Divergent Synthesis of Functionalized Carbocycles through OrganosilaneDirected Asymmetric Alkyne-Alkene Reductive Coupling and Annulation Sequence
 Jie Wu, Yi Pu and James S. Panek*
 Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Metcalf Center for Science and Engineering, 590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215

Table of Contents:

Part I: General Information SI-2
Part II : Control Experiments SI-3
Part III: Experimental Procedures and Characterization Data SI-4
i. Preparation of Propargylic Silanes SI-4
ii. Preparation of Bis-Homoallylic Alcohols SI-6
iii. Alkyne-Alkene Reductive Coupling with Mono-Substituted Olefins SI-7
iv. Alkyne-Alkene Reductive Coupling with Disubstituted Olefins SI-9
v. Experimental Procedures for Mono-Oxidation SI-12
vi. [3 + 2] Annulation of Complex Silyl Aldehydes SI-17
vii. Intramolecular Allylation SI-20
viii. Sakurai-Like Dimerization SI-22
ix. Tamao Oxidation and Protiodesilylation SI-23
Part IV: 1D and 2D NMR Spectroscopic Analysis; Assignment of StereochemistrySI-26
Part V: X-ray Crystal Structures SI-33

Part I: General Information:

All reactions were carried out in oven or flame-dried glassware under argon atmosphere. $\mathrm{N}, \mathrm{N}-$ dimethylformamide and dimethylsulfoxide were distilled over calcium hydride and stored over $4 \AA$ molecular sieves. n-Butyllithium was purchased from Aldrich and was standardized by titration with menthol $/ 2,2^{\prime}$-dipyridyl. All other reagents were used as supplied. Dichloromethane, toluene, diethyl ether, benzene, tetrahydrofuran, and acetonitrile were obtained from a dry solvent system (alumina) and used without further drying. Other ACS grade solvents were purchased from Clean Harbors. Unless otherwise noted, reactions were magnetically stirred and monitored by thin layer chromatography with Macherey Nagel Polygram 0.20 mm silica gel $60 \AA$ plates. Analytical thin layer chromatography was performed using 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash chromatography was performed on Sorbent Technologies 32-63 $\mu \mathrm{m} 60 \AA$ silica gel. Yields referred to chromatographically and spectroscopically pure compounds, unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken in CDCl_{3} at 400 or 500 MHz (as indicated) respectively, unless otherwise noted. Chemical shifts are reported in parts per million relative to $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta 7.24 ;{ }^{13} \mathrm{C}, \delta 77.0\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, sept $=$ septuplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant, integration. Diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude mixtures operating at a signal/noise ratio of 200:1. Infrared resonance spectra were recorded on a Nexus 670 FT-IR spectrometer. Optical rotations were recorded on an Autopol III digital polarimeter at 589 nm and reported as follows: $[\alpha]^{20}{ }_{\mathrm{D}}$ (concentration in $\mathrm{g} / 100 \mathrm{~mL}$ solvent and solvent). High resolution mass-spectra were obtained on a Waters Q-TOF mass spectrometer at Boston University Chemical Instrumentation Center (CIC).

Part II : Control Experiments

Supplementary Scheme S1: Control Experiments to Support the Dimerization Process

To support the production of dimer products, a control experiment was conducted using a mixture of silanes $\mathbf{1 4 h}$ and $\mathbf{1 4 i}$ (ratio $1: 1$). Under Lewis acid promotion, not only homodimers 19a and 19b, but also the hetero-dimer product 19c should be generated in a dimerization process (Scheme S1). As anticipated, the reaction proceeded to deliver the dimerization products. Even though the dimers 19a-19c could not be separated by column chromatography, we could detect the generation of heterodimer 19c using mass spectral analysis (the other two dimers also showed mass hit in the third mass spectrum), thereby supporting the dimerization process.

Part III: Experimental Procedures:

i. Preparation of Propargylic Silanes

(2S,3R)-3-(Dimethyl(phenyl)silyl)-1-methoxyhex-4-yn-2-ol (1a): A solution of diethylpropynylaluminum in pentanes ($0.4 \mathrm{M}, 75 \mathrm{~mL}, 30 \mathrm{mmol}, 3$ equiv) was added into a round bottom flask under an argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. A solution of epoxide 23a ${ }^{1}$
(1) For preparation of the silyl epoxide 23a to 23c, see: (a) Lowe, J. T.; Youngsaye, W.; Panek, J. S. J. Org. Chem. 2006, 71, 3639-3642. (b) Su, Q.; Panek, J. S. J. Am. Chem. Soc. 2004, 126, 2425-2430.
($2.22 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in pentanes $(20 \mathrm{~mL})$ was added over 5 minutes. The solution was stirred at room temperature for 12 hours after which time diethyl ether (50 mL) was added followed by the slow addition of an equal volume of a saturated solution of Rochelle's salt. The aqueous portion was then extracted with diethyl ether, combined and dried over MgSO_{4}. The solution was then filtered and concentrated. Further purification over silica gel (hexanes/ethyl acetate: 90/10) afforded the desired propargyl silane $1 \mathrm{a}(2.15 \mathrm{~g}, 82 \%$ yield) as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H})$, $7.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.2,-3.3,3.8,24.0,58.0,58.8,74.0,76.0,78.3$, $78.8,127.5,128.9,133.7,137.4 \mathrm{ppm}$; IR (neat) vmax: $1113,1246,1428,2918,3069 \mathrm{~cm}^{-1}$; $[\alpha]^{20}=+0.60\left(\mathrm{c}=2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 299.1443 , found 299.1436 .

(2S,3S)-3-(Dimethyl(phenyl)silyl)-1-methoxyhex-4-yn-2-ol (1b): A solution of diethylpropynylaluminum in pentanes $(0.4 \mathrm{M}, 75 \mathrm{~mL}, 30 \mathrm{mmol}, 3$ equiv) was added into a round-bottom flask under an argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. A solution of epoxide 23b ($2.22 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in pentanes $(20 \mathrm{~mL}$) was added over 5 minutes. The solution was stirred at room temperature for 12 hours after which time diethyl ether (50 mL) was added followed by the slow addition of an equal volume of a saturated solution of Rochelle's salt. The aqueous portion was then extracted with diethyl ether, combined and dried over MgSO_{4}. The solution was then filtered and concentrated. Further purification over silica gel (hexanes/ethyl acetate: 90/10) afforded the desired propargyl silane $1 \mathbf{b}(2.23 \mathrm{~g}, 85 \%$ yield $)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.42(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.5,-3.4,3.3,24.3,58.5,70.6,76.3,76.7,78.0$, 127.2, 128.8, 133.9, 137.1 ppm ; IR (neat) vmax: 1114, 1247, 1428, 2856, 2917, 3070, 3453 $\mathrm{cm}^{-1} ;[\alpha]^{20}=-18\left(\mathrm{c}=4.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 285.1287, found 285.1297.

(2S,3S)-3-(Dimethyl(phenyl)silyl)-1-ethoxyhex-4-yn-2-ol (1c): A solution of diethylpropynylaluminum in pentanes $(0.4 \mathrm{M}, 37.5 \mathrm{~mL}, 15 \mathrm{mmol}, 3$ equiv) was added into a round-bottom flask under an argon atmosphere and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of epoxide 23c $(1.18 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv) in pentanes $(10 \mathrm{~mL})$ was added over 5 minutes. The solution was stirred at room temperature for 12 hours after which time diethyl ether (25 mL) was added followed by the slow addition of an equal volume of a saturated solution of Rochelle's salt. The aqueous portion was then extracted with diethyl ether, combined and dried over MgSO_{4}. The solution was then filtered and concentrated. Further purification over silica gel (hexanes/ethyl acetate: 90/10) afforded the desired propargyl silane $1 \mathrm{c}(1.10 \mathrm{~g}, 80 \%$ yield $)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.45(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.79$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.61$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.3,-3.2$,
3.6, 15.0, 24.6, 66.5, 70.9, 74.2, 76.8, 78.4, 127.5, 129.0, 134.1, 137.3 ppm ; IR (neat) vmax: 1113, 1247, 1427, 2916, 2974, $3456 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-18\left(\mathrm{c}=1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$299.1443, found 299.1515 .

(2R,3S)-1-Methoxy-3-phenylhex-4-yn-2-ol (11): A solution of diethylpropynylaluminum in pentanes ($0.4 \mathrm{M}, 15 \mathrm{~mL}, 6 \mathrm{mmol}, 3$ equiv) was added into a round bottom flask under an argon atmosphere and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of phenyl epoxide $\mathbf{2 3 d ^ { 2 }}$ ($328 \mathrm{mg}, 2 \mathrm{mmol}, 1$ equiv) in pentanes (4 mL) was added over 5 minutes. The solution was stirred at room temperature for 12 hours after which time diethyl ether (10 mL) was added followed by the slow addition of an equal volume of a saturated solution of Rochelle's salt. The aqueous portion was then extracted with diethyl ether, combined and dried over MgSO_{4}. The solution was then filtered and concentrated. Further purification over silica gel (hexanes/ethyl acetate: 90/10) afforded the desired product 11 ($359 \mathrm{mg}, 88 \%$ yield) as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.5,41.6,59.0,73.8,74.0,77.4,80.1,127.1,128.3,128.3,138.5 \mathrm{ppm}$; IR (neat) vmax: 1123, 1453, 2918, $3439 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-3.7\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$205.1229, found 205.1262.

ii. Preparation of Bis-Homoallylic Alcohols

Known olefins $\mathbf{8 f}{ }^{3}$ and $\mathbf{8 g}{ }^{4}$ were prepared according to literature procedures (see reference below). Olefins $\mathbf{8 j}$ and $\mathbf{8 k}$ were prepared using Stille coupling. ${ }^{5}$

8j (3-Vinylpyridin-2-yl)methanol (8j): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.76$ ($\mathrm{s}, 2 \mathrm{H}$), $5.43(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=17.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 561.4,118.3$, $122.3,130.2,130.3,133.0,146.7,154.7 \mathrm{ppm}$; IR (neat) vmax: 1057, 1398, 1442, 1628, 2955, $3385 \mathrm{~cm}^{-1} ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$136.0762, found 136.0877.

(1-Vinylnaphthalen-2-yl)methanol (8k): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.51$ (br, 1H), $4.81(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=17.6$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H})$,
(2) For preparation of the phenyl epoxide 23d, see: Balamurugan, R.; Kothapalli, R. B.; Thota, G. K. Eur. J. Org. Chem. 2011, 1447-1569.
(3) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328-6335.
(4) Ma, S.; Liu, F.; Negishi, E. Tetrahedron Lett. 1997, 38, 3829-3832.
(5) Molander, G. A.; Pack, S. K. Tetrahedron 2003, 59, 10581-10591.
$8.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 63.1,121.9,125.4,125.6,125.9,126.0,127.5$, $128.0,131.5,132.8,132.9,134.6,135.0 \mathrm{ppm}$; IR (neat) $v \max : 997,1218,1265,1418,1628$, 2927, 3056, $3324 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{11}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$167.0861, found 167.0860 .

iii. Alkyne-Alkene Reductive Coupling with Mono-Substituted Olefins

The general procedure for alkyne-alkene reductive coupling between propargyl silanes and mono-substituted olefins: To a solution of propargyl silane 1 ($262 \mathrm{mg}, 1.0 \mathrm{mmol}, 2$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added sequentially $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $400 u \mathrm{~L}, 1.0 \mathrm{mmol}$, 2 equiv), $\mathrm{ClTi}(\mathrm{OiPr})_{3}\left(1.0 \mathrm{M}\right.$ in hexanes, $2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}, 4$ equiv) and $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 2.0 \mathrm{~mL}, 4.0 \mathrm{mmol}, 8$ equiv) dropwise. The resulting yellow solution turned brown while warming slowly to $0^{\circ} \mathrm{C}$ over 2 hours. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for additional 2 hours producing a black solution. To a separate $-78^{\circ} \mathrm{C}$ solution of the monosubstituted olefin (0.5 mmol , 1 equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $200 u \mathrm{~L}, 0.5 \mathrm{mmol}, 1$ equiv) in a dropwise manner via gas-tight syringe. The resulting solution was warmed to $0{ }^{\circ} \mathrm{C}$, followed by slowly transfer via cannula into the original black solution at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was further stirred at $0^{\circ} \mathrm{C}$ for another 2 hours. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The mixture was warmed to rt before extractive isolation with diethyl ether (3 x 10 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using 30% or $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ as developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the coupled product.

(7R,8S,E)-7-(Dimethyl(phenyl)silyl)-9-methoxy-5-methylnon-5-ene-1,8-diol (3a): Prepared by the general procedure using silane 1a, silyl diol 3a (123 mg , 73%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.0,-3.5,16.1,24.2,32.1,32.2,39.7,58.7,62.6,70.4,76.9,120.1,127.5$, $128.8,133.9,135.2,138.4 \mathrm{ppm}$; IR (neat) vmax: $1113,1246,1428,2931,3414 \mathrm{~cm}^{-1} ;[\alpha]^{20}=-$ $9.8\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 359.2018$, found 359.2014 .

(7S,8S,E)-7-(Dimethyl(phenyl)silyl)-9-methoxy-5-methylnon-5-ene-1,8-diol (3b): Prepared by the general procedure using silane $\mathbf{1 b}$, silyl diol $\mathbf{3 b}(119 \mathrm{mg}$, 71%) was obtained as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{dd}, J=11.5,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{br}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-3.2,-3.0,16.2,24.2,32.2,33.2,39.6,58.7,62.5,72.1,76.8,121.5,127.3,128.6$,
134.1, $134.7,138.4 \mathrm{ppm}$; IR (neat) vmax: 1112, $1246,1427,2933,3426 \mathrm{~cm}^{-1} ;[\alpha]^{23}{ }_{\mathrm{D}}=-5.9(\mathrm{c}$ $\left.=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 359.2018$, found 359.2018.

(8R,9S,E)-8-(Dimethyl(phenyl)silyl)-10-methoxy-6-methyldec-
6-ene-1,9-diol (4a): Prepared by the general procedure using silane 1a, silyl diol $\mathbf{4 a}$ (119 mg , 68%) was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.16(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.61$ $(\mathrm{m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.1,-3.5,16.4,25.2,27.8,32.0,32.5,39.8,58.6,62.7,70.4,76.9,119.8$, $127.5,128.8,133.9,135.3,138.3 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1427, 1450, 2930, 3404 $\mathrm{cm}^{-1} ;[\alpha]^{23}{ }_{\mathrm{D}}=-14\left(\mathrm{c}=2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 373.2175 , found 373.2172 .

4b
(8S,9S,E)-8-(Dimethyl(phenyl)silyl)-10-methoxy-6-methyldec-6-ene-1,9-diol (4b): Prepared by the general procedure using silane $\mathbf{1 b}$, silyl diol $\mathbf{4 b}(113 \mathrm{mg}$, 65%) was obtained as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ $(\mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 4.87$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.3,-2.9$, $16.3,25.4,27.9,32.6,33.2,39.8,58.8,62.8,72.2,76.8,121.3,127.4,128.7,134.1,134.1$, $135.0,138.4 \mathrm{ppm}$; IR (neat) vmax: $1113,1246,2930,3422 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-7.5(\mathrm{c}=2.6$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 373.2175$, found 373.2180.

(2S,3S,E)-3-(Dimethyl(phenyl)silyl)-7-(2-(hydroxymethyl)phenyl)-1-methoxy-5-methylhept-4-en-2-ol (4c): Prepared by the general procedure using silane 1b, silyl diol 4c ($135 \mathrm{mg}, 68 \%$) was obtained as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.2$, $-3.1,16.4,31.0,33.4,41.4,58.8,62.9,72.0,76.7,122.1,126.1,127.4,127.8,128.0,128.7$, $129.2,134.13,134.2,138.3,140.2 \mathrm{ppm}$; IR (neat) vmax: $1112,1243,1452,2894,3416 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=+0.60\left(\mathrm{c}=1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 421.2175 , found 421.2188 .

(2S,3S,E)-3-(Dimethyl(phenyl)silyl)-7-(2-(hydroxymethyl)pyridin-3-yl)-1-methoxy-5-methylhept-4-en-2-ol (4d): Prepared by the general procedure using
silane $\mathbf{1 b}$ and olefin $\mathbf{8 j}$, silyl diol $\mathbf{4 d}(58 \mathrm{mg}, 29 \%)$ was obtained as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{br}$, $1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{br}, 1 \mathrm{H}), 4.66$ $(\mathrm{s}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H})$, $8.38(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.2,-3.0,16.3,28.8,33.4,39.7,58.8$, $61.1,72.0,76.8,122.2,123.1,127.5,128.8,133.2,133.6,134.1,136.4,138.3,145.2,155.6$ ppm; IR (neat) vmax: 1113, 1246, 1427, 2926, $3419 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=+2.0\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SiH}[\mathrm{M}+\mathrm{H}]^{+} 400.2308$, found 400.2311.

(2S,3R,E)-3-(Dimethyl(phenyl)silyl)-7-(2-(hydroxymethyl)naphthalen-1-yl)-1-methoxy-5-methylhept-4-en-2-ol (4e): Prepared by the general procedure using silane 1a and olefin $\mathbf{8 k}$, silyl diol $\mathbf{4 e}(157 \mathrm{mg}, 70 \%)$ was obtained as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 3.16$ (overlap, 4 H$), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 5.37$ $(\mathrm{d}, J=10.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.9,-3.5,16.4,27.5$, $32.2,41.5,58.7,63.1,70.4,76.8,120.7,123.9,125.3,126.0,126.3,126.5,127.6,128.6,128.9$, $131.9,133.4,134.0,134.98,135.19,135.96,138.21 \mathrm{ppm}$; IR (neat) vmax: $1114,1247,1427$, 2896, 3068, $3421 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-16\left(\mathrm{c}=3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 471.2331$, found 471.2351.

iv. Alkyne-Alkene Reductive Coupling with disubstituted Olefins

The general procedure for alkyne-alkene reductive coupling between propargyl silanes and disubstituted olefins: To a solution of propargyl silane $\mathbf{1}\left(262 \mathrm{mg}, 1.0 \mathrm{mmol}, 2\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added sequentially $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $400 u \mathrm{~L}, 1.0 \mathrm{mmol}, 2$ equiv), $\mathrm{ClTi}(\mathrm{O} i \operatorname{Pr})_{3}\left(1.0 \mathrm{M}\right.$ in hexanes, $2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}, 4$ equiv) and $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 2.0 \mathrm{~mL}, 4.0 \mathrm{mmol}, 8$ equiv) dropwise. The resulting yellow solution turned brown while warming slowly to $0{ }^{\circ} \mathrm{C}$ over 2 hours. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for additional 2 hours producing a black solution. To a separate $-78{ }^{\circ} \mathrm{C}$ solution of the disubstituted olefin (0.5 mmol , 1 equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $200 u \mathrm{~L}, 0.5 \mathrm{mmol}, 1$ equiv) in a dropwise manner via gas-tight syringe. The resulting solution was warmed to $0{ }^{\circ} \mathrm{C}$, followed by slowly transfer via cannula into the original black solution at $0^{\circ} \mathrm{C}$. The reaction mixture was further stirred at room temperature for another 1 to 3 hours. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to rt before extractive isolation with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $40 \% \mathrm{EtOAc} /$ hexanes as developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the coupled product.

(5R,8R,9S,E)-8-(Dimethyl(phenyl)silyl)-10-methoxy-5,6-dimethyldec-6-ene-1,9-diol (4f): Prepared by the general procedure using silane 1a and olefin $8 \mathbf{a}$ or $\mathbf{8 b}$, silyl diol $\mathbf{4 f}(86 \mathrm{mg}, 47 \%)$ or $(82 \mathrm{mg}, 45 \%)$ respectively was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.22(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H})$, $3.18(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.9,-3.4,12.8,20.3,23.8,31.6$, $32.8,34.7,43.1,58.7,62.8,70.5,76.8,119.1,127.6,128.8,134.0,138.4,139.6 \mathrm{ppm}$; IR (neat) vmax: $1113,1246,1427,2929,3425 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-13\left(\mathrm{c}=2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 387.2331$, found 387.2335 .

(4S,7S,8S,E)-7-(Dimethyl(phenyl)silyl)-4-ethyl-9-methoxy-5-methylnon-5-ene-1,8-diol (3c): Prepared by the general procedure using silane $\mathbf{1 b}$ and olefin 8c or 8d, silyl diol 3c ($93 \mathrm{mg}, 51 \%$) or ($100 \mathrm{mg}, 55 \%$) respectively was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=12.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.28$ $(\mathrm{s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.9,-2.6,11.8,12.5,26.4,29.6,30.9$, $32.9,51.1,58.8,63.1,72.3,76.8,123.4,127.5,128.7,134.1,136.8,138.7 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1427, 2928, $3436 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-13\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$387.2331, found 387.2333.

(4S,7S,8S,E)-4-Butyl-7-(dimethyl(phenyl)silyl)-9-methoxy-5-methylnon-5-ene-1,8-diol (3d): Prepared by the general procedure using silane $\mathbf{1 b}$ and olefin 8e, silyl diol $3 \mathbf{d}(113 \mathrm{mg}, 58 \%)$ was obtained as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.31(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 8 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.83(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-3.0,-2.6,11.8,14.1,22.7,29.8,30.2,30.9,32.9,33.3,49.1,58.8$, $63.0,72.3,76.9,123.1,127.5,128.7,134.1,137.0,138.7 \mathrm{ppm}$; IR (neat) vmax: 1113, 1457, 2921, $3396 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-10\left(\mathrm{c}=3.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 415.2644$, found 415.2664 .

(5R,8R,9S,E)-8-(Dimethyl(phenyl)silyl)-10-methoxy-6-methyl-5-phenyldec-6-ene-1,9-diol (4g): Prepared by the general procedure using silane 1a and olefin $\mathbf{8 f}$, silyl diol $\mathbf{4 g}$ ($78 \mathrm{mg}, 37 \%$) was obtained as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J$
$=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta-4.3,-3.7,12.1,29.0,30.9,31.9,40.7,50.9,58.7,62.8,70.3,77.0,122.7,125.7$, $127.6,128.2,128.8,128.9,134.0,135.8,138.3,141.0 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1427, 1496, 2930, $3418 \mathrm{~cm}^{-1} ;[\alpha]^{20}=-16\left(c=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 449.2488$, found 449.2471 .

(5S,8S,9S,E)-8-(Dimethyl(phenyl)silyl)-10-methoxy-6-methyl-5-(trimethylsilyl)dec-6-ene-1,9-diol (4h): Prepared by the general procedure using silane $\mathbf{1 b}$ and olefin $\mathbf{8 g}$, silyl diol $\mathbf{4 h}(65 \mathrm{mg}, 31 \%)$ was obtained as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.06(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~m}$, $3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.37$ $(\mathrm{m}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=11.2,1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.0,-2.3,-2.0,16.4,25.4,27.7,32.6,33.7,40.0,58.8$, $62.9,72.5,76.8,120.5,127.6,128.8,134.1,136.3,138.7 \mathrm{ppm}$; IR (neat) vmax: 1113,1247 , 1457, 2931, $3433 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-5.6\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 445.2570$, found 445.2578 .

(5S,8S,9S,E)-8-(Dimethyl(phenyl)silyl)-10-ethoxy-6-methyl-5-(trimethylsilyl)dec-6-ene-1,9-diol (4i): Prepared by the general procedure using silane 1c and olefin $\mathbf{8 g}$, silyl diol $\mathbf{4 i}(87 \mathrm{mg}, 40 \%)$ was obtained as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.06(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 5 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{br}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~m}$, $2 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=12.8,1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.0,-2.3,-2.0,15.1,16.4,25.4,27.7,32.6,33.4,40.0,62.8,66.4,72.5$, $74.8,120.7,127.5,128.7,134.1,136.1,138.7 \mathrm{ppm}$; IR (neat) vmax: 1111, 1247, 1427, 2931, $3411 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-4.2\left(\mathrm{c}=2.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+} 459.2727$, found 459.2745 .

(7S,8S,E)-7-(Dimethyl(phenyl)silyl)-9-methoxy-3,5-dimethylnon-
5-ene-1,8-diol (3e): Prepared by the general procedure using silane $\mathbf{1 b}$ and olefin $\mathbf{8 h}$, silyl diol $3 \mathrm{e}(94 \mathrm{mg}, 54 \%)$ was obtained as a colorless oil. Diastereomer 1: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ $(\mathrm{m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.68($ overlap, 3 H$), 4.85(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.0,-2.9,16.3,19.4,27.5,33.3,39.7,48.1$, $58.8,60.7,72.3,76.7,123.1,127.4,128.7,133.8,134.2,138.6 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1427, 2921, $3414 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-9.8\left(\mathrm{c}=3.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$373.2175, found 373.2189. Diastereomer 2: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.51$ $(\mathrm{m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.65$ (overlap, 3 H), $4.87(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ $(\mathrm{m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.2,-2.7,16.3,19.5,27.6,33.3,39.67$,
48.2, 58.8, 61.0, $72.2,76.7,123.0,127.5,128.8,133.9,134.1,138.4 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1427, 2923, $3409 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-9.9\left(\mathrm{c}=2.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 373.2175$, found 373.2189.

($8 R, 9 S, E$)-8-(Dimethyl(phenyl)silyl)-10-methoxy-4,6-dimethyldec-6-ene-1,9-diol (4j): Prepared by the general procedure using silane 1a and olefin 8i, silyl diol 4j ($80 \mathrm{mg}, 44 \%$) was obtained as a colorless oil. Diastereomer 1: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $(\mathrm{s}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.9,-3.3,16.2,19.5,30.2,30.7,32.1,32.7,48.2,58.8,63.3,70.6,76.9,121.5$, 127.6, 128.9, 134.0, 134.4, 138.4 ppm ; IR (neat) vmax: 1113, 1246, 1427, 2915, $3412 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=-11\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 387.2331, found 387.2323. Diastereomer 2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.35$ $(\mathrm{s}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.81$ (m, 2H), $2.05(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{br}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ $(\mathrm{m}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.9,-3.3,16.2,19.5,30.2,30.7,32.1,32.7,49.2,59.8,63.3,70.6,77.0,121.5,127.6,128.9$, $134.0,134.4,138.4 \mathrm{ppm} ;$ IR (neat) vmax: 1113, 1246, 1427, 2917, $3402 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-11(\mathrm{c}=$ $0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$387.2331, found 387.2323.

(4S,7R,8R,E)-4-Ethyl-9-methoxy-5-methyl-7-phenylnon-5-ene-1,8-diol (12): Prepared by the general procedure using alkyne 11 and olefin 8c or 8d, diol 12 $(101 \mathrm{mg}, 66 \%)$ or ($89 \mathrm{mg}, 58 \%$) respectively was obtained as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{br}$, $1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.8,12.3,26.1,29.3,30.7,47.5,50.8,59.0,62.8,73.8,74.7,126.3$, $126.4,128.2,128.5,138.6,142.1 \mathrm{ppm}$; IR (neat) vmax: $1124,1384,1453,2928,3412 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=-3.7\left(\mathrm{c}=0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 329.2093, found 329.2103.

v. The Experimental Procedure for Mono-Oxidation

General procedure I for the selective mono-oxidation of allylsilane diols: To a stirred solution of the allylsilane diol (0.5 mmol , 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature was added iodobenzenediacetate ($193 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) followed by TEMPO ($20 \mathrm{mg}, 0.125$ mmol, 0.25 equiv) and allowed the reaction mixture to stir further for another 7 hours. After
this reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and saturated NaHCO_{3} solution, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using 20% EtOAc/hexane as developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the aldehyde product.

(8R,9S,E)-8-(Dimethyl(phenyl)silyl)-9-hydroxy-10-methoxy-6-
methyldec-6-enal (14a): Prepared by the general procedure I using silyl diol 4a to provide silyl aldehyde $\mathbf{1 4 a}(139 \mathrm{mg}, 80 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.28$ $(\mathrm{s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 9.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.0,-3.6,15.9,21.4$, $27.4,31.9,39.5,43.6,58.7,70.3,76.9,120.3,127.4,128.7,133.9,134.5,138.2,202.5 \mathrm{ppm}$; IR (neat) vmax: 1116, 1244, 2930, $3447 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-4.7\left(\mathrm{c}=0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.2018$, found 371.2008.

(8S,9S,E)-8-(Dimethyl(phenyl)silyl)-9-hydroxy-10-methoxy-6-methyldec-6-enal (14b): Prepared by the general procedure I using silyl diol $\mathbf{4 b}$ to provide silyl aldehyde 14b ($130 \mathrm{mg}, 75 \%$) as a slightly yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.30$ $(\mathrm{s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.16$ (dd, $J=11.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{br}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, $3.36(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 9.73(\mathrm{t}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.2,-3.0,16.2,21.6,27.5,33.3,39.6,43.7,58.8$, $72.2,76.8,121.8,127.4,128.7,134.1,134.4,138.4,202.6 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1725, 2931, $3461 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-4.7\left(\mathrm{c}=0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.2018$, found 371.2014.

(5R,8R,9S,E)-8-(Dimethyl(phenyl)silyl)-9-hydroxy-10-methoxy-
5,6-dimethyldec-6-enal (14f): Prepared by the general procedure I using silyl diol $\mathbf{4 f}$ to provide silyl aldehyde $14 \mathrm{f}(118 \mathrm{mg}, 65 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.61$ $(\mathrm{m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.8$, $3.5,12.5,20.2,20.3,31.5,34.3,43.0,43.8,58.8,70.4,76.8,119.7,127.6,128.9,134.0,138.3$, $139.0,202.7 \mathrm{ppm}$; IR (neat) vmax: 1113, 1246, 1724, 2864, $3467 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-20(\mathrm{c}=1.3$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 385.2175$, found 385.2183 .

($5 S, 8 S, 9 S, E$)-8-(Dimethyl(phenyl)silyl)-9-hydroxy-10-methoxy-6-methyl-5-(trimethylsilyl)dec-6-enal (14h): Prepared by the general procedure I using silyl diol $\mathbf{4 h}$ to provide bis-silyl aldehyde $\mathbf{1 4 h}(121 \mathrm{mg}, 58 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.07(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.56$ $(\mathrm{m}, 2 \mathrm{H}), 2.21-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.36(3.14(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H})$, $4.78(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-2.8,-2.8,-2.1,15.9,21.8,27.3,33.2,39.9,43.5,58.7,72.3,76.7,121.0,127.4$, 128.6, 134.0, 135.6, 138.6, 202.6 ppm; IR (neat) vmax: 1114, 1247, 1725, 2951, $3455 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=-6.8\left(\mathrm{c}=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 443.2414, found 443.2434.

(5S,8S,9S,E)-8-(Dimethyl(phenyl)silyl)-10-ethoxy-9-hydroxy-6-methyl-5-(trimethylsilyl)dec-6-enal (14i): Prepared by the general procedure I using silyl diol $\mathbf{4 i}$ to provide bis-silyl aldehyde $\mathbf{1 4 i}(130 \mathrm{mg}, 60 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.08(\mathrm{~s}, 9 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~m}, 4 \mathrm{H})$, $1.43(\mathrm{~m}, 3 \mathrm{H}), 2.2(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.7,-2.6,-2.0$, $15.1,16.0,21.9,27.4,33.4,40.0,43.6,67.5,72.8,74.7,121.2,127.5,128.7,134.1,135.5$, 138.8, 202.6 ppm ; IR (neat) vmax: 1111, 1247, 1427, $2952 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-4.5(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 457.2570$, found 457.2578 .

(8 R,9S,E)-8-(Dimethyl(phenyl)silyl)-9-hydroxy-10-methoxy-4,6-dimethyldec-6-enal (14j): Prepared by the general procedure I using silyl diol $\mathbf{4 j}$ to provide silyl aldehyde $\mathbf{1 4 j}$ ($116 \mathrm{mg}, 64 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.29$ (s, $3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}$, $2 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.9,-3.4,16.1,19.1,28.7$, $30.4,32.1,41.6,48.0,58.8,70.5,76.7,121.9,127.6,128.9,133.6,134.0,138.3,202.8 \mathrm{ppm}$; IR (neat) vmax: 1114, 1246, 1427, 2912, $3461 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-13\left(\mathrm{c}=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 385.2175$, found 385.2166

(7R,8S,E)-7-(Dimethyl(phenyl)silyl)-8-hydroxy-9-methoxy-5-methylnon-5-enal (13a): Prepared by the general procedure I using silyl diol 3a to provide silyl aldehyde $\mathbf{1 3 a}(117 \mathrm{mg}, 70 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.29$ $(\mathrm{s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{br}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H})$, $3.18(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}$, $2 \mathrm{H}), 9.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.0,-3.7,15.8,20.2,31.9,39.1,43.0,58.6$, 70.1, 76.8, 121.0, 127.4, 127.5, 128.7, 133.8, 138.1, 202.2 ppm; IR (neat) vmax: 1113, 1247,

1427, 1722, 2896, $3470 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-13\left(\mathrm{c}=1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 357.1862$, found 357.1859.

(7S,8S,E)-7-(Dimethyl(phenyl)silyl)-8-hydroxy-9-methoxy-5-
methylnon-5-enal (13b): Prepared by the general procedure I using silyl diol $\mathbf{3 b}$ to provide silyl aldehyde $\mathbf{1 3 b}$ ($128 \mathrm{mg}, 77 \%$) as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.31$ $(\mathrm{s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.28(\mathrm{~m}, 4 \mathrm{H})$, $3.09(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 9.70(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.2,-2.9,16.1$, $20.3,33.3,39.1,43.1,58.8,72.1,76.8,122.6,127.4,128.7,133.8,134.1,138.4,202.5 \mathrm{ppm}$; IR (neat) vmax: 1111, 1255, 1727, $2913 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-4.6\left(\mathrm{c}=1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)$ m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 357.1862$, found 357.1855.

(4S,7S,8S,E)-7-(Dimethyl(phenyl)silyl)-4-ethyl-8-hydroxy-9-methoxy-5-methylnon-5-enal (13c): Prepared by the general procedure I using silyl diol 3c to provide silyl aldehyde $\mathbf{1 3 c}(121 \mathrm{mg}, 67 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.60$ (m, 1H), $1.80(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{br}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.60$ $(\mathrm{m}, 2 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.0,-3.3,10.1,11.0,23.9,24.9,31.5$, $40.5,49.3,57.5,70.8,75.4,123.1,126.2,127.4,132.6,134.3,137.4,201.4 \mathrm{ppm}$; IR (neat) vmax: 1115, 1240, 1727, 2929, 2957, $3460 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-10\left(\mathrm{c}=2.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 385.2175$, found 385.2187 .

(4S,7S,8S,E)-4-Butyl-7-(dimethyl(phenyl)silyl)-8-hydroxy-9-methoxy-5-methylnon-5-enal (13d): Prepared by the general procedure I using silyl diol 3d to provide silyl aldehyde $\mathbf{1 3 d}$ ($111 \mathrm{mg}, 57 \%$) as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H}), 1.32$ $(\mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.32(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.7$, $2.1,11.5,14.0,22.5,25.5,30.0,32.8,33.1,41.8,48.7,58.7,72.2,76.8,124.2,127.5,128.7$, $133.9,135.9,138.7,202.6 \mathrm{ppm}$; IR (neat) vmax: $1115,1427,1724,2925 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-11(\mathrm{c}$ $\left.=1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 413.2488$, found 413.2488 .

(7S,8S,E)-7-(Dimethyl(phenyl)silyl)-8-hydroxy-9-methoxy-3,5-dimethylnon-5-enal (13e): Prepared by the general procedure I using silyl diol 3e to provide silyl aldehyde $\mathbf{1 3 e}(108 \mathrm{mg}, 62 \%)$ as a slightly yellow oil. Diastereomer 1: ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H})$, $2.08(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}$, $1 \mathrm{H}), 4.97(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 9.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-6.2,-5.2,13.4,17.2,23.3,30.5,44.9,47.5,56.2,69.3,74.1,121.5,124.7,126.0$, $130.0,131.3,135.8,200.0 \mathrm{ppm}$; IR (neat) vmax: $1115,1246,1427,2953,3448 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-$ $8.2\left(\mathrm{c}=3.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.2018$, found 371.2040. Diastereomer 2: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 4 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, $3.34(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~m}, 2 \mathrm{H}), 9.73(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.0,-4.0,15.2,18.9,25.2,32.3,46.6,49.4,57.7,71.0$, $75.7,123.1,126.4,127.6,131.7,133.0,137.2,201.6 \mathrm{ppm}$; IR (neat) vmax: 1115, 1246, 1427, 2894, $3448 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-4.5\left(\mathrm{c}=2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 371.2018$, found 371.2040.

General procedure II for the selective mono-oxidation of allylsilane diols: To a stirred solution of the benzylic alcohol ($0.5 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature was added activated MnO_{2} ($645 \mathrm{mg}, 7.5 \mathrm{mmol}, 15$ equiv) and allowed the reaction mixture to stir further for another 12 hours. After this reaction was filtered through celite, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $20 \% \mathrm{EtOAc} /$ hexane as developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the aldehyde product.

2-((5S,6S,E)-5-(Dimethyl(phenyl)silyl)-6-hydroxy-7-methoxy-3-methylhept-3-en-1-yl)benzaldehyde (14c): Prepared by the general procedure II using silyl diol 4c to provide silyl aldehyde $\mathbf{1 4 c}(168 \mathrm{mg}, 85 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~m}$, $3 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-3.2,-3.1,16.4,31.5,33.5,42.5,58.8,72.1,76.7,122.6,126.5$, $127.5,128.8,131.0,131.9,133.6,133.8,133.9,134.2,138.3,145.1,192.2 \mathrm{ppm}$; IR (neat) vmax: $1115,1245,1600,1696,2894,3462 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=+3.5\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 419.2018$, found 419.2008 .

14e
2-((5R,6S,E)-5-(Dimethyl(phenyl)silyl)-6-hydroxy-7-methoxy-3-methylhept-3-en-1-yl)benzaldehyde (14e): Prepared by the general procedure II using silyl diol $\mathbf{4 e}$ to provide silyl aldehyde $\mathbf{1 4 e}(183 \mathrm{mg}, 82 \%)$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{br}, 1 \mathrm{H}), 2.41(\mathrm{~m}$, $2 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~m}, 4 \mathrm{H}), 7.77(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{~m}, 1 \mathrm{H})$, $10.57(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.8,-3.6,16.4,26.1,32.3,42.7,58.8,70.4$, $76.9,122.5,124.3,124.9,126.9,127.1,127.6,128.5,129.0,130.5,131.8,134.0,136.3,138.2$, 144.6, 191.7 ppm ; IR (neat) vmax: $1116,1428,1683,2896,3446 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-15(\mathrm{c}=1.9$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 469.2175$, found 469.2172 .

vi. [3 + 2] Annulation of Complex Silyl Aldehydes

General procedure for the [3+2] annulation: Aldehyde $\mathbf{1 4}$ ($0.2 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was cooled to $-30^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) was added to the mixture at -30 or $-40^{\circ} \mathrm{C}$, and the solution was stirred at that temperature for 1 to 1.5 hours. The reaction was diluted with a solution of saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using 30% EtOAc/hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the bicyclic product 9 .

(S)-1-((2R,3S,3aR,7aR)-3-(Dimethyl(phenyl)silyl)-3a-methyloctahydrobenzofuran-2-yl)-2-methoxyethanol (9a): Prepared by the general procedure using silyl aldehyde 14a to provide bicyclic product 9a ($57 \mathrm{mg}, 82 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~m}$, $2 \mathrm{H}), 1.35(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{br}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=12.0$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-1.8,-1.6,15.7,21.0,24.5,25.6,36.3040 .5,45.2$, $58.6,71.6,75.7,79.0,87.5,128.1,129.3,134.3,139.0 \mathrm{ppm}$; IR (neat) vmax: 1110, 1250, 1427, 1733, 2932, $3445 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+8.0\left(\mathrm{c}=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.2018$, found 371.2019.

(S)-1-((2S,3R,3aS,7aS)-3-(Dimethyl(phenyl)silyl)-3a-methyloctahydrobenzofuran-2-yl)-2-methoxyethanol (9b): Prepared by the general procedure using silyl aldehyde 14b to provide bicyclic product $9 \mathbf{~ b}(47 \mathrm{mg}, 68 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 1.09-1.23$ $(\mathrm{m}, 3 \mathrm{H}), 1.30-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, J $=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=10,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.0,-1.4,15.1,20.7,24.1,24.9$, 36.1, 42.9, 45.3, 58.8, 72.9, 73.3, 80.6, 86.5, 127.8, 129.0, 133.0, 139.1 ppm ; IR (neat) vmax: 1109, 1249, 1456, 1734, 2930, $3447 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-19\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)$ m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 371.2018$, found 371.2003.

9c
(S)-1-((2S,3R,3aS,9bS)-3-(Dimethyl(phenyl)silyl)-3a-methyl-2,3,3a,4,5,9b-hexahydronaphtho[1,2-b]furan-2-yl)-2-methoxyethanol (9c): Prepared by the general procedure using silyl aldehyde 14c to provide bicyclic product 9 c ($47 \mathrm{mg}, 59 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.43(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}), 1.45$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{br}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H})$, $3.63(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.29$ $(\mathrm{m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.9,-1.6,16.2,26.2$, $32.2,42.5,45.8,58.9,73.1,73.5,82.8,85.5,123.7,125.6,126.3,127.7,127.9,129.1,134.0$, $135.07,136.9,138.8 \mathrm{ppm}$; IR (neat) vmax: $1114,1249,1456,1733,2924,3447 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=$ $+5.6\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 419.2018$, found 419.2036.

(S)-1-((2R,3S,3aR,11bR)-3-(Dimethyl(phenyl)silyl)-3a-methyl-2,3,3a,4,5,11b-hexahydrophenanthro[1,2-b]furan-2-yl)-2-methoxyethanol (9e): Prepared by the general procedure using silyl aldehyde $\mathbf{1 4 e}$ to provide bicyclic product 9 e (49 mg , $55 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.47(\mathrm{~s}, 6 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H})$, $2.01(d, J=10.8 \mathrm{~Hz}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.2,-1.9,15.8,24.0$, $32.1,39.9,45.0,59.0,71.6,75.5,81.3,87.1,122.5,123.2,124.8,125.8,126.2,127.9,128.8$, 129.3, 129.4, 131.6, 132.4, 133.9, 134.2, 138.2 ppm; IR (neat) vmax: 1114, 1250, 1427, 1641, 2926, $3443 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-14\left(\mathrm{c}=0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 469.2175$, found 469.2189.

(S)-1-((2R,3S,3aR,4R,7aR)-3-(Dimethyl(phenyl)silyl)-3a,4-dimethyloctahydrobenzofuran-2-yl)-2-methoxyethanol (9f): Prepared by the general procedure using silyl aldehyde $\mathbf{1 4 f}$ to provide bicyclic product $\mathbf{9 f}(46 \mathrm{mg}, 63 \%)$ as a white solid. Melting Point: $47{ }^{\circ} \mathrm{C}$ to $49{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.78(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.5,15.3,18.4$, $19.9,25.7,27.6,34.7,36.2,47.3,58.9,65.9,71.3,75.6,78.9,81.1,127.9,129.1,133.8,138.7$ ppm; IR (neat) vmax: 1124, 1456, 1734, 2926, 3481, $3853 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+6.0(\mathrm{c}=0.30$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 385.2175$, found 385.2187 .

(1S)-1-((2R,3S,3aR,7aR)-3-(Dimethyl(phenyl)silyl)-3a,5-dimethyloctahydrobenzofuran-2-yl)-2-methoxyethanol (9j): Prepared by the general procedure using silyl aldehyde $\mathbf{1 4} \mathbf{j}$ to provide bicyclic product $\mathbf{9 j}(54 \mathrm{mg}, 75 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $3 \mathrm{H}), 0.91(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=12,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.4,-1.5,16.3,22.2$, $24.5,27.1,33.1,40.5,44.8,45.4,58.9,71.3,75.6,79.7,87.6,127.8,129.1,133.8,138.5 \mathrm{ppm}$; IR (neat) vmax: 1113, 1249, 1457, 1734, 2949, 3441, $3853 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+10(\mathrm{c}=0.50$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 385.2175$, found 385.2187 .

Procedure of the [3+2] annulation to achieve perhydroindol: (2R,3S,3aR,7aR)-Methyl 3-(dimethyl(phenyl)silyl)-2-((R)-1-hydroxy-2-methoxyethyl)-3a-methyloctahydro-1H-
indole-1-carboxylate (9k): Aldehyde 14a ($70 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{NH}_{2} \mathrm{COOMe}(60$ $\mathrm{mg}, 0.8 \mathrm{mmol}, 4$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was cooled to $-30^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) was added to the mixture at $-30^{\circ} \mathrm{C}$, and the solution was stirred at $-10{ }^{\circ} \mathrm{C}$ for 2 hours. A solution of saturated NaHCO_{3} $(10 \mathrm{~mL})$ was added and the mixture was extracted with diethyl ether (3 x 10 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $30 \% \mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated under reduced pressure to obtain the perhydroindol product $9 \mathbf{k}(49 \mathrm{mg}, 61 \%)$ as a single diastereomer. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H})$,
7.60 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-2.3,-1.5,21.1,24.2,27.1,28.1,29.7,34.1$, $43.6,51.7,57.8,61.6,67.0,70.8,76.4,127.8,129.0,133.9,139.3 \mathrm{ppm}$; IR (neat) vmax: 1112, 1254, 1448, 1698, 2924, $3447 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-4.6\left(\mathrm{c}=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 428.2233$, found 428.2231.

(1R,2S)-2-((R, E)-3-Hydroxy-4-methoxybut-1-en-1-yl)-2-methylcyclohexanol
(15):

Aldehyde $\mathbf{1 4 a}\left(0.2 \mathrm{mmol}, 1\right.$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was cooled to $-30{ }^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) was added to the mixture at $-30^{\circ} \mathrm{C}$, and the solution was stirred at that temperature for 1 hour, at which time, another portion of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 1$ equiv) was added into the mixture. The reaction was warmed to $0^{\circ} \mathrm{C}$ and further stirred for 30 min . A solution of saturated NaHCO_{3} $(10 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using 80% $\mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc (5 x 2 mL), and the EtOAc was evaporated to obtain the product $15(20 \mathrm{mg}, 46 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $3.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.4,20.9,24.4,29.1,36.6$, $41.4,59.0,71.3,74.9,77.0,126.8,142.3 \mathrm{ppm}$; IR (neat) vmax: 1124, 1197, 1450, 2920, 3444 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-3.7\left(\mathrm{c}=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 237.1467, found 237.1555 .

vii. Intramolecular Allylation

General procedure of the intramolecular allylation to achieve cyclopentyl alcohols: Aldehyde $13\left(0.2 \mathrm{mmol}, 1\right.$ equiv) was dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$. The solution was cooled to $-30^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) was added to the mixture at $-30{ }^{\circ} \mathrm{C}$, and the solution was stirred at that temperature for 1 to 1.5 hours. A solution of saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added and the mixture was extracted with diethyl ether (3 x 10 mL). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $70 \% \mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the cyclopentanol product 10.

10a
(1R,2S)-2-((R,E)-3-Hydroxy-4-methoxybut-1-en-1-yl)-2methylcyclopentanol (10a): Prepared by the general procedure using silyl aldehyde 13a to provide cyclopentanol $10 \mathrm{a}(25 \mathrm{mg}, 61 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.01(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.4,19.3,31.2,36.0,47.3,59.0,71.4,76.7,79.6,125.8$, 141.5 ppm ; IR (neat) vmax: 1124, 1457, 1668, 2929, $3402 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-13(\mathrm{c}=0.30$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$223.1310, found 223.1484.

10b
((1S,2R)-2-((R,E)-3-Hydroxy-4-methoxybut-1-en-1-yl)-2methylcyclopentanol (10b): Prepared by the general procedure using silyl aldehyde 13b to provide cyclopentanol $\mathbf{1 0 b}(23 \mathrm{mg}, 58 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.98(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{br}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.6,19.3,31.3,35.9,47.3$, $59.0,71.1,76.8,79.5,125.7,141.0 \mathrm{ppm}$; IR (neat) vmax: $1123,1457,1663,2930,3403 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}=+2.5\left(\mathrm{c}=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(1S,2R,3S)-3-Ethyl-2-((R,E)-3-hydroxy-4-methoxybut-1-en-1-yl)-2methylcyclopentanol (10c): Prepared by the general procedure using silyl aldehyde 13c to provide cyclopentanol $10 \mathrm{c}(23 \mathrm{mg}, 51 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.70(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{br}, 1 \mathrm{H}), 3.23(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H})$, $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.3,18.2,23.6,27.7,31.7,48.7,50.7,59.0,71.5,76.9$, $80.8,126.9,136.8 \mathrm{ppm}$; IR (neat) vmax: $1118,1655,2872,2954,3413 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+2.0(\mathrm{c}=$ 0.30, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$229.1804, found 229.1806.

(1S,2R,3S)-3-Butyl-2-((R,E)-3-hydroxy-4-methoxybut-1-en-1-yl)-2methylcyclopentanol (10d): Prepared by the general procedure using silyl aldehyde 13d to provide cyclopentanol $10 \mathrm{~d}(24 \mathrm{mg}, 47 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 1.51(\mathrm{br}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H})$, $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{br}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,18.3,22.9,28.1,30.4,31.1,31.7,46.7,50.7,59.0$, $71.6,76.8,80.8,126.8,136.8 \mathrm{ppm}$; IR (neat) vmax: $1124,1452,1737,2925,3402 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}$ $=+8.2\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(1S,2R)-2-((R,E)-3-Hydroxy-4-methoxybut-1-en-1-yl)-2,4-
dimethylcyclopentanol (10e): Prepared by the general procedure using silyl aldehyde 13e to provide cyclopentanol 10e ($30 \mathrm{mg}, 70 \%$) as a colorless oil. Diastereomer a: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00$ (overlap, 6 H), $1.23(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{br}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H})$, $5.37(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 20.3, 22.3, 28.4, 41.4, 45.1, 47.6, 60.0, 71.1, 76.8, 79.7, 125.0, 141.5 ppm ; IR (neat) vmax: 1124, 1456, 1653, 2951, $3398 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+2.5\left(\mathrm{c}=1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Diastereomer b: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98$ (overlap, 6 H$), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.80$ $(\mathrm{m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{br}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.4,22.5,27.9,39.8,45.9,48.2,60.0,71.1,76.8,78.8,126.6,141.5$ ppm; IR (neat) vmax: 1194, 1456, 1655, 2949, $3389 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+9.0\left(\mathrm{c}=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Procedure of the intramolecular allylation to achieve cyclopentyl carbamate: Methyl (1R,2S)-2-((R,E)-3-hydroxy-4-methoxybut-1-enyl)-2-methylcyclopentylcarbamate (10f): Aldehyde 13a ($67 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{NH}_{2} \mathrm{COOMe}(30 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was cooled to $-30^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) was added to the mixture at $-30^{\circ} \mathrm{C}$, and the solution was stirred at that temperature for 1 hour. The reaction was diluted with a solution of saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the mixture was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $70 \% \mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the carbamate product $10 f$ $(35 \mathrm{mg}, 68 \%)$ as a single diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~m}$, $1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.59$ $(\mathrm{s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.6,19.4,29.2,29.8,37.2,46.2$, $52.1,53.8,59.0,59.3,71.2,125.9,141.3,156.9 \mathrm{ppm}$; IR (neat) vmax: $1055,1125,1260,1541$, 1702, 2960, $3320 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=+6.3\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI}^{2} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 280.1525$, found 280.1514 .
viii. Sakurai-Like Dimerization

Aldehyde $\mathbf{1 4 h}$ or $\mathbf{1 4 i}$ (0.1 mmol , 1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL). The solution was cooled to $-50{ }^{\circ} \mathrm{C}$ under an argon atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2$ equiv $)$ was added to the mixture at $-50^{\circ} \mathrm{C}$, and the solution was stirred at that temperature for 2 hours. A solution of saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $20 \% \mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated under reduced pressure to obtain the dimerization product 19.

((2S,3S,3aR,4Z,8aS,10S,11S,11aR,12Z,16aS)-2,10-
Bis(methoxymethyl)-4,12-dimethyl-2,3,3a,6,7,8,8a,10,11,11a,14,15,16,16a-
tetradecahydrocyclotetradeca[1,2-b:8,9-b']difuran-3,11-diyl)bis(dimethyl(phenyl)silane) (19a): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.26(\mathrm{~s}, 6 \mathrm{H}), 0.32(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 4 \mathrm{H})$, $1.50(\mathrm{~s}, 6 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{dd}, J=10.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{q}, J=11.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 3.22(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 6 \mathrm{H}), 7.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-2.9,-1.9,21.9$, $24.5,24.6,28.4,30.8,44.5,58.8,74.4,78.2,80.0,127.7,129.0,130.3,133.7,134.1,138.7$ ppm; IR (neat) vmax: 1112, 1248, 1428, $2928 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-5.0\left(\mathrm{c}=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 683.3928$, found 683.3943.

((2S,3S,3aR,4Z,8aS,10S,11S,11aR,12Z,16aS)-2,10-
Bis(ethoxymethyl)-4,12-dimethyl-2,3,3a,6,7,8,8a,10,11,11a,14,15,16,16a-
tetradecahydrocyclotetradeca[1,2-b:8,9-b']difuran-3,11-diyl)bis(dimethyl(phenyl)silane)
(19b): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.27(\mathrm{~s}, 6 \mathrm{H}), 0.32(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.19$ $(\mathrm{m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{dd}, J=11.0,8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.34(\mathrm{q}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.32(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 6 \mathrm{H}), 7.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta-2.8,-2.1,15.1,21.8,24.7,28.5,30.3,31.3,44.4,66.3,72.4,78.3,80.3,127.7$, $128.9,130.2,133.7,134.4,138.8 \mathrm{ppm}$; IR (neat) vmax: $1113,1247,1384,2920 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=$ $-5.7\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 711.4241$, found 711.4242 .

ix. Tamao Oxidation and Protiodesilylation

(2S,3S,3aS,7aR)-2-((S)-1-Hydroxy-2-methoxyethyl)-3a-methyloctahydrobenzofuran-3-ol
(16): To a solution of dimethylphenylsilyl-substituted tetrahydrofuran $\mathbf{9 a}(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) in DMSO (2 mL) was added potassium t-butoxide ($25 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.2$ equiv). The mixture was stirred for 7 hours at room temperature, and then diluted with diethyl ether (10 mL) and phosphate buffer solution ($\mathrm{pH} 7,10 \mathrm{~mL}$). After the aqueous layer was extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$), the combined organic layer was evaporated. $\mathrm{MeOH}(2 \mathrm{~mL})$, KHCO_{3} ($30 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv), TBAF (1.0 M in THF, $450 u \mathrm{~L}, 0.45 \mathrm{mmol}, 4.5$ equiv) and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water, $170 u \mathrm{~L}, 1.5 \mathrm{mmol}, 15$ equiv) were added to the residue. The mixture was stirred for 24 hours at $40{ }^{\circ} \mathrm{C}$, then poured into saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and extracted with diethyl ether. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $70 \% \mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the oxidation product $16(14 \mathrm{mg}, 60 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~s}$, $3 \mathrm{H}), 1.14(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{br}, 1 \mathrm{H}), 2.57(\mathrm{br}, 1 \mathrm{H})$, $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.9,20.4,24.1,25.1,34.0,43.9,59.4,71.1,74.2,80.7,83.1,83.4 \mathrm{ppm}$; IR (neat) vmax: 1046, 1456, 1559, 1653, 2926, $3407 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=+8.4\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$253.1416, found 253.1421.

(S)-2-Methoxy-1-((2R,3aR,7aS)-3a-methyloctahydrobenzofuran-2-yl)ethanol (17): To a solution of dimethylphenylsilyl-substituted tetrahydrofuran $\mathbf{9 b}(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) in DMF (2 mL) was added TBAF as a 1.0 M solution in THF ($0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 5$ equiv). The resulting dark brown solution was stirred at $80^{\circ} \mathrm{C}$ for 12 hours, cooled to room temperature, diluted with EtOAc, and washed successively with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, saturated NaHCO_{3} solution. The resulting organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $40 \% \mathrm{EtOAc} /$ hexane as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the protiodesilylation product $17(15 \mathrm{mg}, 71 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.88(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{br}, 1 \mathrm{H}), 3.19(\mathrm{dd}$, $J=12.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.1,20.8,24.4,25.3,35.6,41.3,42.4,59.1$, $72.8,74.1,76.7,84.7 \mathrm{ppm}$; IR (neat) vmax: 1066, 1124, 1457, 2929, $3430 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-9.5$ $\left(\mathrm{c}=0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 237.1467$, found 237.1475.

(2S,3S,3aS,4Z,8aS,10S,11S,11aS,12Z,16aS)-2,10-Bis(methoxymethyl)-4,12-dimethyl-2,3,3a,6,7,8,8a,10,11,11a,14,15,16,16a-tetradecahydrocyclotetradeca[1,2-b:8,9-
\mathbf{b}^{\prime}]difuran-3,11-diol (21): To a solution of dimethylphenylsilyl-substituted dimer 19a (33 mg , $0.05 \mathrm{mmol}, 1$ equiv) in DMSO (2 mL) was added potassium t-butoxide ($25 \mathrm{mg}, 0.22 \mathrm{mmol}$, 4.4 equiv). The mixture was stirred for 7 hours at room temperature, and then diluted with diethyl ether (10 mL) and phosphate buffer solution ($\mathrm{pH} 7,10 \mathrm{~mL}$). After the aqueous layer was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$, the combined organic layer was evaporated. $\mathrm{MeOH}(2 \mathrm{~mL}), \mathrm{KHCO}_{3}(30 \mathrm{mg}, 0.3 \mathrm{mmol}, 6$ equiv), TBAF (1.0 M in THF, $450 u \mathrm{~L}, 0.45$ mmol, 9 equiv) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (30% in water, $170 u \mathrm{~L}, 1.5 \mathrm{mmol}, 30$ equiv) were added to the residue. The mixture was stirred for 24 hours at $40^{\circ} \mathrm{C}$, then poured into a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with diethyl ether. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $80 \% \mathrm{EtOAc} / \mathrm{hexane}$ as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the oxidation product $21(10 \mathrm{mg}, 48 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}), 1.93(\mathrm{~m}$, $2 \mathrm{H}), 2.25(\mathrm{q}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 6 \mathrm{H})$, $3.65(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 22.7,24.5,25.0,27.5,52.2,59.5,72.7,76.0,77.6,77.8,130.5,131.5 \mathrm{ppm}$; IR (neat) vmax: 1095, 1384, 2921, $3412 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-18\left(\mathrm{c}=0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 447.2723$, found 447.2739.

(2R,3aR,4Z,8aS,10R,11aR,12Z,16aS)-2,10-Bis(methoxymethyl)-4,12-dimethyl-2,3,3a,6,7,8,8a,10,11,11a,14,15,16,16a-tetradecahydrocyclotetradeca[1,2-b:8,9-b']difuran
(22): To a solution of dimethylphenylsilyl-substituted tetrahydrofuran $\mathbf{1 9 a}(33 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1 equiv) in DMF (2 mL) was added TBAF as a 1.0 M solution in THF ($0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}, 10$ equiv). The resulting dark brown solution was stirred at $80^{\circ} \mathrm{C}$ for 12 hours, cooled to room temperature, diluted with EtOAc , and washed successively with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, saturated NaHCO_{3} solution. The resulting organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography in the dark, using $40 \% \mathrm{EtOAc} /$ hexanes as the developing solvent system. The product band was eluted with EtOAc ($5 \times 2 \mathrm{~mL}$), and the EtOAc was evaporated to obtain the protiodesilylation product $22(13 \mathrm{mg}, 68 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H})$, $2.07(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 6 \mathrm{H})$, $4.05(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.8$, $24.9,25.2,27.3,31.1,41.9,59.3,76.0,76.1,80.1,129.0,134.3 \mathrm{ppm}$; IR (neat) vmax: 1093,

1456, 1734, $2923 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=-16\left(\mathrm{c}=0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 393.3005$, found 393.3020 .

Part VI: 1D and 2D NMR Spectroscopic Analysis; Assignment of
Stereochemistry

10b

The proton assignment on ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0 b}$ was confirmed by GCOSY NMR analysis. As shown above, the NOE measurement indicated that H^{1} and H^{2} has NOE with each other, but no NOE was observed between H^{1} and Me^{1} group, thus indicated the cis configuration of Me^{1} and OH groups on cyclopantane 10b.

Wu et. al.

The proton assignment on ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0 c}$ ' was confirmed by GCOSY NMR analysis. As shown above, the NOE measurement indicated that $\mathrm{H}^{1}-\mathrm{H}^{2}, \mathrm{H}^{1}-\mathrm{H}^{3}, \mathrm{H}^{1}-\mathrm{H}^{7}$ or $\mathrm{H}^{8}, \mathrm{H}^{2}-\mathrm{H}^{3}, \mathrm{H}^{9}-\mathrm{Me}^{2}$ have NOE with each other, but no NOE was observed between H^{1} and H^{9}, thus indicated the relative cis stereochemistry of the ethyl and vinyl groups on 10c’.

Wu et. al.

smolit tot:
Puise sesuence: motsyid

Wu et. al.

The proton assignment on ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 9 a}$ was confirmed by GCOSY NMR analysis. As shown above, the NOE measurement indicated that H^{1} $\mathrm{Me}^{1}, \mathrm{H}^{2}-\mathrm{Me}^{2}, \mathrm{H}^{2}-\mathrm{H}^{4}, \mathrm{H}^{2}-\mathrm{H}^{6}$, and $\mathrm{H}^{3}-\mathrm{H}^{5}$ have NOE with each other, thus indicated the relative stereochemistry of 19a.

Part V: X-ray Crystal Structure

X-ray crystal structure for $9 f$

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 869781). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Roda, Cambridge CB21EZ, UK (fax:(+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.) or via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for 9f

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}$	$V=2146.84(15) \AA^{3}$
$M_{r}=380.59$	$Z=4$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$	$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
$a=7.2946(3) \AA$	$\mu=1.14 \mathrm{~mm}^{-1}$
$b=13.3574(5) \AA$	$T=100 \mathrm{~K}$
$c=22.0331(9) \AA$	$\times \times \mathrm{mm}$

Data collection

Bruker APEX-II CCD diffractometer	3286 reflections with $I>2 \sigma(I)$
17867 measured reflections	$R_{\text {int }}=0.058$
3702 independent reflections	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$	H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.100$	$\Delta\rangle_{\max }=0.29 \mathrm{e} \AA^{-3}$
$S=1.02$	$\Delta\rangle_{\min }=-0.19 \mathrm{e} \AA^{-3}$
3702 reflections	Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
247 parameters	Flack parameter: $0.03(3)$
3 restraints	

Data reduction: SAINT v7.68A (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341.; software used to prepare material for publication: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339341.

