# A Wide-Range Photoacoustic Aerosol Absorption

## Spectrometer

C. Haisch\*, P. Menzenbach,, H. Bladt, R. Niessner

Chair for Analytical Chemistry, Technische Universität München, Marchinoninistr.17, D-81377

Munich, Germany

### **Supporting Information**

#### Christoph.Haisch@ch.tum.de

Tel +49 89 2180 78242

Fax +49 89 2180 99 78242

#### **Table of Content:**

| Figure S-1 | Wavelength dependency of the OPO laser system employed for the PA aerosol                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------|
|            | absorption spectrometer.                                                                                                         |
| Figure S-2 | Typical PA signal of the pulsed PA system.                                                                                       |
| Figure S-3 | FFT spectrum of a typical PA Signal.                                                                                             |
| Figure S-4 | Comparison of the infrared absorption of saturated water vapour as measured by the PA system with the corresponding HITRAN data. |

- Figure S-5 Calibration of the PA aerosol spectrometer with the wavelength where each data point was determined.
- Figure S-6 Temporal behavior of the optical absorption spectra of propane soot.

Figure S-7 Temporal behavior of the specific optical absorption spectra of propane soot with 50% (m/m) iron content.



Figure S-1 Wavelength dependency of the OPO laser system.



Figure S-2 Typical PA signal of the pulsed PA system.



Figure S-3 FFT spectrum of a typical PA signal as employed for data evaluation.



Figure S-4 Comparison of the infrared absorption of saturated water vapour (T = 23 °C, p = 1013 hPa) as measured by the PA system with the corresponding HITRAN data.



Figure S-5 Calibration of the PA aerosol spectrometer with the wavelength where each data point was determined. Each data point represents a mean value of 3 individual measurements.



Figure S-6 Temporal behavior of the optical absorption spectra of propane soot.



Figure S-7 Temporal behavior of the specific optical absorption spectra of propane soot with 50% (m/m) iron content.