}$ and $(2 S, 3 R)-\mathbf{4 f}$. The reaction was carried out following the general procedure, using $20 \mathrm{~mol} \%$ of catalyst, to furnish the crude products as a mixture of $3.2: 1$ diastereoisomers $(2 R, 3 R)-\mathbf{4 f} /(2 S, 3 R)-\mathbf{4 f}$; d.r. determined by integration of ${ }^{1} \mathrm{H}$ NMR signal: $\delta_{\text {major }} 6.12 \mathrm{ppm}(\mathrm{bs})$, $\delta_{\text {minor }} 6.22 \mathrm{ppm}$ and $6.28 \mathrm{ppm}(\mathrm{bs}) .(2 R, 3 R)-4 \mathbf{f} /(2 S, 3 R)-\mathbf{4 f}$ were individually isolated by chromatographic purification on silica gel (gradient from hexane/diethyl ether $9 / 1$ to hexane/ethyl acetate $8 / 2$) as described below.

$(2 R, 3 R)-4 \mathbf{f}$ was isolated as single diastereoisomer $\left(\mathrm{R}_{f}=0.3\right.$ hexane/diethyl ether $\left.8 / 2\right)$ in 69% yield (white solid). The enantiomeric excess of $(2 R, 3 R)-\mathbf{4 f}$ was determined to be 99% by HPLC analysis on a Daicel Chiralpak IA column: 49.5/1/49.5 hexane/i-PrOH/DCM, flow rate 1.00 $\mathrm{mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=5.6 \mathrm{~min}, \tau_{\text {minor }}=8.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{27}=-60.0\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}, 99 \%\right.$ ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.14-6.11(\mathrm{bs}, 1 \mathrm{H}), 5.86(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}$, $J=15.5 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 3.10-3.39(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3} : $\delta 177.9,142.7,136.2,136.1,135.3,133.7,130.2,129.6,129.0,128.7,128.0,127.5,127.0,124.0$, $123.9,109.5,91.9,78.6,44.3,36.9,14.8 \mathrm{ppm}$.

$(2 S, 3 R)-4 \mathbf{f}$

$(2 S, 3 R)-5 f$
$(2 S, 3 R)-\mathbf{4 f}$ was isolated as a $1 / 1$ mixture of anomers $\left(\mathrm{R}_{f}=0.20\right.$ hexane/ethyl acetate $8 / 2$) in 22% yield (white solid). The title compound was directly oxidized to the corresponding lactone $(2 S, 3 R)$ - $\mathbf{5 f}$ using the Jones reagent and following the reported procedure. The corresponding lactone was obtained as a single diasteroisomer and isolated by chromatography column $\left(\mathrm{R}_{f}=0.3\right.$ hexane/ethyl acetate 9/1) in 98% yield.
$(2 S, 3 R)-5 f$. The enantiomeric excess was determined to be 98% by HPLC analysis on a Daicel Chiralpak IA column: $49.5 / 1 / 49.5$ hexane $/ \mathrm{i}-\mathrm{PrOH} / \mathrm{DCM}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}, \lambda=215,254 \mathrm{~nm}: \tau_{\text {major }}=5.7 \mathrm{~min}, \tau_{\text {minor }}=$ 7.0 min. HRMS calc. for $\left(\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Cl}+\mathrm{Na}\right)$: 452.1017 , found $452.1029 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ 7.54-7.49 (m, 2H), 7.43-7.38 (m, 2H), 7.37-7.24 (m, 7H), $6.98\left(\mathrm{td}, 1 \mathrm{H}, J_{t}=7.7 \mathrm{~Hz}, J_{d}=0.7 \mathrm{~Hz}\right), 6.84(\mathrm{~d}$, $1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.62(\mathrm{td}, 1 \mathrm{H}$, $\left.J_{t}=7.4 \mathrm{~Hz}, J_{d}=2.8 \mathrm{~Hz}\right), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.10,161.9,145.1$, $143.4,135.1,135.0,133.2,131.5,131.3,129.7,129.1,128.9,128.1,127.4,125.0,124.9,123.4,110.4,84.5$, $44.4,34.7,14.7 \mathrm{ppm}$.

F. Synthesis of 7

An ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap was charged with $(S)-(-)-\alpha, \alpha-$ diphenyl-2-pyrrolidinemethanol trimethylsilyl ether $\mathbf{C}(17.0 \mathrm{mg}, 0.0525 \mathrm{mmol}, 1.05$ equivalents $)$ and the $\alpha-$ branched enal $\mathbf{2 b}(15.9 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 2 equivalents). Then toluene $(100 \mu \mathrm{~L})$, was added and the reaction stirred for 5 minutes. Finally the (E)-1-nitro-4-(2-nitrovinyl)benzene 6 ($9.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equivalent) was added, the vial closed and stirring continued over 40 hours at $25^{\circ} \mathrm{C}$. After this time the mixture was directly charged on a preparative TLC $(20 \times 20 \mathrm{~cm})$ and eluted with toluene $\left(\mathrm{R}_{f}=0.9\right.$ in toluene $)$. The silica containing the compound was washed with diethyl ether and DCM and the solvent removed under vacuum to afford the pure product 7 as single diasteroisomer in 69% yield.
Compound 7 was characterized by X-ray crystallographic analysis, see page S36.

As reported in Figure 2c and discussed within the text of the main manuscript, when running the same experiment under the same reaction condition but using the enal $\mathbf{2 a}$ bearing a methyl substituent (that is, mixing 2 equivalents of enal $\mathbf{2 a}, 1.05$ equivalents of amine \mathbf{C} and 1 equivalent of nitrostyrene in toluene d_{8}), the reaction did not proceed at all.
We however found that the cyclic structure of type 7 incorporating the aminocatalyst \mathbf{C} can form also from the α-methyl substituted enal $\mathbf{2 a}$ when running the same experiment under strictly anhydrous conditions and in the presence of freshly activated molecular sieves $(4 \AA ́)$, see Scheme S1. ${ }^{9}$

Scheme S1.

In a Schlenk tube equipped with a Teflon-coated stir bar was charged with $4 \AA$ M.S. (50 mg) and the molecular sieves activated by heating under vacuum. Than catalyst $\mathbf{C}(0.05 \mathrm{mmol})$, nitrostyrene (0.05 mmol), toluene- $d_{8}(100 \mu \mathrm{~L})$ and enal $\mathbf{2 a}(0.1 \mathrm{mmol})$ were sequentially added under argon atmosphere. The mixture was stirred for 16 h at room temperature and then analyzed by ${ }^{1} \mathrm{H}$ NMR after filtration on $20 \mu \mathrm{~m}$ Teflon HPLC filter under argon. The crude ${ }^{1} \mathrm{H}$ NMR spectrum revealed complete conversion of the nitrostyrene into the product depicted in the scheme and the unreacted excess of enal 2a.

[^4]A similar experiment has been performed adding the nitrostyrene to the preformed dienamine of $\mathbf{2 a}$ generated in the presence of freshly activated molecular sieves (4Á) and in toluene d_{8}. In a first attempt, the addition of the nitrostyrene resulted, after 4 hours, in the complete hydrolysis of the dienamine intermediate back to the starting components, the amine \mathbf{C} and the aldehyde $\mathbf{2 a}$, without providing any trace of possible products. When repeating the experiment under strictly anhydrous conditions and using a freshly recrystallized nitrostyrene, we observed the formation of the Diels-Alder-type product of type 7 reported in Scheme S1.

The formation of cyclic adduct requires anhydrous conditions and the presence of freshly activated molecular sieves (4太́), conditions that do not reflect (are very far from) the catalytic reaction system. To provide direct evidence that the dienamine of $\mathbf{2 a}$ can form in the presence of nitrostyrene but under the actual reaction conditions, we designed the competitive experiment described in Scheme S2. When adding two different electrophiles, such as the nitrostyrene (1 equiv) and the isatin $\mathbf{2 a}$ (1 equiv), to a mixture of (E)-2-methylpent-2-enal 2a (2 equiv), amine \mathbf{C} ($20 \mathrm{~mol} \%$), and the 2,6-bis (trifluoromethyl) benzoic acid (20 $\mathrm{mol} \%$) in toluene, only the formation of the aldol product $\mathbf{3 a}$ was observed. The nitrostyrene remained totally unreacted. This indicates that, under the catalytic reaction conditions, the dienamine intermediate generated by the condensation of amine \mathbf{C} and enal $\mathbf{2 a}$ is formed, with the reaction exclusively channeled through the aldol pathway.
This experiment also indicates that the presence of nitrostyrene does not affect the aldol reaction. Indeed, the aldol process performed in the absence of the nitrostyrene gave very similar results (as detailed in Table 1, entry 3 of the main text).

Scheme S2. Competitive experiment
An ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap was charged with $(S)-(-)-\alpha, \alpha-$ diphenyl-2-pyrrolidinemethanol trimethylsilyl ether $\mathbf{C} \quad(0.01 \mathrm{mmol}, 0.2$ equivalents), 2,6bis(trifluromethyl)benzoic acid ($0.01 \mathrm{mmol}, 0.2$ equivalents) and the α-branched enal $2 \mathbf{2 a}(0.1 \mathrm{mmol}, 2$ equivalents). Then toluene ($200 \mu \mathrm{~L}$) was added and the reaction stirred for 5 minutes. Finally the (E)-(2nitrovinyl)benzene ($0.05 \mathrm{mmol}, 1$ equivalent) and the N-benzyl protected isatin derivative $1 \mathbf{1 a}(0.05 \mathrm{mmol}, 1$ equivalent) were added, the vial closed and stirring continued over 16 hours at $25^{\circ} \mathrm{C}$. Then the crude mixture was flushed through a short plug of silica gel using dichloromethane/diethyl ether $1: 1$ as the eluent (5 ml). Solvent was removed under reduced pressure and the crude mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio. The product 3a was isolated by flash column chromatography using the specified eluent.

G. Conformational Investigations on the Dienamine Intermediates

We focused on the conformational analysis of the covalent dienamine intermediate actively involved in the stereo-defining step. An intimate appreciation of the interactions that allow the aminocatalyst of effectively controlling the molecular topology of the dienamine intermediate may provide fundamental clues to understand and rationalize the origin of the stereoselectivity. We investigated spectroscopically the dienamine intermediate generated by direct condensation of the α-branched enals $\mathbf{2 a}$ and $\mathbf{2 b}$ (bearing a methyl or a phenyl α-branched substituent, respectively) with the catalyst \mathbf{C}. The formation of the dienamine intermediates were achieved under anhydrous conditions (using Schlenk technique) by mixing an almost equimolar amount of the catalyst \mathbf{C} (1.05 equivalent) and enals 2 (1 equivalent, 0.15 mmol) in presence of freshly activated molecular sieves ($4 \AA$) directly in deuterated solvent $\left([2]_{0}=1 \mathrm{M}\right.$). After the complete disappearance of the aldehyde the reaction was filtered through a $0.2 \mu \mathrm{~m}$ PTFE filter directly into the NMR tube. After dilution (till approximately $0.2-0.3 \mathrm{M}$) with the same deuterated solvent (previously anhydrified on activated molecular sieves in pellets) the sample was analyzed by NMR spectroscopy.
The dienamine adduct (II in Figure 2 of the main manuscript) has a moderate half-life (less than 1 day) depending on the presence of water in the media.
We first studied the dienamine adduct derived by aldehyde $\mathbf{2 b}$ and catalyst \mathbf{C} condensation in deuterated chloroform. In this solvent two different conformers (shown in Figure S1) were found in solution with a ratio of 2.7:1.

Figure S1. The dienamines from 2-phenyl-pentenal $\mathbf{2 b}$ and catalyst \mathbf{C}.

Figure S2. H^{1} NMR of the dienamine derived from $\mathbf{2 b}$ and catalyst \mathbf{C} in CDCl_{3}.

Figure S3. COSY experiment in CDCl_{3}.
Comments: $\mathrm{H}^{1} \mathrm{H}^{2}$ and H^{3} were assigned using COSY experiment. Blue lines refer to the major conformer and green lines to the minor.

Figure S4. NOESY experiment in CDCl_{3} - major conformer.

Comments: the most diagnostic signals of the NOESY experiment are highlighted. Strong nuclear Overhauser effects are shown between $\left(\mathrm{H}^{1}\right)-\left(\mathrm{H}^{3}\right),\left(\mathrm{H}^{3}\right)-\left(\mathrm{H}^{4}\right)$, and $\left(\mathrm{H}^{4}\right)-\left(\mathrm{H}^{5}\right)$, indicating a Z-s-trans-E conformation of the dienamine.

Figure 5S. NOESY experiment in CDCl_{3} - minor conformer.
Comments: the most diagnostic signals of the NOESY experiment are highlighted. Strong nuclear Overhauser effects are shown between $\left(\mathrm{H}^{1}-\mathrm{H}^{3}\right),\left(\mathrm{H}^{3}-\mathrm{H}^{6}\right)$, and $\left(\mathrm{H}^{4}-\mathrm{H}^{5}\right)$, indicating a E-s-trans-E conformation of the dienamine.

The NOESY experiment in deuterated chloroform revealed that the two conformers of the dienamine are both s-trans. However, different geometries of the double bond closer to the nitrogen atom can be inferred. The major isomer has a Z-configure double bond, while the minor has an E-configuration.
In addition, the second double bond, more distant from the nitrogen atom, is E-configured in both of the conformations detectable by spectroscopic analysis. In support of the results obtained in the NOESY analysis, the $J(15.5 \mathrm{~Hz})$ for protons H^{3} and H^{2} is identical for both conformers, clearly pointing to a relative E geometry.
On the basis of the spectroscopic analysis, we can conclude that the major isomer has a Z-s-trans-E conformation, while the minor isomer has an $E-s$-trans- E topology.
These findings are in contrast to the spectroscopic studies by Jørgensen and co-workers ${ }^{10}$ carried out on the dienamine obtained by condensation of catalyst \mathbf{C} with a linear, non-substituted α, β-unsaturated aldehyde (see Figure S6). For this system, two possible conformers were detected in CDCl_{3} solution, differing in the geometry of the second double bond, more distant from the nitrogen atom.

Figure S6. Comparison of the conformational behavior of the dienamines formed by condensation of α-branched and linear enals with catalyst C.

[^5]Remarkably, the detected dienamines from α-branched enal $\mathbf{2 b}$ both show an exclusive E geometry at the remote double bond. There thus arises the interesting prospect that the α-branched enals, which are difficult substrates for enamine and iminium ion catalysis, have the structural properties (namely the α-substituent) to bias the dienamine geometry, a necessary requirement for forging a stereogenic centre at the γ position with high fidelity.

We then carried out conformational studies in toluene- d_{8}, the reaction medium. In contrast to the experiments carried out in CDCl_{3}, the Z-s-trans- E dienamine shows a much higher stability than E-s-trans- E in toluene-d ${ }_{8}$. As shown Figure S7, almost only one conformer can be detected (ratio >16:1).

NOESY (Figure S8), COSY experiments (Figure S9) and J analysis confirm that the thermodynamically most stable conformation of the dienamine derived from aldehyde $\mathbf{2 b}$ has a Z-s-trans- E geometry, the same observed for the major conformer in CDCl_{3}.

Figure S7. $\mathrm{H}^{1} \mathrm{NMR}$ of the dienamine derived from $\mathbf{2 b}$ and catalyst \mathbf{C} in toluene $-\mathrm{d}_{8}$.

Figure S8. COSY experiment in toluene-d d $_{8}$

Figure S9. NOESY experiment in toluene-d \mathbf{d}_{8}

We then studied the conformational behavior of the dienamine adduct derived from aldehyde $\mathbf{2 a}$, bearing a methyl alpha-substitutent, and catalyst \mathbf{C} condensation in deuterated toluene. The same major conformer observed in the previous case (using enal 2b) was observed, in this case in a $7: 1$ ratio with respect to the minor conformer (Figure S10).

Figure S10. The dienamine from 2-methyl-pentenal 2a and catalyst \mathbf{C} in toluene- d_{8} : two conformers (7:1 ratio) were detected.

The same sequence of experiments carried out for the dienamine derived from $\mathbf{2 b}$ (Figures S2-9) served to establish that the dienamines derived from $\mathbf{2 a}$ and $\mathbf{2 b}$ ($\mathrm{R}_{\text {branched }}=\mathrm{Me}$ and Ph , respectively) have similar ground state thermodynamic stability: we can conclude that the nature of the α-branched substituent did not alter the conformational preference of the dienamine, being the s-trans dienamine with the same geometry of the two double bonds the more stable species in both the cases. ${ }^{11}$

[^6]
H. X-ray Crystallographic Data

Single Crystal X-ray Diffraction Data for compound 3h

X-ray structure determinations: Crystals of compound $\mathbf{3 h}$ were obtained by slow evaporation of a mixture of hexane/diethyl ether at room temperature. The measured crystals were unstable under atmosphere conditions; they were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation.

Data Collection. Measurements were made on a Bruker-Nonius diffractometer equipped with an APPEX 2 4 K CCD area detector, a FR591 rotating anode with $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, Montel mirrors and a Cryostream Plus low temperature device $(T=100 \mathrm{~K})$. Full-sphere data collection was used with ω and φ scans

Programs used: Data collection Apex2 V2009.11 (Bruker-Nonius 2008), data reduction Saint + Version 7.60A (Bruker AXS 2008) and absorption correction TWINABS V. 2008-1 (2008).

Structure Solution. SIR2008
Structure Refinement. SHELXTL V6.14

Crystal data for 3h at 100 K: CCDC 885390

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected

C27 H24 Cl N O3
445.92

100(2)K
0.71073 Å

Orthorhombic
P2(1)2(1)2(1)
$a=9.784 \AA \quad \alpha=90.00^{\circ}$.
$\mathrm{b}=13.467 \AA \quad \beta=90.00^{\circ}$.
$\mathrm{c}=16.619 \AA \quad \gamma=90.00^{\circ}$.
$2189.7 \AA^{3}$
4
$1.353 \mathrm{Mg} / \mathrm{m}^{3}$
$0.205 \mathrm{~mm}^{-1}$
936
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
1.95 to 37.20°.
$-11<=\mathrm{h}<=16,-22<=\mathrm{k}<=22,-28<=1<=27$
29424

Independent reflections
Completeness to theta $=37.20^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Flack parameter
Largest diff. peak and hole
$10964[\mathrm{R}(\mathrm{int})=0.0447]$
0.982 \%

Empirical
0.9898 and 0.9602

Full-matrix least-squares on F^{2}
10964 / 0 / 291
1.030
$\mathrm{R} 1=0.0416, \mathrm{wR} 2=0.1008$
$R 1=0.0525, w R 2=0.1070$
$\mathrm{x}=0.01$ (3)
0.409 and -0.263 e. \AA^{-3}

Single Crystal X-ray Diffraction Data for compound $(2 R, 3 R)-\mathbf{4 b}$

X-ray structure determinations: Crystals of compound $(2 R, 3 R) \mathbf{- 4 b}$ (major diastereomer) were obtained by slow evaporation of a mixture of hexane/diethyl ether at room temperature. The measured crystals were unstable under atmosphere conditions; they were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation.

Data Collection. Measurements were made on a Bruker-Nonius diffractometer equipped with an APPEX 2 4 K CCD area detector, a FR591 rotating anode with $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, Montel mirrors and a Cryostream Plus low temperature device $(T=100 \mathrm{~K})$. Full-sphere data collection was used with ω and φ scans.
Programs used: Data collection Apex2 V2009.11 (Bruker-Nonius 2008), data reduction Saint + Version 7.60A (Bruker AXS 2008) and absorption correction TWINABS V. 2008-1 (2008).

Structure Solution. SIR2008

Structure Refinement. SHELXTL V6.14

Crystal data for $(2 R, 3 R)-4 b$ at 100 K : CCDC 885391

Empirical formula	C 26 H 22 Cl N O 3	
Formula weight	431.90	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	C 2	$\alpha=90.00^{\circ}$.

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=34.54^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Flack parameter
Largest diff. peak and hole

$$
\begin{array}{ll}
\mathrm{b}=6.5139(9) \AA & \beta=117.976(7)^{\circ} . \\
\mathrm{c}=13.524(2) \AA & \gamma=90.00^{\circ} .
\end{array}
$$

2092.1(5) \AA^{3}

4
$1.371 \mathrm{Mg} / \mathrm{m}^{3}$
$0.212 \mathrm{~mm}^{-1}$
904
$0.20 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$
1.70 to 34.54°.
$-40<=\mathrm{h}<=32,-9<=\mathrm{k}<=9,-21<=\mathrm{l}<=21$
12374
$6476[\mathrm{R}($ int $)=0.0568]$
0.869 \%

Empirical
0.9895 and 0.9589

Full-matrix least-squares on F^{2}
6476 / 7 / 292
1.051
$\mathrm{R} 1=0.0441, \mathrm{wR} 2=0.1027$
$R 1=0.0635, w R 2=0.1092$
$x=-0.02(4)$
0.374 and -0.264 e. \AA^{-3}

Single Crystal X-ray Diffraction Data for compound ($2 S, 3 R$)-5b

X-ray structure determinations: Crystals of compound $(2 S, 3 R)-\mathbf{5 b}$ were obtained by slow evaporation of a mixture of hexane/diethyl ether at room temperature. The measured crystals were unstable under atmosphere conditions; they were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation.

Data Collection. Measurements were made on a Bruker-Nonius diffractometer equipped with an APPEX 2 4K CCD area detector, a FR591 rotating anode with $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, Montel mirrors and a Cryostream Plus low temperature device $(T=100 \mathrm{~K})$. Full-sphere data collection was used with ω and φ scans.
Programs used: Data collection Apex2 V2009.11 (Bruker-Nonius 2008), data reduction Saint + Version 7.60A (Bruker AXS 2008) and absorption correction TWINABS V. 2008-1 (2008).

Structure Solution. SIR2008
Structure Refinement. SHELXTL V6.14

(2S,3R)-5b

Empirical formula	C26 H20 Cl N O3
Formula weight	429.88
Temperature	100(2)K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$\mathrm{a}=6.9520(8) \AA \quad \alpha=90.00^{\circ}$.
	$\mathrm{b}=12.8684(13) \AA \quad \beta=90.00^{\circ}$.
	$\mathrm{c}=23.405(3) \AA \quad \gamma=90.00^{\circ}$
Volume	2093.9(4) \AA^{3}
Z	4
Density (calculated)	$1.364 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.211 \mathrm{~mm}^{-1}$
F(000)	896
Crystal size	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	1.81 to $36.54{ }^{\circ}$.
Index ranges	-9<=h<=11, -20<=k<=19, -29<=1<=38
Reflections collected	16479
Independent reflections	$9299[\mathrm{R}(\mathrm{int})=0.0215]$
Completeness to theta $=36.54{ }^{\circ}$	0.932 \%
Absorption correction	Empirical
Max. and min. transmission	0.9589 and 0.9589
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9299 / 0 / 281
Goodness-of-fit on F^{2}	1.026
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0385$, wR2 $=0.0976$
R indices (all data)	$\mathrm{R} 1=0.0442, w R 2=0.1016$
Flack parameter	$\mathrm{x}=-0.01(4)$
Largest diff. peak and hole	0.477 and -0.233 e. \AA^{-3}

Single Crystal X-ray Diffraction Data for compound 7

X-ray structure determinations: Crystals of compound 7 were obtained by slow evaporation of hexane at room temperature.

Crystal data for 7 at 100 K: CCDC 885695

Empirical formula	C39 H43 N3 O5 Si
Formula weight	661.85
Temperature	100(2)K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=10.6855(16) \AA & \alpha=90.00^{\circ} . \\ \mathrm{b}=9.3798(15) \AA & \beta=99.839(5)^{\circ} . \\ \mathrm{c}=18.076(3) \AA & \gamma=90.00^{\circ} . \end{array}$
Volume	1785.1(5) \AA^{3}
Z	2
Density (calculated)	$1.231 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.113 \mathrm{~mm}^{-1}$
F(000)	704
Crystal size	$0.30 \times 0.15 \times 0.01 \mathrm{~mm}^{3}$
Theta range for data collection	1.14 to 26.26°.
Index ranges	-13<=h<=10, -9 <=k<=11, -21 <=1<=22
Reflections collected	15425
Independent reflections	$6511[\mathrm{R}(\mathrm{int})=0.0493]$
Completeness to theta $=26.26{ }^{\circ}$	0.989 \%
Absorption correction	Empirical
Max. and min. transmission	0.9989 and 0.9670
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6511 / $1 / 437$
Goodness-of-fit on F^{2}	1.024
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0539, \mathrm{wR} 2=0.1244$
R indices (all data)	$\mathrm{R} 1=0.0737, \mathrm{wR} 2=0.1394$
Flack parameter	$\mathrm{x}=0.09$ (17)
Largest diff. peak and hole	0.500 and -0.325 e..$^{-3}$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	26.692		1.1182	3605.58667	53.74288	95.0030
2	62.514		2.2273	189.64813	1.41914	4.9970

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	27.382		1.3397	1.24645 e 4	155.06746	97.0976
2	45.111		1.7626	372.58612	3.52305	2.9024

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	24.240	MM	1.2997	3046.73828	39.07076	87.4364
2	37.409	MM	1.7012	437.78006	4.28898	12.5636

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.272		0.2041	2952.27417	217.92471	94.8849
2	11.757	MM	0.2996	159.15332	8.85478	5.115

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.330	MF	0.2341	243.06848	17.30475	11.0525
2	11.036	FM	0.2745	1956.15308	118.75937	88.9475

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.275		0.4359	3759.50684	143.75766	92.8571
2	22.194		0.5893	289.19412	8.17866	7.1429

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.794	BB	0.1583	1143.34375	110.89497	19.8464
2	7.893	BV	0.1841	1762.59595	146.79938	30.5955
3	8.473	VV	0.1973	1161.95654	90.78934	20.1695
4	9.208	VB	0.2201	1693.06262	117.48557	29.3886

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~S}]} \end{gathered}$	Height [mAU]	Area $\%$
1	7.900		0.2004	1894.41309	157.54710	96.8364
2	9.217		0.2072	61.88970	4.97807	3.1636

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.987	BV	0.1298	904.70215	105.74374	16.7248
2	6.363	VB	0.1426	1830.04907	196.55920	33.8313
3	7.603	BB	0.1697	1698.77612	152.80586	31.4045
4	10.122	BB	0.2264	975.81372	66.02898	18.0394

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{2}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	8.177		0.2050	1173.79138	95.43773	24.2493
2	9.116		0.2241	1243.06018	92.42852	25.6803
3	10.268		0.2528	1116.88257	73.62360	23.0736
4	17.050		0.4193	1306.79102	51.93951	26.9969

Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*S}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.033 MM	0.2067	724.3299	58.4141	0.0000

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.640		0.1494	835.74683	93.21142	99.0155
2	6.995		0.1611	8.30962	$8.59917 \mathrm{e}-1$	0.9845

[^0]: ${ }^{1}$ W. L. F. Armarengo, D. D. Perrin, In Purification of Laboratory Chemicals, 4th ed.; Butterworth Heinemann: Oxford, 1996.
 ${ }^{2}$ S. H. McCooey, S.J. Connon, Org. Lett. 2007, 9, 599-602.
 ${ }^{3}$ W. Chen, W. Du, Y. Duan, Y. Wu, S.-Y. Yang, Y.-C. Chen, Angew. Chem. Int. Ed. 2007, 46, 7667-7670.
 ${ }^{4}$ Grošelj, U.; Seebach, D.; Badine, D. M.; Schweizer, W. B.; Beck, A. K.; Krossing, I.; Klose, P.; Hayashi, Y.; Uchimaru, T. Helv. Chim. Acta 2009, 92, 1225-1259.
 ${ }^{5}$ Ł. Albrecht, G. Dickmeiss, F. Cruz Acosta, C. Rodríguez-Escrich, R. L. Davis, K. A. Jørgensen, J. Am. Chem. Soc. 2012, 134, 25432546.
 ${ }^{6}$ Adapted from: Gagosz, F. Org. Lett. 2005, 7, 4129-4132

[^1]: 7 Ł. Albrecht, F. Cruz Acosta, A. Fraile, A. Albrecht, J. Christensen, K. A. Jørgensen, Angew. Chem. Int. Ed. 2012, 51, 9088-9092. See also Ref 5 in the S.I.

[^2]: a Reactions performed on a 0.2 mmol scale using 2 equiv of 2 . E / Z ratio of $\mathbf{2}$: $>95: 5$. Only the (E)-isomer of the aldol products 3 has been detected. ${ }^{b}$ Yield of the isolated product 3 after chromatographic purification on silica gel. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture. ${ }^{d}$ Ee values determined by HPLC analysis. ${ }^{f}$ Yield of the isolated major diastereomer of 3 f .

[^3]: ${ }^{8}$ A. Füstner, T. Nagano, J. Am. Chem. Soc., 2007, 129, 1906-1907

[^4]: ${ }^{9}$ Experiment under strictly anhydrous conditions and using a freshly re-crystallized nitrostyrene

[^5]: ${ }^{10}$ S. Bertelsen, M. Marigo, S. Brandes, P. Dinér, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 12973-12980.

[^6]: ${ }^{11}$ It should be noted that different α-branched substituents (Ph vs Me) change the priority for the double bond, thereby switching the nomenclature of the first insaturation. The more stable dienamine derived from enal $\mathbf{2 a}(R=M e)$ has a E-s-trans- E configuration, while when $\mathrm{R}=\mathrm{Ph}$ the nomenclature change to $Z-\mathrm{s}$-trans- E; still the two dienamines show the same structural topology.

