Supporting Information for

Catalysed Tandem C-N/C-C Bond Formation for the Synthesis of Tricyclic Indoles using Ir(III) Pyrazolyl-1,2,3-Triazolyl Complexes

Chin-Min Wong, ${ }^{a}$ Khuong Q. Vuong, ${ }^{a}$ Mark R. D. Gatus, ${ }^{a}$ Carol Hua, ${ }^{a}$ Mohan Bhadbhade ${ }^{a, b}$ and Barbara A. Messerle*, ${ }^{*}$
${ }^{a}$ School of Chemistry, and ${ }^{b}$ X-ray Diffraction Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW 2052, Australia.

Telephone: +61-2-9385 4653

Fascimile: +61-2-9385 6141

Email: b.messerle@unsw.edu.au

Part A: Synthesis of Ligands

A. 1 Synthesis of 4-((1H-pyrazol-1-yl)methyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (2c) S6
A. 2 Synthesis of 4-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-1-phenyl-1H-1,2,3-triazole (3a) S7
A. 3 Synthesis of 4-((3,5-dimethyl-1 H-pyrazol-1-yl)methyl)-1-(4-(trifluoromethyl)phenyl)- S8 1H-1,2,3-triazole (3b)
A. 4 Synthesis of 4-((3,5-dimethyl-1 H -pyrazol-1-yl)methyl)-1-(4-nitrophenyl)-1 $\mathrm{H}-1,2,3-$ triazole (3c)
A. 5 Synthesis of 4-((3,5-dimethyl-1 H-pyrazol-1-yl)methyl)-1-(p-tolyl)-1H-1,2,3-triazole (3d)

Table S1: Chemical shifts of pyrazolyl C4 (Pz-C4) and 1,2,3-triazolyl C4' (Tz-C4') ${ }^{13} \mathbf{C}$ resonances of pyrazolyl-1,2,3-triazolyl bidentate ligands in the ${ }^{13} \mathrm{C}$ NMR spectra.

Part B: Synthesis of Ir and Rh Complexes
B. 1 Synthesis of $[\operatorname{Ir}(\mathbf{1}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}_{4}^{\mathrm{F}}(\mathbf{5}) \quad \mathrm{S} 12$
B. 2 Synthesis of $\left[\operatorname{Ir}(\mathbf{1}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}\left(\mathbf{5}^{\prime}\right) \quad \mathrm{S} 13$
B. 3 Synthesis of $\left[\operatorname{Ir}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{6 a}) \quad \mathrm{S} 14$
B. 4 Synthesis of $\left[\operatorname{Ir}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}^{(1] \mathrm{BPh}_{4}(\mathbf{6 a})} \quad \mathrm{S} 15\right.$
B. 5 Synthesis of $[\operatorname{Ir}(\mathbf{2 c}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{6 c}) \quad \mathrm{S} 16$
B. 6 Synthesis of $[\operatorname{Ir}(\mathbf{3 a}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}_{4}^{\mathrm{F}}(\mathbf{7 a}) \quad$ S17
B. 7 Synthesis of $[\operatorname{Ir}(\mathbf{3 b}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{7 b}) \quad \mathrm{S} 18$
B. 8 Synthesis of $[\operatorname{Ir}(\mathbf{3 c}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(7 \mathbf{c}) \quad$ S19
B. 9 Synthesis of $[\operatorname{Ir}(\mathbf{3 d}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{7 d}) \quad \mathrm{S} 20$
B. 10 Synthesis of $\left[\operatorname{Ir}(\mathbf{4}) \mathrm{Cp} *{ }^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{8})$ S21
B. 11 Synthesis of $[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}$ (9) S22
B. 12 Synthesis of $\left[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}\left(\mathbf{9}^{\boldsymbol{}}\right)$ S23
B. 13 Synthesis of $\left[\mathrm{Rh}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 0 a})$ S24
B. 14 Synthesis of $\left[\mathrm{Rh}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}\left(\mathbf{1 0 a}{ }^{\prime}\right)$ S25
B. 15 Synthesis of $\left[\operatorname{Rh}(\mathbf{4}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 1)}$ S26
B. 16 Synthesis of $\left.\left[\mathrm{Rh}(\mathbf{2 c})(\mathrm{CO})_{2}\right)\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 4 c})$ S27
B. 17 Synthesis of $\left[\mathrm{Rh}(\mathbf{3 a})(\mathrm{CO})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 5 a})$ S28
B. 18 Synthesis of $\left[\mathrm{Rh}(\mathbf{3 b})(\mathrm{CO})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 5 b})$ S29
B. 19 Synthesis of $\left[\mathrm{Rh}(\mathbf{3 c})(\mathrm{CO})_{2}\right] \mathrm{BAr}_{4}{ }_{4}(\mathbf{1 5 c})$ S30
B. 20 Synthesis of $\left[\mathrm{Rh}(\mathbf{3 d})(\mathrm{CO})_{2}\right] \mathrm{BAr}_{4}{ }_{4}(\mathbf{1 5 d})$ S31
Table S2: $v \mathrm{CO}$ vibrational frequencies and ${ }^{13} \mathrm{C}$ chemical shifts of ${ }^{13} \mathrm{CO}$ of S32$\left[\mathrm{Rh}\left(\mathrm{N}-\mathrm{N}^{\prime}\right)(\mathrm{CO})_{2}\right] \mathrm{BAr}_{4}{ }_{4}(\mathbf{1 3 - 1 6})$.
Part C: X-ray Crystallography
General experimental for X-ray Crystallography S33
Figure S1: ORTEP depiction of $\left[\operatorname{Ir}(\mathbf{1}) \mathrm{Cp} * \mathrm{Cl}^{2} \mathrm{BAr}_{4}{ }_{4}(\mathbf{5})\right.$ at 40% thermal ellipsoids for the S34 non-hydrogen atoms.

Figure S2: ORTEP depiction of $\left[\operatorname{Ir}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}(\mathbf{6 a})$ at 40% thermal ellipsoids for the S 34 non-hydrogen atoms.

Figure S3: ORTEP depiction of $\left[\operatorname{Ir}(4) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}(\mathbf{8})$ at 40% thermal ellipsoids for the non-S35 hydrogen atoms.

Figure S4: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{9})$ at 40% thermal ellipsoids for the S 35
non-hydrogen atoms.
Figure S5: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 0 a})$ at 40% thermal ellipsoids for S 36 the non-hydrogen atoms.

Figure S6: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}\left(\mathbf{1 0 a}{ }^{\prime}\right)$ at 40% thermal ellipsoids for S 36 the non-hydrogen atoms.

Figure S7: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{4}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}(\mathbf{1 1)}$ at 40% thermal ellipsoids for the S37 non-hydrogen atoms.

Table S3: Crystal structural data for the single crystal X-ray structures of Iridium complexes
$\mathbf{8}, \mathbf{6 b}, 7 \mathrm{~b}, \mathbf{6 a}{ }^{\prime}$ and 5 .
Table S4: Crystal structural data for the single crystal X-ray structures of Rhodium S39 complexes 11, 10a, 10a', 9 and 15c.

Part D: Synthesis of 2-(hydroxyalk-1-ynyl)aniline substrates S40
D. 1 Synthesis of 2-(6-hydroxy-1-hexyn-1-yl)aniline, 17S S41
D. 2 Synthesis of 2-(5- hydroxy-1-pentyn-1-yl)aniline, 18S S41
D. 3 Synthesis of 2-(6-hydroxyhept-1-ynyl)aniline, 19S S41
D. 4 Synthesis of 2-(6Hydroxy-6-methylhex-1-ynyl)aniline, 20S S42

Part E: General Catalytic Procedure, Time Course Profiles and NMR of S43 Intermediates and Products
E. 1 General Procedure for the Tandem Hydroamination/C-C Bond Formation Reactions S43
E. 2 Time Course Profiles for Selected Tandem Hydroamination/C-C Bond Formation S44 Reactions

Figure S8: Time course profile for $\left[\operatorname{Ir}(\mathbf{3 c})\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{7 c})$ catalysed one-pot tandem C-N
and C-C bond formation in the synthesis of 1,2,3,4-tetrahydrocarbazole (17P) from 2-(6-Hydroxyhex-1-ynyl)aniline (17S)

Figure S9: Time course profile for $\left[\operatorname{Ir}(\mathbf{4})\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{8})$ catalysed one-pot tandem C-N and $\mathrm{C}-\mathrm{C}$ bond formation in the synthesis of 1,2,3,4-tetrahydrocarbazole (17P) from 2-(6-Hydroxyhex-1-ynyl)aniline (17S)

E. 3 Typical Isolation Procedure for 2-(Hydroxyalkyl)indole intermediates 17I-20I

$[\operatorname{Ir}(\mathbf{4}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(8)$ in toluene- d_{8} at $60^{\circ} \mathrm{C}$.E. 6 2-(5-Hydroxypent-1-yl)indole, 19I
E. 7 2-(4-Hydroxy-4-methylbut-1-yl)indole, 20I S48
E. 8 NMR Data of the Final Products S48
E. 9 1,2,3,4-Tetrahydrocarbazole, 17P S49
E. 10 1,2,3,4-Tetrahydrocyclopent $[b]$ indole, 18P S49
E. 11 5,6,7,8,9,10-Hexahydrocyclohept[b]indole,19P S49
E. 12 4-Methyl-1,2,3,4-tetrahydrocarbazole, 20P S50

References S50

Part A: Synthesis of Ligands

A. 1 Synthesis of 4-((1H-pyrazol-1-yl)methyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (2c)

 deoxygenated mixture of 2-propanol and water (2:1 (v/v), 8 mL). Sodium L-ascorbate ($39 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the reaction stirred for 5 mins prior to the addition of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($7.2 \mathrm{mg}, 0.029 \mathrm{mmol}, 3 \mathrm{~mol} \%$). The reaction mixture was stirred overnight at room temperature under nitrogen, during which time a dark brown precipitate formed. The 2-propanol was removed in vacuo and the residue was filtered and washed with a saturated aqueous solution of Na_{2} EDTA until the filtrate became colourless. The crude product was then dissolved in dichloromethane, dried with anhydrous magnesium sulphate and filtered through celite ${ }^{\circledR}$. The solvent was removed in vacuo to yield ligand 2c as a yellow solid ($206 \mathrm{mg}, 85 \%$). m.p. $129-132{ }^{\circ} \mathrm{C}$ (decomposed). $\mathrm{HR}-\mathrm{MS}\left(\mathrm{ESI}^{+}\right.$, $\mathrm{MeOH}): m / z(\%): 293.0833$ (100 \%) $[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}+\mathrm{Na}]^{+}=293.0757\right)$ amu.Elemental Analysis: Found: C, 52.80; H, 3.71 and N, 30.07; Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2} .0 .25 \mathrm{H}_{2} \mathrm{O}$: C, 52.46 ; H, 3.85 and N, 30.59%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right)$, $7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 7.59\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 5}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 3-\mathrm{H} 4}=\right.$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3), 6.31\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 4}\right), 5.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 147.5\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathbf{P h N O}\right)$, $145.5\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), 141.1 (ipso- \mathbf{C} to NO_{2} of $\mathbf{P h N O} 2$), 140.5 (C3), 129.9 (C5), 125.7 ($m-\mathbf{C H}$ of $\left.\mathbf{P h N O}\right)_{2}$), 120.9 (C5'), 120.7 (o-CH of $\mathbf{P h N O} 2), 106.5(\mathbf{C} 4), 47.4\left(\mathbf{C H}_{2}\right) \mathrm{ppm}$.

A. 2 Synthesis of 4-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-1-phenyl-1H-1,2,3-triazole (3a)

 3,5-Dimethyl-1-(prop-2-yn-1-yl)-1H-pyrazole ($566 \mathrm{mg}, 4.22 \mathrm{mmol}$) and azidobenzene ($517 \mathrm{mg}, 4.34 \mathrm{mmol}$) were added into a deoxygenated mixture of 2-propanol and water (2:1 (v/v), 12 mL). Sodium L-ascorbate (171 mg , $0.862 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the reaction mixture was stirred for 5 mins prior to the addition of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(34 \mathrm{mg}, 0.13 \mathrm{mmol}, 3 \mathrm{~mol} \%)$. The reaction mixture was then stirred for 3 days at room temperature under nitrogen, during which time a pale yellow precipitate formed. The 2-propanol was removed in vacuo and the residue was filtered and washed with a saturated aqueous solution of Na_{2} EDTA until the filtrate became colourless. The crude product was then dissolved in dichloromethane, dried with anhydrous magnesium sulphate and filtered through celite ${ }^{\circledR}$. The solvent was removed in vacuo to yield ligand 3a as a pale yellow solid ($812 \mathrm{mg}, 76 \%$). m.p. 101$113^{\circ} \mathrm{C}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 276.1667$ (100 \%) $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{Calculated}[\mathrm{M}+\mathrm{Na}]^{+}=276.1220\right)$ amu.

Elemental Analysis: Found: C, 65.37; H, 5.93 and N, 27.46; Calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{5} .0 .25 \mathrm{H}_{2} \mathrm{O}$: C, 65.22; H, 6.06 and N, 27.17 \%.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right), 7.69\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h}\right), 7.50(\mathrm{t}$, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}$ of $\left.\mathbf{P h}\right), 7.42\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathbf{P h}\right), 5.82(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 5.38$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 148.3(\mathbf{C} 3), 145.3\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $137.1\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 139.6(\mathbf{C} 5)$, 129.9 ($m-\mathbf{C H}$ of $\mathbf{P h}$), 129.0 ($p-\mathbf{C H}$ of $\mathbf{P h}$), 120.7 ($\mathbf{C 5}^{\text {² }}$), 120.5 ($o-\mathbf{C H}$ of $\mathbf{P h}$), 105.8 (C4), 44.6 $\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 11.3\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

A. 3 Synthesis of 4-((3,5-dimethyl-1 H-pyrazol-1-yl)methyl)-1-(4-(trifluoromethyl)phenyl)-

1H-1,2,3-triazole (3b)

3,5-Dimethyl-1-(prop-2-yn-1-yl)-1H-pyrazole (320 mg, 2.39 $\mathrm{mmol})$ were added into a deoxygenated mixture of 2-propanol and water ($2: 1(\mathrm{v} / \mathrm{v}), 12 \mathrm{~mL}$). Sodium L-ascorbate ($104 \mathrm{mg}, 5.27 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the reaction stirred for 5 mins prior to the addition of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(22 \mathrm{mg}, 0.14 \mathrm{mmol}, 4 \mathrm{~mol} \%)$. The reaction mixture was stirred overnight at room temperature under nitrogen, during which time a pale yellow precipitate formed. The 2-propanol was removed in vacuo and the residue was filtered and washed with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{EDTA}$ until the filtrate became colourless. The crude product was then dissolved in dichloromethane, dried with anhydrous magnesium sulphate and filtered through celite ${ }^{\circledR}$. The solvent was removed in vacuo to yield ligand 6 as a yellow solid ($615 \mathrm{mg}, 91 \%$). m.p. $134-136{ }^{\circ} \mathrm{C}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 322.2500(100 \%)[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}+\mathrm{H}]^{+}=322.1274\right) \mathrm{amu}$.
Elemental Analysis: Found: C, 55.85; H, 4.62 and N, 21.46; Calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{5}$: C, 56.07 ; $\mathrm{H}, 4.39$ and $\mathrm{N}, 21.80 \%$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.94(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}), 8.39\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h C F}_{3}\right)$, $7.93\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathbf{P h C F}_{3}$), $5.83(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 5.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} \mathbf{H}_{2}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-$ CH_{3}), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 148.5(\mathbf{C} 3), 145.8\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $139.7(\mathbf{C} 5), 139.4\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h C F}_{3}\right), 130.9\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.9\right.$, ipso-C to CF_{3} of $\left.\mathbf{P h C F} 3\right), 127.2\left(m-\mathbf{C H}\right.$ of $\left.\mathbf{P h C F} F_{3}\right), 123.6\left(\mathrm{q}^{1},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $269.0 \mathrm{~Hz}, \mathbf{C F}_{3}$), 120.7 ($\mathbf{C} 5$ '), 120.6 (o- $\mathbf{C H}$ of $\mathbf{P h C F}_{3}$), $105.8(\mathbf{C} 4), 44.4\left(\mathbf{C H}_{2}\right), 13.7\left(\mathrm{C}_{3}-\mathbf{C H}_{3}\right), 11.3$ $\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

A. 4 Synthesis of 4-((3,5-dimethyl-1 H-pyrazol-1-yl)methyl)-1-(4-nitrophenyl)-1H-1,2,3-

 triazole (3c)

3,5-Dimethyl-1-(prop-2-yn-1-yl)-1 H-pyrazole ($230 \mathrm{mg}, 1.71$ mmol) and 1-azido-4-nitrobenzene ($281 \mathrm{mg}, 1.71 \mathrm{mmol}$) were added into a deoxygenated mixture of 2-propanol and water (2:1 (v/v), 12 mL). Sodium L-ascorbate ($79 \mathrm{mg}, 0.40 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the reaction stirred for 5 mins prior to the addition of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(14 \mathrm{mg}, 0.086 \mathrm{mmol}, 3 \mathrm{~mol} \%)$. The reaction mixture was stirred overnight at room temperature under nitrogen, during which time a pale yellow precipitate formed. The 2-propanol was removed in vacuo and the residue was filtered and washed with a saturated aqueous solution of Na_{2} EDTA until the filtrate became colourless. The crude product was then dissolved in dichloromethane, dried with anhydrous magnesium sulphate and filtered through celite ${ }^{\circledR}$. The solvent was removed in vacuo to yield ligand 3c as a pale yellow solid ($357 \mathrm{mg}, 70 \%$). m.p. 155$157^{\circ} \mathrm{C}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 299.1667(100 \%)[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}+\mathrm{H}]^{+}=299.1251\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 55.46 ; H, 4.78 and N, 27.49; Calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$: C, 55.53; H, 4.83 and N, 27.75 \%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.39\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 8.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right)$, $7.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 5.84(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 5.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-$ CH_{3}), 2.23 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 148.6(\mathbf{C} 3), 147.4\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 146.2\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), 141.2 (ipso-C to NO_{2} of $\mathbf{P h N O} 2$), 139.7 (C5), 125.7 ($m-\mathbf{C H}$ of $\mathbf{P h N O}_{2}$), 120.7 (C5'), 120.6 ($o-\mathbf{C H}$ of $\mathbf{P h N O} 2), 105.9(\mathbf{C} 4), 44.3\left(\mathbf{C H}_{2}\right), 13.7\left(\mathrm{C} 3-\mathbf{C H}_{3}\right), 11.3\left(\mathrm{C}_{5}-\mathbf{C H}_{3}\right) \mathrm{ppm}$.

A. 5 Synthesis of 4-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-1-(p-tolyl)-1H-1,2,3-triazole (3d)

 were added into a deoxygenated mixture of 2-propanol and water (2:1 (v/v), 12 mL). Sodium Lascorbate ($75 \mathrm{mg}, 0.38 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added and the reaction stirred for 5 mins prior to the addition of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.060 \mathrm{mmol}, 3 \mathrm{~mol} \%)$. The reaction mixture was stirred for 4 days at room temperature under nitrogen, during which time a pale yellow precipitate formed. The 2propanol was removed in vacuo and the residue was filtered and washed with a saturated aqueous solution of Na_{2} EDTA until the filtrate became colourless. The crude product was then dissolved in dichloromethane, dried with anhydrous magnesium sulphate and filtered through celite ${ }^{\circledR}$. The solvent was removed in vacuo to yield ligand 3d as a white solid ($372 \mathrm{mg}, 75 \%$). m.p. $142-143{ }^{\circ} \mathrm{C}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 290.2500(100 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=290.1376\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 67.55; H, 6.46 and N, 26.24; Calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5}$: C, 67.39; H, 6.41 and $\mathrm{N}, 26.20 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.82(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}), 7.56\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathbf{C H}\right.$ of $\left.\mathbf{P h C H} 3\right)$, $7.28\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h C H}_{3}\right), 5.82(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H} 4), 5.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\mathbf{P h C H}_{3}$), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 148.2(\mathbf{C} 3), 145.1\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $139.6(\mathbf{C} 5)$, $139.1\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\mathbf{P h C H} 3), 134.8$ (ipso-C to CH_{3} of $\mathbf{P h C H}_{3}$), 130.3 (m - $\mathbf{C H}$ of $\mathbf{P h C H}_{3}$), $120.7(\mathbf{C} 5$) $), 120.6$ (o- $\mathbf{C H}$ of $\left.\mathbf{P h C H}_{3}\right), 105.7(\mathbf{C} 4), 44.6\left(\mathbf{C H}_{2}\right), 21.2\left(\mathbf{C H}_{3}\right.$ of $\left.\mathbf{P h C H} 3\right), 13.7\left(\mathrm{C}_{3}-\mathbf{C H}_{3}\right), 11.3\left(\mathrm{C}_{5}-\mathbf{C H}_{3}\right) \mathrm{ppm}$.

Table S1: Chemical shifts of pyrazolyl C4 (Pz-C4) and 1,2,3-triazolyl C4' (Tz-C4') ${ }^{13} \mathrm{C}$ resonances of Pyrazolyl-1,2,3-Triazolyl bidentate ligands in the ${ }^{13} \mathrm{C}$ NMR spectra. ${ }^{\text {a }}$

Ligands	$\begin{gathered} \delta^{13} \mathrm{C} \\ (\mathrm{Pz}-\mathrm{C} 4) \end{gathered}$	$\left.\begin{array}{c} \delta^{13} \mathrm{C} \\ (\mathrm{Tz}-\mathrm{C} 4 \end{array}\right)$
$\mathbf{1}^{\mathrm{b}}$	106.2	144.4
$\mathbf{2 a}^{\mathrm{b}} \mathrm{C} 4 \stackrel{\mathrm{~N}}{\mathrm{~N}} \stackrel{\substack{\mathrm{~N}=\mathrm{N} \\ \mathrm{C} 4^{\prime} \\ \mathrm{N}}}{\square}$	106.4	144.5
2b	106.5	145.1
2c	106.5	145.5
3d	105.7	145.1
3a	105.8	145.3
3b	105.8	145.8
3c	105.9	146.2

${ }^{\mathrm{a}}$ The ${ }^{1} \mathrm{H}$ NMR spectra were acquired in $\mathrm{CDCl}_{3} .{ }^{\mathrm{b}}$ From reference ${ }^{1}$.

Part B: Synthesis of Ir and Rh Complexes

B. 1 Synthesis of $[\operatorname{Ir}(1) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(5)$

 solid (473 mg, 86\%). m.p. 87-89 ${ }^{\circ} \mathrm{C}$ (decomposed).

Elemental Analysis: Found: C, 44.52; H, 2.99 and N, 4.64; Calculated for $\mathrm{C}_{55} \mathrm{H}_{40} \mathrm{BF}_{24} \mathrm{IrN}_{5}$: C, 45.08; H, 2.75 and N, 4.78\%.

ESI-MS (ESI ${ }^{+}$, MeOH): 602.00 ([M] ${ }^{+}, 100 \%$) amu.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500 \mathrm{MHz}\right): \delta 7.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H5}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.75(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}), 7.72(\mathrm{br} \mathrm{s}$, $8 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.68\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 3}\right), 7.56\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.44-7.43$ $(\mathrm{m}, 3 \mathrm{H}, p \& m-\mathrm{CH}$ of $\mathbf{P h}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{P h}), 6.53\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right), 5.70-$ $5.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}\right), 5.55\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 5.02\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=18.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{B} of $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}$), $1.66\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 162.0\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \mathrm{~Hz}\right.$, ipso-C to B, $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 145.3(\mathbf{C} 5)$, $140.0\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $134.2\left(o-\mathbf{C H}\right.$ to $\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}$), $134.8(\mathbf{C} 3), 132.7\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 130.2(p-\mathbf{C H}$ of $\mathbf{P h})$, $129.9(m-\mathbf{C H}$ of $\mathbf{P h}), 129.4(o-\mathbf{C H}$ of $\mathbf{P h}), 129.0\left(\right.$ app. $\left.\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=35.0 \mathrm{~Hz}, \mathbf{C C F}_{3}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 125.0(\mathrm{q}$, ${ }^{1} J_{\mathrm{F}-\mathrm{C}}=271.0 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}$), $124.2\left(\mathbf{C} 5\right.$ '), $117.9\left(\mathrm{br} \mathrm{s}, p-\mathbf{C H}\right.$ to B, $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 109.1(\mathbf{C} 4), 97.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{Ir}-}\right.$ $\mathrm{C}=8.0 \mathrm{~Hz}, \mathbf{C}_{\mathrm{q}}$ of $\left.\mathrm{Cp}^{*}\right), 56.7\left(\mathbf{C H}_{2}{ }^{\mathrm{b}}\right), 45.4\left(\mathbf{C H}_{2}{ }^{\mathrm{a}}\right), 9.5\left(\mathrm{~s}, \mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 2 Synthesis of $[\operatorname{Ir}(1) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BPh}_{4}\left(\mathbf{5}^{\prime}\right)$

 for the synthesis of the rhodium complex $\left[\mathrm{Rh}(\mathbf{2 a}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}$ ($\left.\mathbf{1 0 a} \mathbf{a}^{\prime}\right)$ from $\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}\left(50.0 \mathrm{mg}, 6.30 \times 10^{-5} \mathrm{~mol}\right)$, ligand $\mathbf{1}$ (28.0 $\left.\mathrm{mg}, 1.26 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NaBPh}_{4}\left(47.4 \mathrm{mg}, 1.40 \times 10^{-4} \mathrm{~mol}\right)$ to yield 5^{\prime}, as a pale yellow solid ($93 \mathrm{mg}, 84 \%$). m.p. $247-249^{\circ} \mathrm{C}$.

Elemental Analysis: Found: C, 61.49; H, 5.11 and N, 7.34; Calculated for $\mathrm{C}_{47} \mathrm{H}_{48} \mathrm{BIrN}_{5}$: C, 61.27; H, 5.25 and $\mathrm{N}, 7.60 \%$.

ESI-MS (ESI ${ }^{+}$, MeOH): 602.06 ([M] ${ }^{+}, 100 \%$) amu.
${ }^{1} \mathrm{H}$ NMR (Acetone- $d_{6}, 400 \mathrm{MHz}$): $\delta 8.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}\right.$). $8.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 5}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.86(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3\right), 7.45-7.41(\mathrm{~m}, 5 \mathrm{H}, \mathbf{P h}), 7.36-7.32(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{B P h} 4), 6.92\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ $7.2 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{CH}$ of $\left.\mathrm{BPh}_{4}\right), 6.77\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BPh}_{4}\right), 6.60\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H4), $5.99\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 5.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}\right), 5.19\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 1.69\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (Acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 165.0\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \text {, ipso-C to B, BPh }\right)_{4}$, $145.8(\mathbf{C} 3)$, 137.09 ($\mathrm{o}-\mathbf{C H}$ of BPh_{4}), $135.6(\mathbf{C} 5), 135.4\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $130.0(\mathbf{C H}$ of $\mathbf{P h}), 129.9$ ($\mathbf{C H}$ of $\mathbf{P h}$), $129.3(\mathbf{C H}$ of $\mathbf{P h}), 126.1\left(m-\mathbf{C H}\right.$ of $\left.\mathrm{BPh}_{4}\right)$, $126.1\left(\mathbf{C}^{\prime}\right)$, $125.9\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right)$, $122.29\left(p-\mathbf{C H}\right.$ of $\left.\mathrm{BPh}_{4}\right)$, $109.1(\mathbf{C} 4), 89.7\left(\mathbf{C}_{q}\right.$ of $\left.\mathbf{C p}{ }^{*}\right), 56.8\left(\mathbf{C H}_{2}{ }^{\mathrm{b}}\right), 46.1\left(\mathbf{C H}_{2}{ }^{\mathrm{a}}\right), 9.1\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 3 Synthesis of $[\operatorname{Ir}(\mathbf{2 a}) \mathbf{C p} * \mathbf{C l}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{6 a})$

$7 \mathrm{BAr}_{4}[\operatorname{Ir}(\mathbf{2 a}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}_{4}^{\mathrm{F}}$ (6a) was synthesised following the method used for the synthesis of complex $\mathbf{1 0 a}$ from $\left[\operatorname{IrCp} * \mathrm{Cl}_{2}\right]_{2}\left(50 \mathrm{mg}, 6.28 \times 10^{-5}\right.$ mol), ligand 9 ($28.3 \mathrm{mg}, 1.26 \times 10^{-4} \mathrm{~mol}$) and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(122 \mathrm{mg}, 1.38$ x $10^{-4} \mathrm{~mol}$) to yield $\mathbf{6 a}$ as a light yellow solid ($149 \mathrm{mg}, 79 \%$). m.p. $174-176{ }^{\circ} \mathrm{C}$.

Elemental Analysis: Found: C, 44.41; H, 2.67 and N, 4.88; Calculated for $\mathrm{C}_{54} \mathrm{H}_{38} \mathrm{BClF}_{24} \mathrm{IrN}_{5}$: C, 44.69; H, 2.64 and N, 4.83 \%.

HR-MS $\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right):[\mathrm{M}]^{+}=588.1499\left(\right.$ Calculated $\left.[\mathrm{M}]^{+}=588.1506\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}), 7.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 5}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4}\right.$ $\left.{ }_{\mathrm{H} 3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 3}\right), 7.72\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 7.70-7.69(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{P h}), 7.65-7.63$ $(\mathrm{m}, 3 \mathrm{H}, p \& m-\mathrm{CH}$ of $\mathbf{P h}), 7.56\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 6.60\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 4}\right), 5.66(\mathrm{~d}$, ${ }^{2} J_{\mathrm{H}-\mathrm{H}}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.04\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.68(\mathrm{~s}, 15 \mathrm{H}$, CH_{3} of Cp^{*}) ppm .
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 162.2\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=51.0 \mathrm{~Hz}\right.$, ipso-C to B, $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 145.6(\mathbf{C} 5)$, $139.6\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $135.9\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right)$, $135.2\left(o-\mathbf{C H}\right.$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 134.5(\mathbf{C} 3), 131.7(p-\mathbf{C H}$ of $\mathbf{P h})$, $130.9(m-\mathbf{C H}$ of $\mathbf{P h}), 129.3\left(\mathrm{q},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=31.5 \mathrm{~Hz}, \mathbf{C C F}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $125.0\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.0 \mathrm{~Hz}, \mathbf{C F}_{3}\right.$, $\mathrm{BAr}^{\mathrm{F}}$), $122.4\left(\mathbf{C} 5^{\prime}\right), 121.5(o-\mathbf{C H}$ of $\mathbf{P h}), 117.9\left(\mathrm{br} \mathrm{s}, p-\mathbf{C H}\right.$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 109.6(\mathbf{C} 4), 89.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of Cp*), $45.8\left(\mathbf{C H}_{2}\right), 9.3\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 4 Synthesis of $[\operatorname{Ir}(\mathbf{2 a}) \mathbf{C p} * \mathbf{C l}] \mathrm{BPh}_{4}(\mathbf{6 a})$

$\rceil \mathrm{BPh}_{4}[\operatorname{Ir}(\mathbf{2 a}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BPh}_{4}\left(\mathbf{6} \mathbf{a}^{\prime}\right)$ was synthesised following the method used for the synthesis of complex 9^{9} from $\left[\operatorname{IrCp} * \mathrm{Cl}_{2}\right]_{2}\left(50.0 \mathrm{mg}, 6.30 \times 10^{-5}\right.$ mol), ligand 2a ($28.0 \mathrm{mg}, 1.26 \times 10^{-4} \mathrm{~mol}$) and $\mathrm{NaBPh}_{4}(47.4 \mathrm{mg}, 1.40$ $\times 10^{-4} \mathrm{~mol}$) to yield $\mathbf{6 a}{ }^{\prime}$ as a pale yellow solid $(78.0 \mathrm{mg}, 68 \%)$. m.p. $220-222{ }^{\circ} \mathrm{C}$.

Elemental Analysis: Found: C, 60.79 ; H, 4.83 and N, 7.71 ; Calculated for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{BClIrN}_{5}$: C, 60.89 ; H, 5.11 and $\mathrm{N}, 7.72 \%$.

HR-MS $\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right):[\mathrm{M}]^{+}=588.1502\left(\right.$ Calculated $\left.[\mathrm{M}]^{+}=588.1506\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR (Acetone- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 8.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}$ (triazole)). $8.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 3}\right.$), $7.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 5}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.91(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{P h}), 7.70\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\mathbf{P h}), 7.64\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathbf{P h}\right), 7.36-7.34\left(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathrm{BPh}_{4}\right), 6.92\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ $7.8 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{CH}$ of $\left.\mathrm{BPh}_{4}\right), 6.77\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BPh}_{4}\right), 6.64\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H4), $6.08\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.30\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, 1.77 (s, $15 \mathrm{H}, \mathrm{CH}_{3}$ of Cp^{*}) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (Acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 165.0\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso-C to B, BPh \mathbf{B}_{4}), 145.8 (C5), 141.1 ($\mathbf{C} 5$ '), 137.0 ($o-\mathbf{C H}$ of $\mathrm{BPh}_{4} \& \mathbf{C}_{\mathbf{q}}$ of Triaz), 135.7 (C3), 131.4 ($\mathrm{p}-\mathbf{C H}$ of $\mathbf{P h}$), 131.0 (m $\mathbf{C H}$ of $\mathbf{P h}), 126.0\left(m-\mathbf{C H}\right.$ of $\left.\mathbf{B P h}_{4}\right)$, $124.2\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 122.3\left(p-\mathbf{C H}\right.$ of $\left.\mathbf{B P h}_{4}\right), 122.1$ (o-CH of Ph), $109.1(\mathbf{C} 4), 90.0\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp}^{*}\right), 46.1\left(\mathbf{C H}_{2}\right), 9.1\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 5 Synthesis of $[\operatorname{Ir}(2 \mathrm{c}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(6 \mathrm{c})$

$\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}(52 \mathrm{mg}, 0.0066 \mathrm{mmol})$ and ligand 2c $(35 \mathrm{mg}, 0.13$ mmol) were dissolved in dichloromethane (15 mL). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(117 \mathrm{mg}, 0.132 \mathrm{mmol})$ was added, resulting in the formation of a white precipitate in a yellow solution. The reaction mixture was stirred for 2 hours before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .3 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield $\mathbf{6 c}$ as an orange solid ($108 \mathrm{mg}, 56 \%$). m.p. 99-102 ${ }^{\circ} \mathrm{C}$ (decomposed).

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 633.1667$ (100 \%) $[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=633.1357\right)$

Elemental Analysis: Found: C, 43.51; H, 2.68; N, 5.62. Calculated for $\mathrm{C}_{54} \mathrm{H}_{37} \mathrm{BClF}_{24} \mathrm{IrN}_{6} \mathrm{O}_{2}$: C, 43.34; H, 2.49; N, 5.62 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 400 \mathrm{MHz}$): $\delta 9.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right), 8.56\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right)$, $8.32\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.1 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 8.23\left(\mathrm{~d}, J_{\mathrm{H} 4-\mathrm{H} 5}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=\right.$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 3}$), $7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 6.67 (apparent t, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 4}\right), 6.31\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.42\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{b} of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.80\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta 162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.8 \mathrm{~Hz}\right.$, ipso-C to B, BAr ${ }_{4}{ }_{4}$), $149.5\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\mathbf{P h N O} 2$), $145.9(\mathbf{C} 3), 141.8\left(\mathbf{C}_{\mathbf{q}} \text { of Triaz), } 141.1 \text { (ipso- } \mathbf{C} \text { to } \mathrm{NO}_{2} \text { of } \mathbf{P h N O}\right)_{2}$), 135.8 (C5), 135.2 (o$\mathbf{C H}$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}\right), 130.0\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=30.6 \mathrm{~Hz}\right.$, ipso- \mathbf{C} to $\left.\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 126.7\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{CH}_{2}\right), 126.5(\mathrm{~m}-\mathrm{CH}$ of $\left.\mathbf{P h N O}{ }_{2}\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.7 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $124.8\left(\mathbf{C} 5\right.$ '), $123.1\left(o-\mathbf{C H}\right.$ of $\left.\mathbf{P h ~ N O}_{2}\right), 118.5$ (br s, $p-\mathbf{C H}$ to $\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}$), $109.2(\mathbf{C} 4), 90.2\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp} *\right)$, $46.2\left(\mathbf{C H}_{2}\right), 9.1\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 6 Synthesis of $[\operatorname{Ir}(\mathbf{3 a}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(7 \mathrm{a})$

$\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}(52 \mathrm{mg}, 0.065 \mathrm{mmol})$ and ligand 3a $(33 \mathrm{mg}, 0.13 \mathrm{mmol})$ were dissolved in dichloromethane (10 mL). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(121 \mathrm{mg}, 0.136 \mathrm{mmol})$ was added, resulting in the formation of a white precipitate in a yellow solution. The reaction mixture was stirred for 2 hours before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .2 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield $\mathbf{7 a}$ as a pale yellow solid ($134 \mathrm{mg}, 70 \%$). m.p. $142-145{ }^{\circ} \mathrm{C}$ (decomposed).

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 616.2500(100 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=616.1813\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 45.29; H, 2.97; N, 4.40. Calculated for $\mathrm{C}_{56} \mathrm{H}_{42} \mathrm{BClF}_{24} \mathrm{IrN}_{5}$: C, 45.46; H, 2.86; N, 4.73 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 8.96$ ($\mathrm{s}, 1 \mathrm{H}, \mathbf{H 5}$ '), 7.93 (d, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{P h}$), $7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.71\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h}\right), 7.67\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, p-\mathrm{CH}$ of $\mathbf{P h}$, overlapped with $p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), 7.67 (br s, $4 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $6.31(\mathrm{~s}, 1 \mathrm{H}$, H4), $6.03\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.08\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$, $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 100 \mathrm{MHz}$): $\delta 162.6\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{C}}=48.5 \mathrm{~Hz}\right.$, ipso-C to B, $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 154.3$ (C3), 144.5 (C5), $141.5\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), $137.1\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\mathbf{P h}$), 135.5 (br s, o-CH to B, $\mathrm{BAr}^{\mathrm{F}}$), 130.0 (q , ${ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=2.9 \mathrm{~Hz}$, ipso-C to $\left.\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}} 4\right), 131.1(m-\mathbf{C H}$ of $\mathbf{P h}), 131.0(p-\mathbf{C H}$ of $\mathbf{P h})$, $125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.2 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $124.1\left(\mathbf{C} 5^{\prime}\right), 122.1(o-\mathbf{C H}$ of $\mathbf{P h}$), 118.4 (br s, $p-\mathbf{C H}$ to B, BAr $\left.{ }_{4}\right)$, $109.1(\mathbf{C} 4), 89.8\left(\mathbf{C}_{q}\right.$ of $\left.\mathbf{C p} *\right), 42.8\left(\mathbf{C H}_{2}\right), 15.6\left(\mathrm{C}_{3}-\mathrm{CH}_{3}\right), 11.7\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right), 9.3\left(\mathrm{CH}_{3}\right.$ of Cp*) ppm.

B. 7 Synthesis of $[\operatorname{Ir}(\mathbf{3 b}) \mathbf{C p} * \mathbf{C l}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(7 \mathrm{bb})$

$\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}(53 \mathrm{mg}, 0.0066 \mathrm{mmol})$ and ligand 3b $(43 \mathrm{mg}, 0.13$ mmol) were dissolved in dichloromethane (15 mL). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(119 \mathrm{mg}, 0.134 \mathrm{mmol})$ was added, resulting in the formation of a white precipitate in a yellow solution. The reaction mixture was stirred overnight before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .2 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield $\mathbf{7 b}$ as a pale yellow solid ($127 \mathrm{mg}, 62 \%$). m.p. 188-191 ${ }^{\circ} \mathrm{C}$ (decomposed).

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 684.1667(79 \%)[M]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=684.1687\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 44.65; H, 2.80; N, 4.35. Calculated for $\mathrm{C}_{57} \mathrm{H}_{41} \mathrm{BClF}_{27} \mathrm{IrN}_{5}$: C, 44.24; H, 2.67; N, 4.53 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 9.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}\right.$), $8.23\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\mathbf{P h}$), $8.08\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h C F}_{3}\right), 7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 6.06\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.10\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}$ of $\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 1.77\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.6 \mathrm{~Hz}\right.$, ipso-C to B, $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 154.5$ (C3), $144.6(\mathbf{C} 5), 141.9\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), $139.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\mathbf{P h C F} 3$), $135.5\left(o-\mathbf{C H}\right.$ to B, $\mathrm{BAr}^{\mathrm{F}}$), 132.4 (q , ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=33.2 \mathrm{~Hz}$, ipso-C to CF_{3} of $\mathbf{P h C F} 3$), $130.0\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=2.8 \mathrm{~Hz}\right.$, ipso- \mathbf{C}_{q} to CF_{3}, $\mathrm{BAr}^{\mathrm{F}}$), $128.1\left(o-\mathbf{C H}\right.$ of $\left.\mathbf{P h C F}_{3}\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.3 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $124.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270.7 \mathrm{~Hz}\right.$, PhCF_{3}), 124.5 ($\mathbf{C} 5$ '), 122.7 ($m-\mathbf{C H}$ of $\mathbf{P h C F}_{3}$), 118.4 (br s, $p-\mathbf{C H}$ to $\mathrm{B}, \mathrm{BAr}^{\mathrm{F}} 4$), 109.2 (C4), 90.0 $\left(\mathbf{C q}\right.$ of $\left.\mathrm{Cp}^{*}\right), 42.8\left(\mathbf{C H}_{2}\right), 15.6\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 11.7\left(\mathrm{C}_{5}-\mathbf{C H}_{3}\right), 9.3\left(\mathbf{C H}_{3}\right.$ of $\left.\mathbf{C p}{ }^{*}\right) \mathrm{ppm}$.

B. 8 Synthesis of $[\operatorname{Ir}(\mathbf{3 c}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(7 \mathrm{c})$

 solution. The reaction mixture was stirred for 2 hours before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .3 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield $\mathbf{7 c}$ as an orange solid ($96 \mathrm{mg}, 50 \%$). m.p. 107-110 ${ }^{\circ} \mathrm{C}$ (decomposed).

HR-MS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right): m / z(\%): 661.1667(100 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=661.1664\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 44.26; H, 2.70; N, 5.53. Calculated for $\mathrm{C}_{56} \mathrm{H}_{41} \mathrm{BClF}_{24} \mathrm{IrN}_{6} \mathrm{O}_{2}$: C, 44.12; H, 2.71; N, 5.51 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 9.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right), 8.56\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, m\right.$ - CH of $\left.\mathbf{P h N O}_{2}\right), 8.30\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 7.67(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}, p-\mathrm{CH}$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H} 4), 6.08\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.11\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=\right.$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 1.77\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Cp*) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta 162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=48.9 \mathrm{~Hz}\right.$, ipso-C to B, $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 154.5$ (C3), $149.5\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathbf{P h N O} 2\right), 142.1\left(\mathbf{C}_{\mathrm{q}} \text { of Triaz), } 141.1 \text { (ipso- } \mathbf{C} \text { to } \mathrm{NO}_{2} \text { of } \mathbf{P h N O}\right)_{2}$), 144.6 (C5), $135.5\left(\mathrm{br} \mathrm{s}, o-\mathrm{CH}\right.$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}\right), 130.0\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=29.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=3.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}$), $126.5\left(m-\mathbf{C H}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.2 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}} 4\right), 124.0(\mathbf{C} 5$) $), 123.0(o-\mathbf{C H}$ of $\mathbf{P h N O}_{2}$), 118.5 (br s, $p-\mathbf{C H}$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}} 4\right), 109.2(\mathbf{C} 4), 90.0\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathrm{Cp}^{*}\right), 42.9\left(\mathbf{C H}_{2}\right), 15.6\left(\mathrm{C} 3-\mathrm{CH}_{3}\right)$, $11.7\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right), 9.3\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right) \mathrm{ppm}$.

B. 9 Synthesis of $[\operatorname{Ir}(\mathbf{3 d}) \mathbf{C p} * \mathbf{C l}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(7 \mathrm{~d})$

$\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}(50 \mathrm{mg}, 0.063 \mathrm{mmol})$ and ligand 3d $(31 \mathrm{mg}, 0.13$ mmol) were dissolved in dichloromethane (12 mL). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(114 \mathrm{mg}, 0.129 \mathrm{mmol})$ was added, resulting in the formation of a white precipitate in a yellow solution. The reaction mixture was stirred for 3 hours before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .2 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield 7d as a yellow solid ($124 \mathrm{mg}, 66 \%$). m.p. 196-198 ${ }^{\circ} \mathrm{C}$.

HR-MS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right): m / z(\%): 630.3333(41 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=630.1970\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 46.09; H, 2.96; N, 4.73. Calculated for $\mathrm{C}_{57} \mathrm{H}_{44} \mathrm{BClF}_{24} \mathrm{IrN}_{5}$: C, 45.84; H, 2.97; N, 4.69 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 8.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right), 7.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathbf{C H}\right.$ of $\mathbf{P h C H}{ }_{3}$, overlapped with $o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), 7.79 (br s, $8 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4$ overlapped with $o-\mathrm{CH}$ of $\mathbf{P h C H}_{3}$), 7.67 (br s, $4 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.50\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h C H}_{3}\right), 6.31(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H} 4)$, $6.00\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.07\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{b}}\right.$ of $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.55(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}$), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\mathbf{P h C H}_{3}$), 1.76 ($\mathrm{s}, 15 \mathrm{H}, \mathrm{CH}_{3}$ of $\left.\mathrm{Cp} *\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=48.1 \mathrm{~Hz}\right.$, ipso-C to B, BAr ${ }_{4}^{\mathrm{F}}$), 154.4 (C3), 144.5 (C5), $141.9\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $141.4\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathbf{P h C H}_{3}\right), 135.5$ (br s, $o-\mathbf{C H}$ to B, $\mathrm{BAr}^{\mathrm{F}} 4$), 134.9 (ipso-C to CH_{3} of $\mathbf{P h C H} 3$), 131.5 ($m-\mathbf{C H}$ of $\mathbf{P h C H} 3$), 130.0 ($\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.4 \mathrm{~Hz}$, ipso- \mathbf{C} of CF_{3}, $\mathrm{BAr}^{\mathrm{F}}$), $125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.8 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $124.0\left(\mathbf{C} 5^{\prime}\right), 122.0\left(o-\mathbf{C H}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 118.5(\mathrm{br} \mathrm{s}$, $p-\mathbf{C H}$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}} 4\right), 109.1(\mathbf{C} 4), 89.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp}^{*}\right), 42.8\left(\mathbf{C H}_{2}\right), 21.1\left(\mathbf{C H}_{3}\right.$ of $\left.\mathbf{P h C H}_{3}\right), 15.6(\mathrm{C} 3-$ $\left.\mathbf{C H}_{3}\right), 11.7\left(\mathrm{C}_{5}-\mathbf{C H}_{3}\right), 9.32\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right) \mathrm{ppm}$.

B. 10 Synthesis of $[\operatorname{Ir}(4) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(8)$

$\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}(0.269 \mathrm{~g}, 0.335 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ prior to the addition of $\operatorname{bis}(1$-pyrazolyl)methane $(4,0.101 \mathrm{~g}, 0.682$ mmol) to the reaction mixture. The dark orange mixture turned bright orange. The reaction mixture was left to stir at room temperature for 30 minutes before $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(0.657 \mathrm{~g}, 0.741 \mathrm{mmol})$ was added to the mixture. The resulting murky pale yellow-orange mixture was stirred at room temperature for 1 hour and then filtered through celite ${ }^{\circledR}$ to yield a clear yellow solution. The solution was then reduced in volume to $c a .15 \mathrm{~mL}$ and n-pentane was added with vigorous stirring to precipitate the product $\mathbf{8}$, which was collected by filtration as a pale yellow crystalline solid $(0.763 \mathrm{~g}, 83 \%)$; m.p. $174-176^{\circ} \mathrm{C}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 511.1236(100 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=511.12\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 42.66; H, 2.53; N, 4.06. Calculated for $\mathrm{C}_{49} \mathrm{H}_{35} \mathrm{BClF}_{24} \mathrm{IrN}_{4}$: C, 42.82; H, 2.57; N, 4.08 \%.
${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone $-d_{6}, 298 \mathrm{~K}$): $\delta 8.25\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 3-\mathrm{H} 4)=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3\right), 7.94\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 5-\right.$ $\mathrm{H} 4)=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 5$), $7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}\right.$, ortho- -CH of $\mathrm{BAr}^{\mathrm{F}}$), $7.67\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}\right.$, para -CH of $\mathrm{BAr}^{\mathrm{F}}$), $7.28\left(\mathrm{~d},{ }^{2} J\left(\mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}\right)=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right), 6.67$ (apparent $\left.\mathrm{t},{ }^{3} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 4\right), 6.20\left(\mathrm{~d},{ }^{2} J\left(\mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}\right)\right.$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 1.78\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{31} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}\right.$, acetone- $\left.d_{6}, 298 \mathrm{~K}\right): \delta 162.63\left(\mathrm{q},{ }^{1} J(\mathrm{~B}-\mathrm{C})=49.7 \mathrm{~Hz}\right.$, quat \mathbf{C} ipso to B of $\mathrm{BAr}^{\mathrm{F}}$), 146.65 ($\mathrm{s}, \mathbf{C} 5$ of Pz), 135.75 ($\mathrm{s}, \mathbf{C} 3$ of Pz), 135.58 (br s , ortho -CH of $\mathrm{BAr}^{\mathrm{F}}$), 130.07 (q, ${ }^{2} J(\mathrm{~F}-\mathrm{C})=30.3 \mathrm{~Hz}, \mathbf{C}$ ipso to CF_{3} of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 125.42\left(\mathrm{q},{ }^{1} J(\mathrm{~F}-\mathrm{C})=270.15 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right) 118.50$ $\left(\mathrm{s},{ }^{3} J(\mathrm{~F}-\mathrm{C})=4.1 \mathrm{~Hz}\right.$, para $-\mathbf{C H}$ of $\mathrm{BAr}^{\mathrm{F}}$), $109.58(\mathrm{~s}, \mathbf{C} 4$ of Pz$), 90.00(\mathrm{~s}$, quat \mathbf{C} of $\mathrm{Cp} *), 64.24(\mathrm{~s}$, $\mathbf{C H}_{2}$), $9.15\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 11 Synthesis of $[\mathbf{R h}(1) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(9)$

$7 \mathrm{BAr}_{4}$
$\left[\mathrm{Rh}(\mathrm{PyT}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}$ (9) was synthesised following the method for the synthesis of complex $\mathbf{1 0 a}$ from $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(150 \mathrm{mg}, 2.43 \mathrm{x}$ $\left.10^{-5} \mathrm{~mol}\right)$, ligand $10\left(109 \mathrm{mg}, 4.56 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NaBAr}_{4}{ }_{4}(473$ $\left.\mathrm{mg}, 5.34 \times 10^{-4} \mathrm{~mol}\right)$ to yield 9 as an orange solid $(618 \mathrm{mg}, 92 \%)$.
m.p. $155-157^{\circ} \mathrm{C}$.

Elemental Analysis: Found: C, 48.07; H, 3.57 and N, 4.76; Calculated for $\mathrm{C}_{55} \mathrm{H}_{40} \mathrm{BClF}_{24} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}$: C , 48.01; H, 2.93 and N, 5.09 \%.

ESI-MS (ESI ${ }^{+}$, MeOH): 511.96 ([M] ${ }^{+}$, 100\%) amu.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta 7.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}\right.$) , $7.76\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 5}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.72(\mathrm{br} \mathrm{s}$, $8 \mathrm{H}, o-\mathrm{CH}$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 7.70\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=1.8 \mathrm{~Hz}, \mathbf{H 3}\right), 7.56\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 7.40(\mathrm{~m}, 3 \mathrm{H}, p$ \& $m-\mathrm{CH}$ of $\mathbf{P h}), 7.34\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=3.6 \mathrm{~Hz}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h}\right), 6.50\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 4}\right), 5.68-$ $5.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}} \& \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 4.85\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 1.60(\mathrm{~s}$, $15 \mathrm{H}, \mathrm{CH}_{3}$ of Cp^{*}) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 162.2\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=41.3 \mathrm{~Hz}\right.$, ipso-C to B, $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 145.3(\mathbf{C} 5)$, 139.2 ($\mathbf{C}_{\mathbf{q}}$ of Triaz), 135.2 ($o-\mathbf{C H}$ to $\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}$), $134.7(\mathbf{C} 3)$, $132.9\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 130.2$ ($p-\mathbf{C H}$ of $\mathbf{P h}$), $130.0(m-\mathbf{C H}$ of $\mathbf{P h}), 129.3\left(\mathrm{qq},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=22.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=2.5 \mathrm{~Hz} \mathrm{CCF}_{3}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 129.0(o-\mathbf{C H}$ of $\mathbf{P h})$, $125.0\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=226.3 \mathrm{~Hz}, \mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $124.6\left(\mathbf{C} 5\right.$ '), 117.9 (br s, $p-\mathbf{C H}$ to B, $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), $109.3(\mathbf{C} 4)$, $89.5\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp}^{*}\right), 56.8\left(\mathbf{C H}_{2}{ }^{\mathrm{b}}\right), 45.9\left(\mathbf{C H}_{2}{ }^{\mathrm{a}}\right), 9.2\left(\mathrm{~s}, \mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 12 Synthesis of $\left[\mathbf{R h}(\mathbf{1}) \mathbf{C p}{ }^{*} \mathbf{C l}^{\prime}\right] \mathrm{BPh}_{4}\left({ }^{\text {(}}\right.$)

$\left[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp}{ }^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}\left(\mathbf{9}^{\prime}\right)$ was synthesised following the method for the synthesis of complex 10a' from $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}\left(50.0 \mathrm{mg}, 8.10 \times 10^{-5}\right.$ mol), ligand $1\left(36.0 \mathrm{mg}, 1.62 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NaBPh}_{4}(60.9 \mathrm{mg}, 1.78$ x $10^{-4} \mathrm{~mol}$) to yield $\mathbf{9}^{\prime}$ as a yellow solid ($117 \mathrm{mg}, 88 \%$). m.p. 222-224 ${ }^{\circ} \mathrm{C}$.

Elemental Analysis: Found: C, 67.76; H, 5.64 and N, 7.95 ; Calculated for $\mathrm{C}_{47} \mathrm{H}_{48} \mathrm{BN}_{5} \mathrm{Rh}: \mathrm{C}, 67.84$; $\mathrm{H}, 5.81$ and $\mathrm{N}, 8.42 \%$.

ESI-MS (ESI ${ }^{+}$, MeOH): 511.89 ([M] ${ }^{+}$, 100\%) amu.
${ }^{1} \mathrm{H}$ NMR (Acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 8.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}\right.$) $.8 .07\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 5}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right), 7.95(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3\right), 7.48-7.43(\mathrm{~m}, 5 \mathrm{H}, \mathbf{P h}), 7.37-7.35\left(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathrm{BPh}_{4}\right), 6.94\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.$ $7.2 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{CH}$ of $\left.\mathrm{BPh}_{4}\right), 6.79\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BPh}_{4}\right), 6.59\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H4), $5.99\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 5.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{b}}\right), 5.40\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=15.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\mathrm{a}}\right), 1.73\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (Acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 165.0\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \mathrm{~Hz}\right.$, ipso-C to B, BPh \mathbf{H}_{4}, $146.0\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $141.4(\mathbf{C} 3), 137.1(o-\mathbf{C H}$ of $\mathbf{B P h}), 135.9(\mathbf{C} 5), 135.5\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 130.0(\mathbf{C H}$ of $\mathbf{P h})$, 129.9 ($\mathbf{C H}$ of $\mathbf{P h}$), 129.4 ($\mathbf{C H}$ of $\mathbf{P h}$), 126.1 ($m-\mathbf{C H}$ of BPh_{4}), 125.9 ($\left.\left.\mathbf{C}\right)^{\prime}\right)$, 122.3 ($p-\mathbf{C H}$ of BPh_{4}), $108.8(\mathbf{C} 4), 97.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{Rh}-\mathrm{C}}=7.5 \mathrm{~Hz}, \mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right), 56.1\left(\mathbf{C H}_{2}{ }^{\mathrm{b}}\right), 45.7\left(\mathbf{C H}_{2}{ }^{\mathrm{a}}\right), 9.3\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right) \mathrm{ppm}$.

B. 13 Synthesis of $[\operatorname{Rh}(2 a) C p * C l] B A r^{F}{ }_{4}(10 a)$

$1 \quad \mathrm{BArF}_{4}\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}\left(50.0 \mathrm{mg}, 8.09 \times 10^{-5} \mathrm{~mol}\right)$ and ligand 2a ($36.4 \mathrm{mg}, 1.62$ x $\left.10^{-4} \mathrm{~mol}\right)$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}) . \mathrm{NaBAr}^{\mathrm{F}}(158 \mathrm{mg}$, $1.78 \times 10^{-4} \mathrm{~mol}$) was added, resulting in the formation of a white precipitate. The reaction mixture was stirred for 2 h before being filtered through celite. The volume of the filtrate was reduced to $c a .2 \mathrm{~mL}$ and n-pentane added (20 mL) yielding $\mathbf{1 0 a}$ as an orange solid ($154 \mathrm{mg}, 71 \%$). m.p. $125-130^{\circ} \mathrm{C}$.

Elemental Analysis: Found: C, 47.82 ; H, 2.96 and N, 5.19; Calculated for $\mathrm{C}_{54} \mathrm{H}_{38} \mathrm{BClF}_{24} \mathrm{~N}_{5} \mathrm{Rh}$: C, 47.62; H, 2.81 and N, 5.14%.

HR-MS ($\left.\mathrm{ESI}^{+}, \mathrm{MeOH}\right):[\mathrm{M}]^{+}=498.0923\left(\right.$ Calculated $\left.[\mathrm{M}]^{+}=498.0932\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta 8.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}\right), 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathbf{H 5} / \mathbf{H} 3), 7.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathbf{H 5} / \mathbf{H 3}$), 7.72 (br s, $10 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} \&{ }_{4}-\mathrm{CH}$ of $\mathbf{P h}$), 7.66-7.62 (m, $3 \mathrm{H}, p \& m-\mathrm{CH}$ of $\mathbf{P h}$), $7.55\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $6.59\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 4}\right), 5.68\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $5.17\left(\right.$ br s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.70\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta 162.2\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso-C to B, BAr ${ }_{4}$), $145.4(\mathbf{C} 5 / 3)$, $140.5\left(\mathbf{C}_{\mathbf{q}}\right.$ of Triaz), $136.0\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\left.\mathbf{P h}\right), 135.2\left(o-\mathbf{C H}\right.$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}\right), 134.9(\mathbf{C} 5 / 3), 131.6$ $(p-\mathbf{C H}$ of $\mathbf{P h}), 130.9(m-\mathbf{C H}$ of $\mathbf{P h}), 129.3\left(\mathrm{q},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=30.0 \mathrm{~Hz}, \mathrm{CCF}_{3}, \mathrm{BAr}^{\mathrm{F}}\right), 125.0(\mathrm{q}$, ${ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.0 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}$), $122.6\left(\mathbf{C} 5\right.$ '), $121.5(o-\mathbf{C H}$ of $\mathbf{P h}), 117.9\left(\mathrm{br} \mathrm{s}, p-\mathbf{C H}\right.$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right)$, $109.4(\mathbf{C} 4), 97.9\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp}^{*}\right), 45.5\left(\mathbf{C H}_{2}\right), 9.6\left(\mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.

B. 14 Synthesis of $[\mathbf{R h}(\mathbf{2 a}) \mathbf{C p} * \mathbf{C l}] \mathrm{BPh}_{4}\left(\mathbf{1 0 a}^{\prime}\right)$

$\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}\left(50.0 \mathrm{mg}, 8.10 \times 10^{-5} \mathrm{~mol}\right)$ was suspended in $\mathrm{MeOH}(10$ mL) and ligand 2a ($36.4 \mathrm{mg}, 1.62 \times 10^{-4} \mathrm{~mol}$) added, resulting in a colour change from orange to bright yellow. $\mathrm{NaBPh}_{4}(60.9 \mathrm{mg}, 1.78 \mathrm{x}$ $10^{-4} \mathrm{~mol}$) was added after 5 minutes, resulting in the formation of a yellow precipitate. The reaction mixture was stirred for 1 h before the volume was reduced to $c a .1$ mL and cooled in ice. The mixture was filtered, the solid washed with $\mathrm{MeOH}(3 \times 10 \mathrm{~mL})$ and dried to yield 21 as a yellow solid ($100 \mathrm{mg}, 75 \%$). m.p. $209-211^{\circ} \mathrm{C}$ (decomposed).

Elemental Analysis: Found: C, 67.44; H, 5.71 and N, 8.59; Calculated for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{BClN}_{5} \mathrm{Rh}$: C, 67.54; H, 5.67 and N, 8.56\%.

HR-MS $\left(\mathrm{ESI}^{+}, \mathrm{MeOH}\right):[\mathrm{M}]^{+}=498.0923\left(\right.$ Calculated $\left.[\mathrm{M}]^{+}=498.0932\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR (Acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 8.78$ (s, $1 \mathrm{H}, \mathbf{H 5}$ '). 8.11 ($\mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5} / \mathbf{H 3}$), 7.95 (d , $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3 / \mathbf{H 5}\right), 7.92\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\left.\mathbf{P h}\right), 7.69\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, m-CH of $\mathbf{P h}$), $7.64\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\left.\mathbf{P h}\right), 7.36-7.34(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{CH} \text { of } \mathbf{B P h})_{4}\right), 6.92(\mathrm{t}$, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 8 \mathrm{H}, m-\mathrm{CH}$ of $\left.\mathrm{BPh}_{4}\right), 6.77\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BPh}_{4}\right), 6.60\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{H 4}), 6.05\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.47\left(\mathrm{~d},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \mathbf{H}_{\mathrm{B}}\right.$ of $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.80\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}{ }^{*}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (Acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 165.0\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso-C to B, BPh ${ }_{4}$), 146.0 (C5/C3), 141.9 ($\mathbf{C}_{\mathbf{q}}$ of Triaz), $137.2\left(\mathbf{C}_{\mathbf{q}}\right.$ of $\mathbf{P h}$), $137.0\left(o-\mathbf{C H}\right.$ of $\left.\mathrm{BPh}_{4}\right)$, 135.9 (C3/C5), 131.3 (p $\mathbf{C H}$ of $\mathbf{P h}), 131.0(m-\mathbf{C H}$ of $\mathbf{P h}), 126.0\left(m-\mathbf{C H}\right.$ of $\left.\mathrm{BPh}_{4}\right), 124.3\left(\mathbf{C} 5^{\prime}\right), 122.3\left(p-\mathbf{C H}\right.$ of $\left.\mathrm{BPh}_{4}\right), 122.0$ $(o-\mathbf{C H}$ of $\mathbf{P h}), 108.9(\mathbf{C} 4), 98.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{Rh}-\mathrm{C}}=9.0 \mathrm{~Hz}, \mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathrm{Cp}^{*}\right), 45.7\left(\mathbf{C H}_{2}\right), 9.4\left(\mathrm{~s}, \mathbf{C H}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right)$ ppm.

B. 15 Synthesis of $[R h(4) C p * C l] B A r^{F}{ }_{4}(11)$

$\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(0.209 \mathrm{~g}, 0.338 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ prior to the addition of bis(1-pyrazolyl)methane $(0.102 \mathrm{~g}, 0.688 \mathrm{mmol})$ to the reaction mixture. The dark orange-red mixture turned slightly lighter in colour. The reaction mixture was left to stir at room temperature for 30 minutes before $\mathrm{NaBAr}_{4}{ }_{4}(0.658 \mathrm{~g}, 742 \mu \mathrm{~mol})$ was added to the mixture. The resulting murky orange mixture was stirred at room temperature for 1 hour and then filtered through celite ${ }^{\circledR}$ to yield a clear bright orange solution. The solution was then reduced in volume to $c a .15 \mathrm{~mL}$ and n-pentane was added with vigorous stirring to precipitate the product $\mathbf{8}$, which was collected by filtration as a dark orange crystalline solid $(0.687 \mathrm{~g}, 79 \%)$. m.p. $189-192^{\circ} \mathrm{C}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%) 421.0661$ (100 \%) $[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=421.07\right) \mathrm{amu}$.
Elemental Analysis: Found: C, 46.09; H, 2.78; N, 4.37. Calculated for $\mathrm{C}_{49} \mathrm{H}_{35} \mathrm{BClF}_{24} \mathrm{~N}_{4} \mathrm{Rh}: \mathrm{C}$, 45.80; H, 2.75; N, 4.36%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 7.84\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 3-\mathrm{H} 4)=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3\right), 7.82\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)=\right.$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 5$), 7.72 (br s, 8 H , ortho- $\mathbf{C H}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.56\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}\right.$, para- CH of $\mathrm{BAr}^{\mathrm{F}}$), 6.59 (apparent $\left.\mathrm{t},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 4\right), 6.31\left(\mathrm{~d},{ }^{2} J\left(\mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}\right)=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}\right), 6.01\left(\mathrm{~d},{ }^{2} J\left(\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{B}}\right)=\right.$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 1.68\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Cp}^{*}\right) \mathrm{ppm}$.
${ }^{31} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$): $\delta 162.69\left(\mathrm{q},{ }^{1} J(\mathrm{~B}-\mathrm{C})=49.6 \mathrm{~Hz}\right.$, q \mathbf{C} ipso to B of $\mathrm{BAr}^{\mathrm{F}}$), 148.27 ($\mathrm{s}, \mathrm{C} 3$ of Pz), 136.20 (br s, ortho- $\mathbf{C H}$ of $\mathrm{BAr}^{\mathrm{F}}$), 134.78 (s, $\mathbf{C} 5$ of Pz), 129.41 (q , ${ }^{2} J(\mathrm{~F}-\mathrm{C})=30.4 \mathrm{~Hz}, \mathbf{C}$ ipso to CF_{3} of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 125.15\left(\mathrm{q},{ }^{1} J(\mathrm{~F}-\mathrm{C})=270.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right) 118.04$ $\left(\mathrm{s},{ }^{3} J(\mathrm{~F}-\mathrm{C})=4.1 \mathrm{~Hz}, 4 \mathrm{C}\right.$, para-CH of $\mathrm{BAr}^{\mathrm{F}}$) $), 110.33\left(\mathrm{~s}, \mathbf{C} 4\right.$ of Pz), 97.84 (s, quat \mathbf{C} of Cp^{*}), 63.33 ($\mathrm{s}, \mathbf{C H}_{2}$), 9.77 (s, $\mathbf{C H}_{3}$ of Cp^{*}) ppm.

B. 16 Synthesis of $\left.\left[\operatorname{Rh}(2 c)(C O)_{2}\right)\right] B A r^{F}{ }_{4}(14 c)$

$\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{Cl})\right]_{2} \quad(38 \mathrm{mg}, \quad 0.096 \mathrm{mmol})$ was dissolved in dichloromethane $(15 \mathrm{~mL})$ prior to the addition of the ligand $\mathbf{2 c}$ ($52 \mathrm{mg}, 0.19 \mathrm{mmol}$). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(176$ $\mathrm{mg}, 0.198 \mathrm{mmol}$) was added, resulting in the formation of a white precipitate and a colour change from yellow to dark brown. The reaction mixture was stirred for 2 hours before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .3 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield 23 as a brown solid ($157 \mathrm{mg}, 63 \%$). m.p. $121-123{ }^{\circ} \mathrm{C}$.

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{v}: 2110(\mathrm{~s}, \mathrm{vCO}), 2054(\mathrm{~s}, \mathrm{vCO}) \mathrm{cm}^{-1}$.
HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 429.08334(43 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=428.9814\right) \mathrm{amu}$.
Elemental Analysis: Found: C, 43.20; H, 1.84; N, 6.21. Calculated for $\mathrm{C}_{46} \mathrm{H}_{22} \mathrm{BF}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Rh}$: C , 42.75; H, 1.72; N, 6.50%.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 9.37(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}), 8.58\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.3 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 8.37\left(\mathrm{~d}, J_{\mathrm{H} 4-\mathrm{H} 5}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 5}\right.$, overlapped with $o-\mathbf{C H}$ of $\left.\mathbf{P h N O} \mathrm{P}_{2}\right), 8.36\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{P h N O}_{2}$, overlapped with H5), $8.32\left(\mathrm{~d},{ }^{3} J_{\mathrm{H} 4-\mathrm{H} 3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 3}\right.$), 7.79 (br s, $8 \mathrm{H}, o-$ CH of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), $7.67\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$) , 6.65 (apparent $\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H 4}$), $6.14(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 150 \mathrm{MHz}$): $\delta 183.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{Rh}-\mathrm{C}}=68.7 \mathrm{~Hz}, 2 \times \mathrm{CO}\right.$ (overlapped)), 162.9 $\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.6 \mathrm{~Hz}\right.$, ipso-C to B, BAr ${ }_{4}{ }^{\mathrm{F}}$), $149.3\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\mathbf{P h N O}_{2}$), $147.7(\mathbf{C} 3), 143.0\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), 140.8 (ipso-C to NO_{2} of $\mathbf{P h N O}_{2}$), $136.9(\mathbf{C} 5), 135.5\left(o-\mathbf{C H}\right.$ to $\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}$), $130.0\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=31.6 \mathrm{~Hz}\right.$, ipso- \mathbf{C} to $\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}$), $126.6\left(\mathrm{~m}-\mathbf{C H}\right.$ of $\mathbf{P h}$), $125.4\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=270.2 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}} 4\right.$), 125.4 ($\left.\mathbf{C} 5^{\prime}\right)$, 123.6 (o - $\mathbf{C H}$ of $\mathbf{P h N O})_{2}$), 118.4 (br s, $p-\mathbf{C H}$ to B, $\mathrm{BAr}^{\mathrm{F}} 4$), $109.0(\mathbf{C} 4), 46.1\left(\mathbf{C H}_{2}\right) \mathrm{ppm}$.

B. 17 Synthesis of $\left[\mathrm{Rh}(3 \mathrm{aa})(\mathrm{CO})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 5 a})$

$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2} \quad(31 \mathrm{mg}, \quad 0.080 \mathrm{mmol})$ was dissolved in dichloromethane $(10 \mathrm{~mL})$ prior to the addition of the ligand 3a (41 $\mathrm{mg}, 0.16 \mathrm{mmol}$). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(148 \mathrm{mg}$, 0.166 mmol) was added, resulting in the formation of a white precipitate and a colour change from yellow to brown. The reaction mixture was stirred overnight before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .2 \mathrm{~mL}$ and n-pentane $(20 \mathrm{~mL})$ was added with vigorous stirring to yield $\mathbf{1 5 a}$ as a brown solid ($83 \mathrm{mg}, 41 \%$). m.p. $44-47^{\circ} \mathrm{C}$ (decomposed).

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ v: $2106(\mathrm{~s}, \mathrm{vCO}), 2047(\mathrm{~s}, \mathrm{vCO}) \mathrm{cm}^{-1}$.
HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 412.0833(9 \%)[\mathrm{M}]^{+}\left(\right.$Calculated $\left.[\mathrm{M}]^{+}=412.0275\right) \mathrm{amu}$.
Elemental Analysis: Found: C, 45.07; H, 2.05; N, 4.97. Calculated for $\mathrm{C}_{48} \mathrm{H}_{27} \mathrm{BF}_{24} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh} .0 .25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 44.69; H, 2.14; N, 5.40%.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 400 \mathrm{MHz}$): $\delta 9.09$ (s, 1H, H5'), 7.96 (d, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}$ of $\mathbf{P h}$), 7.79 (br s, $8 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.71\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\mathbf{P h}$, overlapped with $p-\mathrm{CH}$ of $\mathbf{P h}), 7.70\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathbf{P h}$, overlapped with $m-\mathbf{C H}$ of $\mathbf{P h}$), $7.68(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), $6.34(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H} 4), 5.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 100 \mathrm{MHz}$): $\delta 183.4$ (d, ${ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=68.8 \mathrm{~Hz}, 2 \times \mathrm{CO}$ (overlapped)), 162.6 $\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso- \mathbf{C} to B, $\mathrm{BAr}^{\mathrm{F}}$), $153.9(\mathbf{C} 3), 146.2(\mathbf{C} 5), 142.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), $136.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of Ph), 135.5 (br s, $o-\mathbf{C H}$ to $\mathrm{B}, \mathrm{BAr}^{\mathrm{F}}$), $130.0\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=2.6 \mathrm{~Hz}\right.$, ipso-C to CF_{3}, $\mathrm{BAr}^{\mathrm{F}}$), $131.8(p-\mathbf{C H}$ of $\mathbf{P h}), 131.2(m-\mathbf{C H}$ of $\mathbf{P h}), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.1 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 124.8$ (C5'), 122.4 ($o-\mathbf{C H}$ of $\mathbf{P h}$), 118.4 (br s, $p-\mathbf{C H}$ to B, $\mathrm{BAr}^{\mathrm{F}} 4$), $109.1(\mathbf{C} 4), 42.6\left(\mathbf{C H}_{2}\right), 15.6\left(\mathrm{C}_{3}-\mathbf{C H}_{3}\right)$, $11.5\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

B. 18 Synthesis of $\left[\operatorname{Rh}(3 b)(C O)_{2}\right] B A r^{F}{ }_{4}(15 b)$

$\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{Cl})\right]_{2} \quad(40 \mathrm{mg}, \quad 0.10 \mathrm{mmol})$ was dissolved in dichloromethane $(15 \mathrm{~mL})$ prior to the addition of ligand $\mathbf{3 b}$ (66 $\mathrm{mg}, 0.21 \mathrm{mmol}$). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(191 \mathrm{mg}$, 0.215 mmol) was added, resulting in the formation of a white precipitate and a colour change from yellow to brown. The reaction mixture was stirred overnight before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .3 \mathrm{~mL}$ and n-pentane $(20 \mathrm{~mL})$ was added with vigorous stirring to yield $\mathbf{1 5 b}$ as a brown solid (177 mg, 64%). m.p. $51-54^{\circ} \mathrm{C}$ (decomposed).

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v: 2107(\mathrm{~s}, v \mathrm{CO}), 2049(\mathrm{~s}, v \mathrm{CO}) \mathrm{cm}^{-1}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 480.1667(41 \%)[M]^{+}\left(\right.$Calculated $\left.[M]^{+}=480.0149\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 44.27; H, 2.15; N, 4.77. Calculated for $\mathrm{C}_{49} \mathrm{H}_{26} \mathrm{BF}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}: \mathrm{C}$, 43.81; H, 1.95; N, 5.21 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 9.24$ ($\mathrm{s}, 1 \mathrm{H}, \mathbf{H 5}{ }^{\prime}$), 8.25 (d, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}$ of $\mathbf{P h C F}_{3}$), $8.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathbf{P h C F}_{3}$), $7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), $6.35(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 5.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 150 \mathrm{MHz}$): $\delta 183.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=69.8 \mathrm{~Hz}, 2 \times \mathrm{CO}\right.$ (overlapped)), 162.6 $\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.6 \mathrm{~Hz}\right.$, ipso-C to B, BAr ${ }_{4}^{\mathrm{F}}$), $154.0(\mathbf{C} 3), 146.3(\mathbf{C} 5), 143.2\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), $139.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\mathbf{P h C F}_{3}$), 135.5 (br s, $o-\mathbf{C H}$ to B, $\mathrm{BAr}^{\mathrm{F}}$), 132.7 (q, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.1$, ipso-C to CF_{3} of $\mathbf{P h C F}_{3}$), 130.0 (q, ${ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.4 \mathrm{~Hz}$, ipso-C of $\left.\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 128.5\left(o-\mathbf{C H}\right.$ of $\left.\mathbf{P h C F}_{3}\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.2 \mathrm{~Hz}, \mathbf{C F}_{3}\right.$, $\mathrm{BAr}^{\mathrm{F}}$), $124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=274.9 \mathrm{~Hz}, \mathbf{C F}_{3}\right.$ of $\mathbf{P h C F}_{3}$), $125.1\left(\mathbf{C} 5^{\prime}\right), 123.3\left(m-\mathbf{C H}\right.$ of $\left.\mathbf{P h C F}_{3}\right), 118.5(\mathrm{br}$ s, $p-\mathbf{C H}$ to $\left.\mathrm{B}, \mathrm{BAr}^{\mathrm{F}} 4\right), 108.9(\mathbf{C} 4), 42.6\left(\mathrm{CH}_{2}\right), 15.6\left(\mathrm{C} 3-\mathrm{CH}_{3}\right), 11.6\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

B. 19 Synthesis of $\left[\mathbf{R h}(3 \mathrm{c})(\mathrm{CO})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 5 c})$

$\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{Cl})\right]_{2} \quad(40 \mathrm{mg}, \quad 0.10 \mathrm{mmol})$ was dissolved in dichloromethane $(15 \mathrm{~mL})$ prior to the addition of ligand $\mathbf{3 c}$ (61 $\mathrm{mg}, 0.20 \mathrm{mmol})$. After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(188 \mathrm{mg}$, 0.213 mmol) was added, resulting in the formation of a white precipitate and a colour change from yellow to brown. The reaction mixture was stirred for 2 hours before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .3 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield 26 as a pale brown solid ($151 \mathrm{mg}, 56 \%$). m.p. $135-137^{\circ} \mathrm{C}$.

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v: 2108(\mathrm{~s}, v \mathrm{CO}), 2050(\mathrm{~s}, v \mathrm{CO}) \mathrm{cm}^{-1}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 457.0152(21 \%)[M]^{+}\left(\right.$Calculated $\left.[M]^{+}=457.0126\right) \mathrm{amu}$.

Elemental Analysis: Found: C, 43.62; H, 2.11; N, 6.08. Calculated for $\mathrm{C}_{48} \mathrm{H}_{26} \mathrm{BF}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Rh}: \mathrm{C}$, 43.66; H, 1.98; N, 6.36 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 9.31(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 5}), 8.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{CH}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 8.33\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=9.3 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathbf{P h N O}_{2}$), $7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$) , $6.35(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 5.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 2.54(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-$ CH_{3}) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 150 \mathrm{MHz}$): $\delta 183.9$ (d, ${ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=68.7 \mathrm{~Hz}, 2 \times \mathrm{CO}$ (overlapped)), 162.6 ($\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.8 \mathrm{~Hz}$, ipso-C to B, BAr ${ }_{4}{ }_{4}$), $154.0(\mathbf{C} 5), 149.8\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\left.\mathbf{P h N O}_{2}\right), 146.3(\mathbf{C} 3), 143.3\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), 140.9 (ipso-C to NO_{2} of $\mathbf{P h N O}_{2}$), 135.5 (o-CH to B, BAr ${ }^{\mathrm{F}}$), $130.0\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.2 \mathrm{~Hz}\right.$, ipso$\mathbf{C}$ to $\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}$), $126.3(m-\mathbf{C H}$ of $\mathbf{P h}), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=270.0 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}}\right.$), $125.3\left(\mathbf{C} 5^{\prime}\right), 123.5$ $\left.(o-\mathbf{C H} \text { of } \mathbf{P h N O})_{2}\right), 118.4$ (br s, $p-\mathbf{C H}$ to B, $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 108.9(\mathbf{C} 4), 42.6\left(\mathbf{C H}_{2}\right), 15.6\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right), 11.6$ $\left(\mathrm{C} 3-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

B. 20 Synthesis of $\left[\operatorname{Rh}(\mathbf{3 d})(\mathbf{C O})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{1 5 d})$

$\left[\mathrm{Rh}(\mathrm{CO})_{2}(\mathrm{Cl})\right]_{2} \quad(44 \mathrm{mg}, \quad 0.11 \mathrm{mmol})$ was dissolved in dichloromethane (15 mL) prior to the addition of ligand $\mathbf{3 d}$ (54 $\mathrm{mg}, 0.22 \mathrm{mmol}$). After 5 minutes of stirring, $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(200 \mathrm{mg}$, 0.225 mmol) was added, resulting in the formation of a white precipitate and a colour change from yellow to dark brown. The reaction mixture was stirred overnight before being filtered through celite ${ }^{\circledR}$ and rinsed with dichloromethane. The volume of the filtrate was reduced to $c a .2 \mathrm{~mL}$ and n-pentane (20 mL) was added with vigorous stirring to yield 15d as a brown solid ($159 \mathrm{mg}, 62 \%$). m.p. $49-52^{\circ} \mathrm{C}$ (decomposed).

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v: 2106(\mathrm{~s}, \mathrm{vCO}), 2047(\mathrm{~s}, \mathrm{vCO}) \mathrm{cm}^{-1}$.

HR-MS (ESI ${ }^{+}$, MeOH): $m / z(\%): 426.0567(18 \%)[M]^{+}\left(\right.$Calculated $\left.[M]^{+}=426.0432\right) \mathrm{amu}$.

Elemental Analysis Found: C, 45.55; H, 2.29; N, 5.38. Calculated for $\mathrm{C}_{49} \mathrm{H}_{29} \mathrm{BF}_{24} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Rh}$: C, 45.64; H, 2.27; N, 5.43 \%.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 9.02$ (s, $1 \mathrm{H}, \mathbf{H 5}$ '), $7.82\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathbf{C H}\right.$ of $\mathbf{P h C F}_{3}$), $7.79\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, m-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathbf{P h C F}_{3}$), $6.33(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H 4}), 5.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 5-\mathrm{CH}_{3}\right), 2.45$ (s, 3H, CH_{3} of $\mathbf{P h C H}_{3}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 150 \mathrm{MHz}$): $\delta 183.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=68.7 \mathrm{~Hz}, 2 \times \mathrm{CO}\right.$ (overlapped)), 162.6 $\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.9 \mathrm{~Hz}\right.$, ipso-C to B, BAr ${ }^{\mathrm{F}}$), $154.0(\mathbf{C} 3), 146.2(\mathbf{C} 5), 142.7\left(\mathbf{C}_{\mathrm{q}}\right.$ of Triaz), $142.4\left(\mathbf{C}_{\mathrm{q}}\right.$ of $\mathbf{P h C H} 3$), 135.5 (br s, o- $\mathbf{- C H}$ to B, $\mathrm{BAr}^{\mathrm{F}}$), 134.6 (ipso- \mathbf{C} to CH_{3} of $\mathbf{P h C H} 3$), $130.0\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=31.7\right.$ Hz , ipso- \mathbf{C} of $\mathrm{CF}_{3}, \mathrm{BAr}^{\mathrm{F}}$) , $131.6\left(m-\mathbf{C H}\right.$ of $\left.\mathbf{P h C H}_{3}\right), 125.4\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=270.6 \mathrm{~Hz}, \mathbf{C F}_{3}, \mathrm{BAr}^{\mathrm{F}} 4\right), 124.5$ (C5'), $122.2(o-\mathbf{C H}$ of $\mathbf{P h C H} 3), 118.5$ (br s, $p-\mathbf{C H}$ to B, $\mathrm{BAr}^{\mathrm{F}} 4$), $108.8(\mathbf{C} 4)$, $42.6\left(\mathbf{C H}_{2}\right)$, $21.1\left(\mathbf{C H}_{3}\right.$ of $\mathbf{P h C H} 3), 15.6\left(\mathrm{C}_{3}-\mathrm{CH}_{3}\right), 11.5\left(\mathrm{C}_{5}-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

Table S2: $v \mathrm{CO}$ vibrational frequencies and ${ }^{13} \mathbf{C}$ chemical shifts of ${ }^{13} \mathbf{C O}$ of $\left[\mathrm{Rh}\left(\mathrm{N}-\mathrm{N}^{\prime}\right)(\mathrm{CO})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}$
(13-16).

Complexes $\begin{gathered} {\left[\mathrm{Rh}\left(\mathrm{~N}-\mathrm{N}^{\prime}\right)(\mathrm{CO})_{2}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(13-16) ;} \\ \mathrm{N}-\mathrm{N}^{\prime} \text { Ligand }= \end{gathered}$	$\mathrm{IR}^{\mathrm{a}}\left(\mathrm{cm}^{-1}\right)$	$\delta(\mathbf{C O})^{\text {b }}$ (ppm)
$13^{\text {c }}$	2108, 2050	182.8, 182.0
$14 a^{c}$	2108, 2051	182.6, 181.9
14b	2110, 2053	$183.7{ }^{\text {d }}$
14 c	2110, 2054	$183.6{ }^{\text {d }}$
15d	2106, 2047	183.8
15a	2106, 2047	183.4
15b	2107, 2049	183.7
15c	2108, 2050	183.6
16 $\left[\begin{array}{ll} =\mathrm{N} & \mathrm{~N} \\ \mathrm{~N} & \mathrm{~N} \end{array}\right\rangle$	2109, 2051	$183.4^{\text {e }}$

${ }^{\text {a }}$ FTIR spectra were acquired as solution in dichloromethane. ${ }^{\text {b }}$ NMR spectra were acquired in acetone- d_{6} unless otherwise noted. ${ }^{\mathrm{c}} \mathrm{NMR}$ spectra were acquired in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (reference ${ }^{1}$). ${ }^{\mathrm{d}}$ The two resonances for ${ }^{13} \mathbf{C O}$ overlap with each other in acetone $-d_{6}$ and appear as slightly broad doublet with $\left.{ }^{1} J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right) \sim 70 \mathrm{~Hz}\right)$. ${ }^{\mathrm{e}}$ Spectrum was acquired in THF- d_{8} (reference 2).

Part C: X-ray Crystallography

General experimental for X-ray crystallography:

Suitable single crystals of $\mathbf{5}, \mathbf{6} \mathbf{a}^{\prime}, \mathbf{6 b}, \mathbf{7 b}, \mathbf{8}, \mathbf{9}, \mathbf{1 0 a}, \mathbf{1 0} \mathbf{a}^{\prime}, \mathbf{1 1}$ and $\mathbf{1 5 c}$ selected under the polarizing microscope (Leica M165Z), were picked up on a MicroMount (MiTeGen, USA) consisting of a thin polymer tip with a wicking aperture. The X-ray diffraction measurements were carried out on a Bruker kappa-II CCD diffractometer at $c a .150 \mathrm{~K}$ by using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.710723 \AA$). The single crystals, mounted on the goniometer using cryo loops for intensity measurements, were coated with paraffin oil and then quickly transferred to the cold stream using an Oxford Cryo stream attachment. Symmetry related absorption corrections using the program SADABS ${ }^{3}$ were applied and the data were corrected for Lorentz and polarisation effects using Bruker APEX2 software. ${ }^{4}$ All structures were solved by direct methods and the full-matrix least-square refinements were carried out using SHELXL. ${ }^{5}$

The non-hydrogen atoms were refined anisotropically. The molecular graphic was generated using Mercury. ${ }^{6}$ In all the structures, the CF_{3} groups of the anion exhibited extensive orientation disorder. Also, crystal lattice contained disordered solvent (mostly Dichloromethane), the treatment of these in the least-squares refinement have been outlined in the cifs.

Figure S1: ORTEP depiction of $[\operatorname{Ir}(\mathbf{1}) \mathrm{Cp} * \mathrm{Cl}] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{5})$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Figure S2: ORTEP depiction of $\left[\operatorname{Ir}(\mathbf{2 a}) \mathrm{Cp} * \mathrm{Cl}^{2}\right] \mathrm{BPh}_{4}(\mathbf{6 a})$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Figure S3: ORTEP depiction of $\left[\operatorname{Ir}(4) \mathrm{Cp}^{*} \mathrm{Cl}^{2} \mathrm{BPh}_{4}(\mathbf{8})\right.$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Figure S4: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{9})$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Figure S5: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp}^{*} \mathrm{Cl}^{2}\right] \mathrm{BPh}_{4}(\mathbf{1 0 a})$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Figure S6: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{1}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}(\mathbf{1 0 a})$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Figure S7: ORTEP depiction of $\left[\mathrm{Rh}(\mathbf{4}) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BPh}_{4}(\mathbf{1 1)}$ at 40% thermal ellipsoids for the nonhydrogen atoms.

Table S3: Crystal structural data for the single crystal X-ray structures of Iridium complexes 8, 6b, 7b, 6a' and $\mathbf{5}$.

	8	6b	7b	6a'	5
Chemical formula	$\begin{aligned} & \left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClIrN}_{4}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{23,97}\right) . \\ & 0.375\left(\mathrm{CCl}_{2}\right) \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClF}_{3} \mathrm{IrN}_{5}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) . \\ & 1(\mathrm{O}) \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClF}_{3} \mathrm{IrN}_{5}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) . \\ & 1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClIrN}_{5}\right) . \\ & \left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}\right) . \end{aligned}$	$\begin{aligned} & \hline\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClIrN}_{5}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) . \\ & 0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$
M (g mol-1)	1405.36	1535.36	1629.31	907.34	1507.84
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$C 2 / c$	$C 2 / c$	$P 2_{1} / c$	$P 2_{1} / n$	$P^{-} 1$
Crystal habit	yellow blocks	yellow plates	yellow blocks	yellow blocks	yellow blocks
Temperature (K)	155	170	170	156	151
a (\AA)	28.8655(12)	29.5110(16)	19.4090 (8)	12.0829(5)	12.5013(14)
b (Å)	12.9022(5)	13.3179(7)	17.2163(8)	24.4058(10)	16.3750 (8)
c (\AA)	29.8343(12)	$32.1453(17)$	21.637(1)	13.3522(5)	16.9370 (8)
$\alpha{ }^{\circ}$)	90	90	90	90	117.541(2)
$\beta{ }^{\circ}{ }^{\circ}$	104.722 (1)	109.255(3)	112.133(2)	93.701(2)	96.775(2)
$\gamma\left({ }^{\circ}\right)$	90	90	90	90	101.575(2)
$\mathrm{V}\left(\AA^{3}\right)$	10746.4(7)	11927.2(11)	6697.3(5)	3929.3(3)	2921.7(4)
Z	8	8	4	4	2
Radiation type	MoK_{α}	MoK_{α}	MoK_{α}	MoK_{α}	MoK_{α}
$\mu(\mathrm{mm}-1)$	2.70	2.41	2.23	3.51	2.50
Crystal size (mm)	$0.36 \times 0.26 \times 0.18$	$0.32 \times 0.10 \times 0.04$	$0.28 \times 0.26 \times 0.14$	$0.35 \times 0.25 \times 0.21$	$0.41 \times 0.38 \times 0.16$
Tmin, Tmax	0.440, 0.648	0.513, 0.901	0.570, 0.741	0.373, 0.522	0.426, 0.685
Refl. measured	38085	40150	45958	29202	37589
Unique reflections	9435	10497	11717	6884	10113
Obsd. Reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	8380	7764	9929	6549	9804
Rint	0.023	0.053	0.024	0.026	0.028
$\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right]$	0.031	0.051	0.051	0.017	0.019
$w R\left(F^{2}\right)$	0.132	0.154	0.166	0.042	0.047
S	1.18	1.01	1.15	1.07	1.04
Reflections used	9435	10497	11717	6884	10113
Parameters	962	870	915	492	876
Restraints	341	34	57	492	204
$\Delta \rho \max , \Delta \rho \min \left(\mathrm{e} \AA^{-3}\right)$	1.41, -0.80	2.64, -1.39	1.39, -0.83	0.67, -0.62	0.61, -0.86

Table S4: Crystal structural data for the single crystal X-ray structures of Rhodium complexes 11, 10a, 10a', 9 and $\mathbf{1 5 c}$.

	11	10a	10a'	9	15c
Chemical formula	$\begin{aligned} & \left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{Rh}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) . \\ & 0.125\left(\mathrm{CCl}_{2}\right) \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{Rh}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) . \\ & 0.875\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{5} \mathrm{Rh}\right) . \\ & \left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}\right) . \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{Rh}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{23.97}\right) . \\ & 0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	$\begin{aligned} & \left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Rh}\right) . \\ & \left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) . \\ & 0.75\left(\mathrm{CCl}_{2}\right) . \end{aligned}$
M (g mol-1)	1295.34	1436.37	818.05	1418.55	1382.65
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	C2/c	$P 2_{1} / n$	$P^{-} 1$	C2/c
Crystal habit	yellow blocks	Yellow blocks	Red orange blocks	Yellow blocks	Yellow blocks
Temperature (K)	152	151	155	152	160
a (\AA)	28.8126(10)	29.9749(17)	12.0994(3)	12.4931(16)	39.396(4)
b (\AA)	12.8881(4)	13.0963(8)	24.4422(7)	16.3598(8)	18.3734(16)
c (Å)	29.9049(11)	36.371(2)	13.3308(4)	16.8978 (10)	16.4800(16)
$\alpha{ }^{\circ}$)	90	90	90	117.365(2)	90
$\beta{ }^{(}{ }^{\circ}$	104.623(2)	111.572(13)	93.565(1)	96.805(3)	106.912(5)
$\gamma{ }^{\circ}{ }^{\circ}$	90	90	90	101.470(3)	90
$\mathrm{V}\left(\AA^{3}\right)$	10745.2(6)	13277.7(13)	3934.77(19)	2917.2(4)	11413.0(19)
Z	8	8	4	2	8
Radiation type	MoK_{α}	MoK_{α}	MoK_{α}	MoK_{α}	MoK_{α}
μ (mm-1)	0.50	0.47	0.54	0.50	0.50
Crystal size (mm)	$0.18 \times 0.15 \times 0.05$	$0.34 \times 0.23 \times 0.15$	$0.29 \times 0.17 \times 0.16$	$0.33 \times 0.12 \times 0.06$	$0.21 \times 0.21 \times 0.09$
Tmin, Tmax	0.913, 0.974	0.857, 0.931	0.860, 0.921	0.851, 0.972	0.903, 0.957
Refl. measured	39871	40705	25137	33968	123073
Unique reflections	9456	11579	6909	10077	10039
Obsd. Reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	7065	8562	5495	8671	8611
Rint	0.053	0.072	0.148	0.084	0.039
$\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right]$	0.075	0.088	0.027	0.035	0.056
$w R\left(F^{2}\right)$	0.222	0.260	0.068	0.082	0.183
S	1.46	1.10	1.06	1.04	0.76
Reflections used	9456	11579	6909	10077	10039
Parameters	759	922	492	865	819
Restraints	124	336	0	174	36
$\Delta \rho \max , \Delta \rho \min \left(\mathrm{e} \AA^{-3}\right)$	1.47, -0.94	1.54, -1.49	1.06, -0.76	0.61, -0.82	$1.25,-0.99$

Part D: Synthesis of 2-(hydroxyalk-1-ynyl)aniline substrates

2-(Hydroxyalk-1-ynyl)aniline substrates: 2-(6-hydroxyhex-1-ynyl)aniline (17S), 2-(6-hydroxypent-1-ynyl)aniline (18S), 2-(6-hydroxyhept-1-ynyl)aniline (19S), 2-(6 hydroxy-6-methylhex-1-ynyl)aniline (20S) and were synthesised by the Sonogashira coupling reaction between 2-iodoaniline and the corresponding terminal alkynol. Several reagents used in the synthesis of 17S-20S, namely 6-heptyn-2-ol, ${ }^{7}$ 6-heptyn-1-ol ${ }^{8}$ and $\left[\mathrm{Pd}_{\left.\left(\mathrm{PPh}_{3}\right)_{4}\right]^{9} \text { were prepared }}\right.$ according to literature procedures. A typical synthesis procedure is included for compound $\mathbf{1 7 S}$. The syntheses of 18S-21S were conducted in an analogous manner.

D. 1 Synthesis of 2-(6-Hydroxy-1-hexyn-1-yl)aniline, $\mathbf{1 7 S}^{10}$

A solution of 2-iodoaniline $(3.29 \mathrm{~g}, 15.0 \mathrm{mmol})$ and 5-hexyn-1-ol $(1.65 \mathrm{~mL}, 15.0 \mathrm{mmol})$ in triethylamine $(50 \mathrm{~mL})$ was deoxygenated via three freeze-pump-thaw cycles, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.173 \mathrm{~g}, 0.150$ $\mathrm{mmol}, 1.0 \mathrm{~mol} \%)$ and $\mathrm{CuI}(0.057 \mathrm{~g}, 0.30 \mathrm{mmol}, 2.0 \mathrm{~mol} \%)$ were then added with minimal exposure to air. The reaction mixture was stirred under nitrogen overnight, during which time the solution turned brown and a small amount of solid formed. Saturated aqueous ammonium chloride solution $(50 \mathrm{~mL})$ was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with dichloromethane (5 x 40 mL). The combined organic phase was dried over anhydrous sodium sulfate, filtered over a pad of silica ($\sim 1 \mathrm{~cm}$ thick) and the solvent was removed in vacuo to give a brown oil. The crude product was purified by column chromatography, hexane: $\mathrm{EtOAc}=4: 6(\mathrm{v} / \mathrm{v}), \mathrm{R}_{\mathrm{f}}=0.43$ to afford 8.1 as a yellow viscous oil. Yield: $2.23 \mathrm{~g}, 79 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24\left(\mathrm{dd},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 3)=7.9 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 3)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3\right), 7.07$ (apparent td, $\left.{ }^{3} J(\mathrm{H} 6-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)=7.9 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 3-\mathrm{H} 5)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 6.67\left(\mathrm{dd},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 6)\right.$ $\left.=7.8 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 6)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 6\right), 6.65\left(\right.$ apparent $\mathrm{td},{ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)=7.5 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 3-\mathrm{H} 4)=7.8$ $\left.\mathrm{Hz},{ }^{4} J(\mathrm{H} 6-\mathrm{H} 4)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right), 3.71\left(\mathrm{t},{ }^{3} J\left(\mathrm{H} 5^{\prime}-\mathrm{H} 6^{\prime}\right)=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 6^{\prime}\right), 2.52\left(\mathrm{t},{ }^{3} J=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H3'), 1.79-1.69 (m, 4H, H4'\& H5') ppm.

D. 2 Synthesis of 2-(5- Hydroxy-1-pentyn-1-yl)aniline, 18S ${ }^{11}$

Starting with 2-iodoaniline ($3.29 \mathrm{~g}, 15.0 \mathrm{mmol}$) and 4-pentyn-1-ol ($1.39 \mathrm{~mL}, 15.0 \mathrm{mmol})$. Yield: 2.1 g, 80%; yellow viscous oil; $\mathrm{R}_{\mathrm{f}}=0.43($ Hexane $: \mathrm{EtOAc}=4: 6(\mathrm{v} / \mathrm{v}))$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23\left(\mathrm{dd},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 3)=8.0 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 3)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right), 7.07$ (apparent td, $\left.{ }^{3} J(\mathrm{H} 6-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 3-\mathrm{H} 5)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 5\right), 6.67\left(\mathrm{dd},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 6)=\right.$ $\left.7.5 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 6)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 6.65$ (apparent td, ${ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)=7.5 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 3-\mathrm{H} 4)=8.0 \mathrm{~Hz}$, $\left.{ }^{4} J(\mathrm{H} 6-\mathrm{H} 4)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right), 3.76\left(\mathrm{t},{ }^{3} J\left(\mathrm{H} 4{ }^{\prime}-\mathrm{H} 5{ }^{\prime}\right)=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 5{ }^{\prime}\right), 3.66\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{2} \& \mathrm{OH}\right)$, $2.56\left(\mathrm{t},{ }^{3} J\left(\mathrm{H}^{\prime}-\mathrm{H} 3^{\prime}\right)=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime}\right), 1.84$ (apparent $\mathrm{p},{ }^{3} J\left(\mathrm{H} 3^{\prime}-\mathrm{H} 4^{\prime}, \mathrm{H}^{\prime}{ }^{\prime}-\mathrm{H} 4^{\prime}\right)=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, H4') ppm .
${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.7$ (C2), 132.0 (C3), 129.0 (C5), 118.0 (C4), 114.4 (C6),

D. 3 Synthesis of 2-(6-hydroxyhept-1-ynyl)aniline, 19S

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24\left(\mathrm{dd},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 3)=7.6 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 3)=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right), 7.07$ (apparent td, $\left.{ }^{3} J(\mathrm{H} 6-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)=7.7 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 3-\mathrm{H} 5)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 5\right), 6.68\left(\mathrm{dd},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 6)=\right.$ $\left.7.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 6)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 6.66\left(\right.$ apparent td, ${ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)=7.5 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 3-\mathrm{H} 4)=8.0 \mathrm{~Hz}$, $\left.{ }^{4} J(\mathrm{H} 6-\mathrm{H} 4)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right), 4.16(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH} 2), 3.66\left(\mathrm{t},{ }^{3} J\left(\mathrm{H} 6^{\prime}-\mathrm{H} 7\right.\right.$ ' $\left.)=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H}^{\prime}{ }^{\prime}\right), 2.49$ $\left(\mathrm{t},{ }^{3} J\left(\mathrm{H}^{\prime}-\mathrm{H} 3^{\prime}\right)=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 3^{\prime}\right), 1.66$ (apparent $\left.\mathrm{p},{ }^{3} J\left(\mathrm{H} 3^{\prime}-\mathrm{H} 4^{\prime}, \mathrm{H} 5^{\prime}-\mathrm{H} 4^{\prime}\right)=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 4^{\prime}\right)$, 1.62 (apparent p, ${ }^{3} J\left(\mathrm{H}^{\prime}\right.$ '-H6', H6'-H7') $=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime}$) , 1.55 (m, 2H, H5') ppm.
${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.7$ (C2), 132.2 (C3), 129.0 (C5), 118.0 (C4), 114.3 (C6),

D. 4 Synthesis of 2-(6Hydroxy-6-methylhex-1-ynyl)aniline, 20S

Starting with 2-iodoaniline ($1.0 \mathrm{~g}, 5.0 \mathrm{mmol}$) and 6-heptyn-2-ol ($0.60 \mathrm{~g}, 5.0 \mathrm{mmol}$). Yield: 0.80 g , 81 \%; yellow viscous oil; $\mathrm{R}_{\mathrm{f}}=0.16($ Hexane $:$ EtOAc $=1: 3(\mathrm{v} / \mathrm{v}))$.

$\left.{ }^{4} J(\mathrm{H} 5-\mathrm{H} 3)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right), 7.07\left(\right.$ apparent td, ${ }^{3} J(\mathrm{H} 6-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)=7.6 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 3-\mathrm{H} 5)=1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{H} 5), 6.68\left(\mathrm{dd},{ }^{4} J(\mathrm{H} 5-\mathrm{H} 6)=7.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 6)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 6.66$ (apparent td, ${ }^{3} J(\mathrm{H} 5-$ $\left.\mathrm{H} 4)=7.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H} 3-\mathrm{H} 4)=7.8 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 6-\mathrm{H} 4)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right), 3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6{ }^{\prime}\right), 3.28(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{NH}_{2} \& \mathbf{O H}\right), 2.49\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 3^{\prime}\right), 1.76-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H} 4\right.$ ' and $\left.\mathbf{H} 5^{\prime}\right), 1.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.30 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}$) ppm.
${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.7(\mathbf{C} 2), 132.1(\mathbf{C} 3), 129.0(\mathbf{C} 5), 118.0(\mathbf{C} 4), 114.3(\mathbf{C} 6)$, 108.9 ($\mathbf{C} 1$), 94.5 ($\left.\mathbf{C} 2^{\prime}\right), 77.4$ ($\left.\mathbf{C} 1^{\prime}\right), 67.7\left(\mathbf{C} 6\right.$ '), 38.5 ($\left.\mathbf{C} 5^{\prime}\right), 25.2\left(\mathbf{C} 4\right.$ '), $23.7\left(\mathbf{C H}_{3}\right), 19.7\left(\mathbf{C} 3^{\prime}\right) \mathrm{ppm}$.

Part E: General Catalytic Procedure, Time Course Profiles and NMR of

Intermediates and Products

E. 1 General Procedure for the Tandem Hydroamination/C-C Bond Formation Reactions

The metal catalysed tandem hydroamination/C-C bond formation reactions of the 2-(hydroxyalk-1-ynyl)aniline substrates (17S-20S) were performed on a small scale in J. Youngs NMR tubes. The metal complex ($5.0 \mathrm{~mol} \%$) were weighed into the NMR tube prior to the addition of deuterated solvent (Toluene- $d_{8}, 0.6 \mathrm{~mL}$) to the tube in a nitrogen filled glovebox. The substrate (concentration $0.17-0.19 \mathrm{M}$) was then added into the NMR tube. The tube was then removed from the glovebox and immediately placed into an acetone/liquid nitrogen slush-bath. The solution was briefly thawed before the NMR tube was placed into the probe of the NMR spectrometer at $100{ }^{\circ} \mathrm{C}$. The temperature in the NMR magnet was calibrated with neat ethylene glycol using an Omega Microprocessor Thermometer (Model HH23). ${ }^{1} \mathrm{H}$ NMR spectra were recorded periodically and the products were identified by comparison with reported spectroscopic ${ }^{1} \mathrm{H}$ NMR data. Upon complete conversion of the 2-(hydroxyalk-1-ynyl)aniline substrates (17S-20S) to the 2-(hydroxylalkyl)indole intermediates (17I-20I) as observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the base (${ }^{\mathrm{B}} \mathrm{BuOK}, \mathrm{KOH}, \mathrm{DABCO}$ or $\mathrm{K}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$, 1 equivalence), was added into the same NMR tube in the nitrogen filled glovebox. The tube was then removed from the glovebox, shaken and placed in a sonicator for 5 minutes. A ${ }^{1} \mathrm{H}$ NMR spectrum was obtained at $25^{\circ} \mathrm{C}$ in the spectrometer before the NMR tube was placed in an oil bath at $110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were obtained at regular time intervals at $25{ }^{\circ} \mathrm{C}$ in the spectrometer. The products were identified following reported ${ }^{1} \mathrm{H}$ NMR data.

The rate of conversion for all catalytic reactions was determined by the relative integration of ${ }^{1} \mathrm{H}$ resonances of the product to the starting material in the 1H NMR spectrum. Complete conversion ($>$ 98%) was taken to be the time where no remaining substrate resonances were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. The turnover frequency (TOF) was calculated at the point of 50% conversion as the number of moles of products produced per mole of catalyst used per hour.

The catalysed C-N bond formation ($1^{\text {st }}$ step) was performed in the same fashion as the catalysed tandem reaction without the addition of base. The efficiency of the catalysed intramolecular C3 alkylation was conducted mainly with isolated 2-(4-hydroxybutyl)indole (21I), which was isolated from the large scale (ca. 0.30 g) catalysed cyclisation of 2-(6-hydroxyhex-1ynyl)aniline (21S) using $\left[\mathrm{Rh}(\mathrm{bpm})(\mathrm{CO})_{2}\right] \mathrm{BAr}_{4}{ }_{4}(\mathbf{1 6}, \mathrm{bpm}=\operatorname{bis}(1-$ pyrazol-1-yl)methane $)$ in toluene. The alkylation reaction was performed in the same way the 2nd step of the tandem C-N/C-C bond formation reaction.

E. 2 Time Course Profiles for Selected Tandem Hydroamination/C-C Bond Formation

Reactions

Figure S8: Time course profile for $\left[\operatorname{Ir}(\mathbf{3 c})\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{7 c})$ catalysed one-pot tandem C-N and C-C bond formation in the synthesis of 1,2,3,4-tetrahydrocarbazole (17P) from 2-(6-hydroxyhex-1-ynyl)aniline (17S).

Figure S9: Time course profile for $\left[\operatorname{Ir}(4)\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(8)$ catalysed one-pot tandem $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ bond formation in the synthesis of 1,2,3,4-tetrahydrocarbazole (17P) from 2-(6-hydroxyhex-1-ynyl)aniline (17S).

E. 3 Typical Isolation Procedure for 2-(Hydroxyalkyl)indole Intermediates, 17I-20I

When the cyclisation of $\mathbf{1 7 S}, \mathbf{1 8 S}$ and $\mathbf{2 0 S}$ to $\mathbf{1 7 I}$, 18I, and $\mathbf{2 0 I}$ have respectively completed as observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the contents of the NMR tube were poured into a small vessel and the NMR tube rinsed out with dichloromethane ($c a .3 \times 0.5 \mathrm{~mL}$). The solution was passed through a pad of silica (ca. 0.7 cm thick) which was then rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}=1: 1(\mathrm{v} / \mathrm{v}, 5$ mL). The solvent was removed under reduced pressure and the remaining viscous oil or solid dried in a vacuum desiccator to afford the 2-(hydroxylalkyl)indole 17I, 18I, and 20I. NMR data of 2-(5-hydroxypent-1-yl)indole, 19I was obtained without isolation upon completion of the cyclisation form 19S to 19I as observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

E. 4 2-(4-Hydroxybut-1-yl)indole, 171 ${ }^{10}$

Yellow brown solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.55\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 5-\right.$ $\mathrm{H} 4)=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4), 7.29\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 6-\mathrm{H} 7)=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 7\right), 7.11$ (m, 2H, H5 and H6), 6.25 ($\mathrm{s}, 1 \mathrm{H}, \mathbf{H} 3$), $3.67\left(\mathrm{t},{ }^{3} J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 4\right.$ '), $2.76\left(\mathrm{t},{ }^{3} J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 1\right.$ ') , 1.98 (br s, 1H, OH), 1.79 (apparent p, ${ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 2^{\prime}$ or H3'), 1.63 (apparent p, ${ }^{3} J=7.4 \mathrm{~Hz}$, 2H, H2') ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.7$ (C2), $136.0(\mathbf{C} 3 \mathrm{a}), 128.9$ (C7a), $121.0(\mathbf{C} 6), 119.8$ (C4), 119.7 (C5), 110.5 (C7), 99.6 (C3), 62.6 ($\mathbf{C} 4$ '), 32.1, 28.0, 25.6 (last three $\mathbf{C 1}^{\prime}, \mathbf{C} 2^{\prime}$ and $\mathbf{C} 3$ ') ppm

E. 5 2-(3-Hydroxyprop-1-yl)indole, 18I ${ }^{12}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17$ (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 7.52\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)\right.$
$=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4), 7.30\left(\mathrm{~d},{ }^{3} J(\mathrm{H} 6-\mathrm{H} 7)=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 7\right), 7.12\left(\right.$ apparent $\mathrm{td},{ }^{3} J(\mathrm{H} 5-\mathrm{H} 6)={ }^{3} J(\mathrm{H} 7-$ $\left.\mathrm{H} 6)=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 4-\mathrm{H} 6)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 7.06$ (apparent td, ${ }^{3} J(\mathrm{H} 6-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)=7.5 \mathrm{~Hz}$, $\left.{ }^{4} J(\mathrm{H} 7-\mathrm{H} 5)=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 5\right), 6.25(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H} 3), 3.75\left(\mathrm{t},{ }^{3} J\left(\mathrm{H} \mathbf{'}^{\prime}-\mathrm{H} 3^{\prime}\right)=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 3^{\prime}\right), 2.90(\mathrm{t}$, $\left.{ }^{3} J\left(\mathrm{H} 2^{\prime}-\mathrm{H} 1^{\prime}\right)=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 1^{\prime}\right), 1.98\left(\mathrm{tt},{ }^{3} J\left(\mathrm{H} 3^{\prime}-\mathrm{H} 2^{\prime}\right)=6.0 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H} 1^{\prime}-\mathrm{H} 2^{\prime}\right)=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 2^{\prime}\right)$, 1.45 (br s, 1H, OH) ppm.
${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.9$ (C2), 135.9 (C3a), 128.7 (C7a), 121.0 (C6), 119.7 (C4), 119.5 (C5), 110.3 (C7), 99.6 (C3), 62.0 ($\mathbf{C} 3$ '), 31.7 ($\left.\mathbf{(2} 2^{\prime}\right), 24.6$ ($\left.\mathbf{C} 1^{\prime}\right) \mathrm{ppm}$.

E.5, 2-[(Z)-(Dihydrofuran-2(3H)-yliden)methyl]benzenamine, I1 (from 18S)

The intermediate I1 (from 18S) was observed following the catalysed cyclisation of 2-(5-hydroxypent-1-ynyl)aniline, 18S, when the reaction was conducted at $60^{\circ} \mathrm{C}$. NMR assignments were determined using 2D NMR
techniques. The NMR spectral data was found to be similar to the data reported for an analogous compound, (Z)-2-benzylidenetetrahydrofuran. ${ }^{13}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.52\left(\mathrm{dd}^{3} J\left(\mathrm{H} 4^{\prime}-\mathrm{H} 3^{\prime}\right)=7.8 \mathrm{~Hz},{ }^{4} J\left(\mathrm{H} 5^{\prime}-\mathrm{H} 3^{\prime}\right)=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3^{\prime}\right)$, 7.01 (apparent td, $\left.{ }^{3} J\left(\mathrm{H}^{\prime}-\mathrm{H} 5^{\prime}\right)={ }^{3} J\left(\mathrm{H}^{\prime}-\mathrm{H} 5^{\prime}\right)=7.8 \mathrm{~Hz},{ }^{4} J\left(\mathrm{H} 3^{\prime}-\mathrm{H} 5^{\prime}\right)=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 5^{\prime}\right), 6.80$ (apparent td, $\left.{ }^{3} J\left(\mathrm{H}^{\prime}-\mathrm{H} 4^{\prime}\right)={ }^{3} J\left(\mathrm{H} 3^{\prime}-\mathrm{H} 4^{\prime}\right)=7.8 \mathrm{~Hz},{ }^{4} J\left(\mathrm{H}^{\prime}-\mathrm{H} 4^{\prime}\right)=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4^{\prime}\right), 6.70(\mathrm{dd}$, $\left.{ }^{3} J\left(\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}\right)=7.8 \mathrm{~Hz},{ }^{4} J\left(\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}\right)=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 6{ }^{\prime}\right), 5.22\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H} 1{ }^{\prime}\right), 4.28\left(\mathrm{t},{ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)=6.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathbf{H} 4), 3.79$ (very br, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.75\left(\mathrm{td},{ }^{3} J(\mathrm{H} 4-\mathrm{H} 3)=7.2 \mathrm{~Hz}\right),{ }^{4} J\left(\mathrm{H} 1{ }^{\prime}{ }^{-}-\mathrm{H} 3\right)=1.5 \mathrm{~Hz}, 2 \mathrm{H}$, \mathbf{H}_{3}), 2.05 (apparent p, $\left.{ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 3-\mathrm{H} 5)=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 156.8(\mathbf{C} 2), 142.7\left(\mathbf{C} 1^{\prime}\right), 129.2(\mathbf{C} 3$ '), $126.3(\mathbf{C} 2$ ' $), 122.6(\mathbf{C} 5$ ' $)$, 118.8 (C4'), 116.1 (C6'), 91.7 (C1'’), 71.9 (C5), 30.6 (C3), 24.5 (C4) ppm.

Figure S10: ${ }^{1} \mathrm{H}$ NMR stacked-plot showing the formation and disappearance of $\mathbf{I 1}$ (from 18S) in the catalysed cyclisation of 2-(5- hydroxy-1-pentyn-1-yl)aniline, $\mathbf{1 8 S}$ using [$\left[\mathrm{Ir}(4) \mathrm{Cp}^{*} \mathrm{Cl}\right] \mathrm{BAr}^{\mathrm{F}}{ }_{4}(\mathbf{8})$ in toluene- d_{8} at $60^{\circ} \mathrm{C}$.

E. 6 2-(5-Hydroxypent-1-yl)indole, 19I

H1'), 1.44 (apparent p, ${ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 2$ '), 1.34 (apparent p and br s overlap, ${ }^{3} J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, H4' and OH), 1.23 (m, 2H, H3') ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , Toluene- d_{8}): $\delta 139.5$ (C2), 136.6 (C3a), 129.6 (C7a), 121.1 (C4), 120.2
 (C3') ppm.

E. 7 2-(4-Hydroxy-4-methylbut-1-yl)indole, 20I

Yellow-brown oil.
HR-MS (ESI^{+}, MeOH): m / z (\%): 226.1214 (18 \%) $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\right.$ Calculated $\left.[\mathrm{M}+\mathrm{Na}]^{+}=226.1202\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11$ (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 7.55\left({ }^{3} J(\mathrm{H} 5-\mathrm{H} 4)=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right), 7.30(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{H} 6-\mathrm{H} 7)=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 7\right), 7.14\left(\right.$ apparent td, ${ }^{3} J(\mathrm{H} 5-\mathrm{H} 6)={ }^{3} J(\mathrm{H} 7-\mathrm{H} 6)=7.2 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 4-\mathrm{H} 6)=1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{H} 6), 7.09$ (apparent td, $\left.{ }^{3} J(\mathrm{H} 6-\mathrm{H} 5)={ }^{3} J(\mathrm{H} 4-\mathrm{H} 5)=7.2 \mathrm{~Hz},{ }^{4} J(\mathrm{H} 7-\mathrm{H} 5)=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right)$, 6.25 (s, 1H, H3), 3.85 (apparent sex, ${ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4^{\prime}$), $2.76\left(\mathrm{td},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=3.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, H1'), 1.98 (br s, $1 \mathrm{H}, \mathbf{O H}$), 1.86 (apparent sep, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3$ 'a or H3'b), 1.76 (apparent sep, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 3$ 'a or H3'b), 1.53 (apparent q, $\left.{ }^{3} J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 2^{\prime}\right), 1.21\left(\mathrm{~d},{ }^{3} J=6.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.7$ (C2), $136.0(\mathbf{C} 3 \mathrm{a}), 128.9$ (C7a), 121.0 (C6), 119.8 (C4), 119.7 ($\mathbf{C} 5$), 110.5 ($\mathbf{C} 7$), $99.6(\mathbf{C} 3), 68.0\left(\mathbf{C} 4\right.$ '), $38.6\left(\mathbf{C} 2^{\prime}\right), 28.2\left(\mathbf{C} 1^{\prime}\right), 25.5\left(\mathbf{C}^{\prime}\right), 23.8\left(\mathbf{C H}_{3}\right) \mathrm{ppm}$.

E. 8 NMR Data for Final Products

The formation of products $\mathbf{1 7 P} \mathbf{- 2 0 P}$ were confirmed by comparing the ${ }^{1} \mathrm{H}$ NMR spectra obtained
with that reported in the literature and also by comparing the NMR spectra during the catalytic reaction with the spectra of authentic samples purchased from Aldrich in case of product $\mathbf{1 7 P}, \mathbf{1 8 P}$.

E. 9 1,2,3,4-Tetrahydrocarbazole, 17P ${ }^{14} 15$

${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene $-d_{8}$): $\delta 7.47$ (dd, ${ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4$ or H7), 7.15 (apparent p of d, ${ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 5$ and $\mathbf{H} 6$), $7.01\left(\mathrm{dd},{ }^{3} J=6.9 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathbf{H} 7$ or $\mathbf{H} 4), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H} 1^{\prime}\right.$ or $\left.\mathbf{H} 4^{\prime}\right), 2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H} 1^{\prime}\right.$ or $\left.\mathbf{H} 4^{\prime}\right), 1.67(\mathrm{~m}, 4 \mathrm{H}$, H2' and H3') ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, toluene- d_{8}): $\delta 136.3$, 133.4, 128.6, 121.1, 119.3, 118.1, 110.6, 110.0, 23.8, 23.62 23.3, 21.26 ppm .
E. 10 1,2,3,4-Tetrahydrocyclopent $[b]$ indole, 18P ${ }^{16}$
$5^{4} 3 \mathrm{a} 33^{3^{\prime}}{ }^{1} \mathrm{H}$ NMR (400 MHz , Toluene- d_{8}) : $\delta 7.47$ (m, 1H, H4 or H7), 7.12 (apparent s , (7a
${ }^{3} J=5.9 \mathrm{~Hz},{ }^{4} J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 5$ and H6), $7.00(\mathrm{~m}, 1 \mathrm{H}, \mathbf{H} 4$ or H7), $6.38(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}$), 2.71 (apparent $\mathrm{t},{ }^{3} J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 1$ ' or $\mathbf{H} 3$ '), 2.44 (apparent $\mathrm{t},{ }^{3} J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 1^{\prime}$ or H3'), 2.27 (apparent $\mathrm{p},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 2^{\prime}$) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, Toluene- d_{8}) : δ 143.1, 141.7, 125.4, 120.7, 119.7, 119.6, 118.9, 111.5, 28.9, 25.9, 24.7 ppm .

E. 11 5,6,7,8,9,10-Hexahydrocyclohept $[b]$ indole, 19P ${ }^{16,14}$

E. 12 4-Methyl-1,2,3,4-tetrahydrocarbazole, 20P ${ }^{14}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene- d_{8}): $\delta 7.57\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 4\right.$ or $\mathbf{H} 7$), 7.14

(apparent p of d, ${ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{H} 5$ and H6), $7.01\left(\mathrm{dd},{ }^{3} J=6.9\right.$
$\mathrm{Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{H} 7$ or $\left.\mathbf{H} 4\right),{ }^{17} 6.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{H} 4{ }^{\prime}\right)$,
$2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H} 1^{\prime}\right.$ or H2'), $1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{H} 2^{\prime}\right.$ or $\left.\mathbf{H} 1^{\prime}\right), 1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{H} 3^{\prime} \mathrm{a}\right.$ or
H3'b), 1.41 ($\mathrm{m}, 1 \mathrm{H}, \mathbf{H} 3$ 'a or H3'b), $1.31\left(\mathrm{~d},{ }^{2} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, toluene- d_{8}): $\delta 136.5,133.1,128.1,121.0,119.3,119.1,114.9,110.7,32.6$, 31.2, 27.6, 23.6, 20.9 ppm .

References

1. Hua, C.; Vuong, K. Q.; Bhadbhade, M.; Messerle, B. A., Organometallics 2012, 31 (5), 1790.
2. Dabb, S. L.; Ho, J. H. H.; Hodgson, R.; Messerle, B. A.; Wagler, J., Dalton Trans. 2009, (4), 634.
3. Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. 2001.
4. Bruker, APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. 2001.
5. Sheldrick, G. M., Acta. Cryst. 2008, A64, 112.
6. Macrae, C. F. B., I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J. and Wood, P. A., J. Appl. Cryst. 2008, 41, 466.
7. Le Drian, C.; Greene, A. E., J. Am. Chem. Soc. 1982, 104 (20), 5473.
8. Li, M. S.; O'doherty, G. A., Org. Lett. 2006, 8 (26), 6087.
9. Brandsma, L. V., S. F.; Verkjuijsse, H. D., Application of Transition Metal Catalysts in Organic Synthesis. 1st ed.; Springer: New York, 1998.
10. Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T., J. Org. Chem. 2008, 73 (11), 4160.
11. Kawato, H. C.; Nakayama, K.; Inagaki, H.; Ohta, T., Org. Lett. 2001, 3 (22), 3451.
12. Smith, A. B.; Visnick, M.; Haseltine, J. N.; Sprengeler, P. A., Tetrahedron 1986, 42 (11), 2957.
13. Ley, S. V.; Lygo, B.; Organ, H. M.; Wonnacott, A., Tetrahedron 1985, 41 (18), 3825.
14. Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G., Angew. Chem. Int. Ed. 2011, 50 (7), 1702.
15. Scott, T. L.; Burke, N.; Carrero-Martinez, G.; Soderberg, B. C. G., Tetrahedron 2007, 63 (5), 1183.
16. Banwell, M. G.; Kelly, B. D.; Kokas, O. J.; Lupton, D. W., Org. Lett. 2003, 5 (14), 2497.
17. Burling, S.; Field, L. D.; Messerle, B. A.; Turner, P., Organometallics 2004, 23 (8), 1714.
