Supporting Information

Effect of solvent quality on the solution properties of assemblies of partially-fluorinated amphiphilic diblock copolymers

Hui Peng,¹ Kristofer J. Thurecht,¹ Idriss Blakey,^{1,2} Elena Taran^{1,3} and Andrew K. Whittaker^{1,2}*

¹Australian Institute for Bioengineering and Nanotechnology, ²Centre for Advanced Imaging, ³Australian National Fabrication Facility Queensland Node, The University of Queensland, St. Lucia 4072, Australia

*Corresponding author:

Tel: +61-7-33463885; Fax: +61-7-33463973; E-mail address: <u>a.whittaker@uq.edu.au</u>

The ¹H NMR spectra of the amphiphilic copolymers in DMF- d_7 are shown in Figure S1. In the spectrum of PAA-*b*-p(*n*BA-*co*-TFEA) (Figure 1(A)), the peaks marked from *a* to *l* could be assigned to the characteristic signals of protons of the PAA, P*n*BA and PTFEA segments. The peaks labelled *b* (2.55 ppm), *h* (2.46 ppm) and *e* (2.58 ppm) are assigned to the methine protons (–CH₂CH(CO)–)) in the backbone belonging to PAA, P*n*BA and PTFEA. The peaks *f* at 4.76 ppm and *i* at 4.06 ppm were assigned to the methylene protons (–CH₂CH(CO)–)) attached to the ester bond in the side chain belonging to PTFEA and P*n*BA blocks, and peak *c* at 12.6 ppm was assigned to the carboxylic acid protons of PAA. The ¹H NMR spectra of PAA-*b*-p(*n*BA-*co*-TFEMA) were similar to PAA-*b*-p(*n*BA-*co*-TFEA) (see for example Figure 1(B)), but there are only two methine protons (–CH₂CH(CO)–), peak *b* at 2.55 ppm, and *h* at 2.45 ppm belonging to PAA and P*n*BA and P*n*BA and a new resonance arising from the methyl protons (–CH₃), *e*, 0.93 ppm) due to TFEMA.

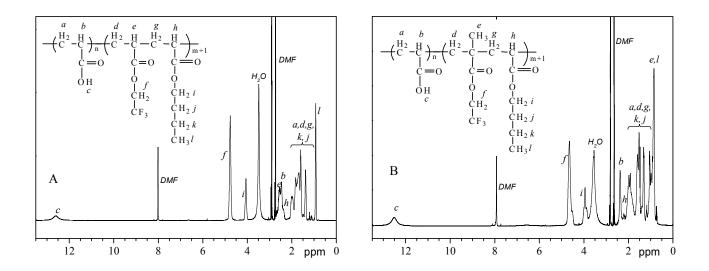


Figure S1. The ¹H NMR spectra of (A) $PAA_{50}-b-P(nBA_{39}-co-TFEA_{115})$ and (B) $PAA_{52}-b-P(nBA_{39}-co-TFEA_{103})$ in DMF- d_7 .

The Flory-Huggins interaction parameter between blocks χ_{A-B} can be estimated by ¹

$$\chi_{A-B} = \frac{V_r (\delta_A - \delta_B)^2}{RT}$$

where V_r is the molar volume of the blocks, R is the gas constant, T is the temperature (298 k), and δ_A and δ_B are the solubility parameters of the different blocks, respectively.²

	PAA	PnBA	PTFEA	PTFEMA
Solubility parameters (δ_A) (MPa ^{1/2})	24.6			
Solubility parameters (δ_B) (MPa ^{1/2})		18.0	17.5	17.1
Molar volume (V _r) $(cm^3/mol^{-1})^2$	58.76	122.54	102.01	118.29

- Polymer Handbook, 4th ed.; Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R., Eds. Wiley: New York, 1999.P521
- 2. D.W. Van Krevelen, Properties of polymers : their correlation with chemical structure; their numerical estimation and prediction from additive group contributions , Elsevier (Amsterdam), 1990.

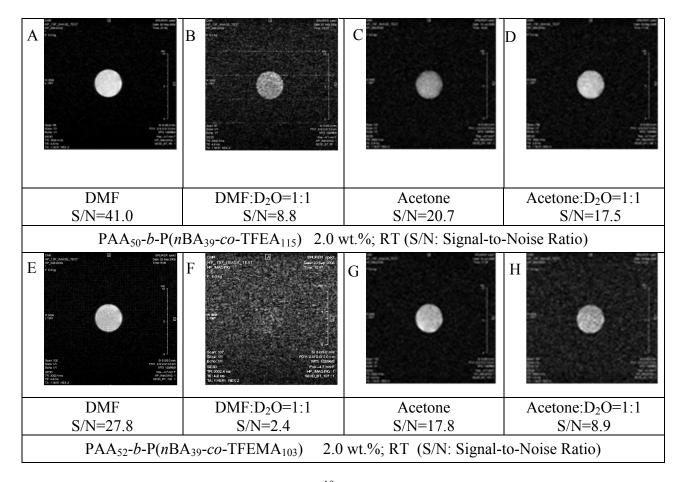


Figure S3. Selected slices from the 3D spin echo¹⁹F MRI images of solutions of block copolymer assemblies in mixed solvent. The field of view in each case is $20 \times 20 \text{ mm}^2$.