Supporting Information

TOCCATA: A Customized Carbon TOCSY NMR Metabolomics Database

Kerem Bingol,^{1,2} Fengli Zhang,² Lei Bruschweiler-Li,^{2,3} and Rafael Brüschweiler^{*1,2,3}

¹Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306 ²National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310

³Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306

Spectral Analysis

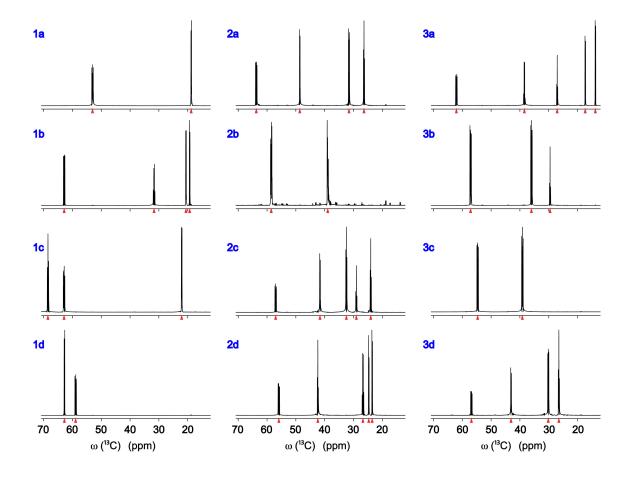
The deconvolution of the 2D ¹³C-¹³C CT-TOCSY, represented by a N₁xN₂ matrix **T**, was performed by adapting the *DeCoDeC* approach to ¹³C-¹³C TOCSY (*DeCoDeC* stands for Demixing by Consensus Deconvolution and Clustering,¹ which was originally developed for the analysis of ¹H and natural abundance ¹³C NMR spectra) as described previously.² Peak picking of the cross-peaks of matrix **T** yielded a list (k,k') where k and k' denote the cross-peak position along the two frequency axes. In order to minimize the influence of those parts of **T** that are close to the diagonal, the intensities of all diagonal peaks were set to the largest peak intensity of the rest of the spectrum (see below). Next, for each cross-peak pair (k,k') and (l,l'), which are placed symmetrically with respect to the diagonal, the kth and lth row are extracted from **T** to obtain the consensus trace:

$$q_j^{(kl)} = \min(T_{kj}, T_{lj}) \tag{S1}$$

where index $j = 1,..., N_2$. The enlargement of the diagonal peaks of **T** ensures that Eq. (S1) is dominated by cross-peaks rather than diagonal peaks. The complete set of consensus traces $\mathbf{q}^{(kl)}$ was subsequently subjected to clustering for the identification of those traces that represent 1D ¹³C spectra of individual spin systems. For this purpose, 1D ¹³C consensus traces $\mathbf{q}^{(kl)}$ were quantitatively compared to each other via the inner product

$$P_{kl,mn} = \sum_{j=1}^{N_2} q_j^{(kl)} q_j^{(mn)} / (\|q^{(kl)}\| \cdot \|q^{(mn)}\|)$$
(S2)

where the L2-norm of a consensus trace is given by


$$\left|q^{(kl)}\right| = \left[\sum_{j=1}^{N_2} (q_j^{kl})^2\right]^{1/2}$$
(S3)

 $1 - P_{kl,mn}$ defines a similarity measure between pairs of traces, which permits clustering, e.g., using the agglomerative hierarchical cluster algorithm as implemented in the subroutine 'linkage' of the Matlab software package. The clustering result can be displayed as a dendrogram.

Preparation and experimental details for amino-acid mixture

A uniformly ¹³C-labeled algal amino acid mixture, purchased from Sigma-Aldrich, was prepared by dissolving 0.5 mg mixture in 2 ml D_2O . The resulting suspension was centrifuged and the supernatant was used for measurements.

A 2D ¹³C-¹³C CT-TOCSY³ data set was collected with 512 N₁ and 2048 N₂ complex data points, with 38 ms FLOPSY-16 mixing⁴ at 700 MHz proton frequency with 110 pm ¹³C spectral width at 25° C. The NMR data were zero-filled, Fourier transformed, phase and baseline corrected using NMRPipe,⁵ and converted to a Matlab-compatible format for subsequent processing and analysis.

Figure S-1. Deconvolution and TOCCATA database querying of 2D ${}^{13}C{}^{-13}C$ CT-TOCSY spectrum of amino acid mixture. The resulting deconvoluted 1D ${}^{13}C$ TOCSY traces belong to: alanine (1a), valine (1b), threonine (1c), serine (1d), proline (2a), phenylalanine (2b), lysine (2c), leucine (2d), isoleucine (3a), glutamate (3b), aspartate (3c) and arginine (3d).

text.							
	RMSD	Μ	Shift		RMSD	Μ	Shift
Alanine	0.056	0	0.126	Lysine	0.023	0	0.142
Valine	0.072	0	0.129	Leucine	0.064	0	0.123
Threonine	0.080	0	0.181	Isoleucine	0.068	0	0.118
Serine	0.037	0	0.174	Glutamate	0.034	0	0.218
Proline	0.027	0	0.152	Aspartate	0.066	0	0.182
Phenylalanine	0.025	0	0.181	Arginine	0.032	0	0.131

Table S-1. TOCCATA query results of ¹³C TOCSY traces of amino acid mixture of Figure S-1. Parameters RMSD, M, Shift are defined as in Table 1 and Table 2 of the main text.

References

- (1) Bingol, K.; Brüschweiler, R. Anal. Chem. 2011, 83, 7412-7417.
- (2) Bingol, K.; Zhang, F.; Bruschweiler-Li, L.; Brüschweiler, R. J. Am. Chem. Soc. **2012**, *134*, 9006-9011.
- (3) Eletsky, A.; Moreira, O.; Kovacs, H.; Pervushin, K. J. Biomol. NMR 2003, 26, 167-179.
- (4) Kadkhodaie, M.; Rivas, O.; Tan, M.; Mohebbi, A.; Shaka, A.J. J. Magn. Reson. 1991, 91, 437-443.
- (5) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277-293.