Supporting Information

Large-scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth

Jin Hwan Lee ${ }^{I^{*}}$, Phillip Lee ${ }^{I^{*}}$, Dongjin Lee ${ }^{2}$, Seung Seob Lee ${ }^{1}$, Seung Hwan Ko ${ }^{1} \dagger$
${ }^{1}$ Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST),
291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
${ }^{2}$ School of Mechanical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-
701, Korea

Figure S1. The effect of stir bar length used in oil bath and reaction flask: scanning electron microscopy (SEM)
images of synthesized silver nanowires at different condition of \#1 (A) and \#3 (B). The scale bars indicate 100
$\mu \mathrm{m}$.

Figure S2. The result of synthesis at different stirring rates: SEM images of synthesized silver nanowires at
different stirring rates of 600 (A), 400 (B), 300 (C), and 150 rpm (D). The scale bars are $100 \mu \mathrm{~m}$

Figure S3. The effect of injection speed of AgNO_{3} solution through syringe pump: SEM images of synthesized
silver nanowires at injection rates of 0.5 (A), 1 (B), 15 (C), and $30 \mathrm{ml} / \mathrm{min}(\mathrm{D})$. The scale bar is $100 \mu \mathrm{~m} \mathrm{in} \mathrm{A}, \mathrm{B}$, and C , while the one in D is $50 \mu \mathrm{~m}$.

Figure S4. The longest AgNW synthesized through the SMG process (over $500 \mu \mathrm{~m}$). The scale bar is $200 \mu \mathrm{~m}$.

Figure S5. TEM images of sonicated AgNO_{3} in EG

Figure S6. SEM images of very long silver nanowires with low magnification. Painted with 3 colors nanowire have almost $200 \mu \mathrm{~m}$ or longer length.

Table S1

Trial num ber	Stir bar length (mm)		Stirring rate (rpm)	State of AgNO_{3}		M ax. length of AgNW (mm)
	In oil bath	In flask		Sonication (m i n)	Injection Spee d (ml / m in)	
1	50	25	300	3	3	48
2	38	38				53
3	50	158				87
4	50	10				168
5	38	25				83
6	50	158	400	3	3	58
7			300			83
8			260			105
9			200			33
10			150			281
11	50	158	260	-	3	-
12				2		
13				7		
14				10		
15				30		
16				$30+$ heating		
17	50	158	260	7	0.5	80~90
18					1	70~80
19					3	~ 50
20					5	~ 60
21					15	~ 50
22					30	~ 40

