SUPPORTING INFORMATION

Transannular O-Heterocyclization: A Useful Tool for the Total Synthesis of Murisolin and 16,19-cis-Murisolin

Peter Persich, Julia Kerschbaumer, Sandra Helling, Barbara Hildmann, Birgit Wibbeling, and Günter Haufe*

Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, D-48149 Münster, Germany
e-mail: haufe@uni-muenster.de
General Information S2
Procedures, Analytical and Spectroscopic Data S3
Tables comparing NMR data of compounds $\mathbf{1}$ and $\mathbf{2}$ with literature data S15
Copies of NMR Spectra S19
Determination of enantiomeric excesses of monoacetates $\mathbf{9 a}$ and $\mathbf{9 b}$ S59
Determination of enantiomeric excesses of compounds $\mathbf{1 7}$ and $\mathbf{1 8}$ S62

General Information

Starting material and reagents for the synthesis were purchased from ABCR, Acros, SigmaAldrich, Fluka and Merck and were used, if not stated otherwise, without further purification. (Z,Z)-1,5-Cyclooctadien was a donation from Degussa AG, Marl. The 40% peracetic acid (Wofasteril®) was purchased from Kesla Chemie Pharma GmbH, Wolfen. Solvents were purified by distillation and dried by standard procedures if necessary. ${ }^{1}$ All reactions were carried out under Ar in flame-dried glassware. Preparative column chromatography was carried out using silica gel 60 (Kieselgel $60,40-63 \mu \mathrm{~m}$ or $63-200 \mu \mathrm{~m}$) of Merck as stationary phase. NMR spectra were recorded in the solvents indicated using the following instruments: Bruker AV300, Bruker AV400, Varian 500 Inova, Varian 600 unity plus. Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) are given in Hz. 2D NMR spectroscopy was used for the assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals. Mass spectra with GC or direct inlet and electron impact ionization were recorded either on the double focusing sector field MS MAT8230 (Thermo-Finnigan-MAT, Bremen), or on the instrument GCT (Waters-Micromass, Manchester, UK), or on the instrument Quattromicro GC (WatersMicromass, Manchester, UK). Exact mass determinations with electron spray ionization were recorded on the MicroTof (Bruker Daltronics, Bremen) equipped with loop inlet. Melting points were measured using the instruments Stuart SMP10 (Bibby Sterilin LTD) and are uncorrected. FT-IR spectra were recorded on Bruker IFS 28 either as film on sodium chloride plates or as KBr pallet. Optical rotations were determined with Polarimeter 341 (Perkin Elmer) at a wavelength of 589 nm at rt. Elemental analyses were carried out on Vario EL III (Elementar-Analysensysteme, Hanau).

X-Ray data set was collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN, ${ }^{2}$ absorption correction Denzo, ${ }^{3}$ structure solution SHELXS-97, ${ }^{4}$ structure refinement SHELXL-97, ${ }^{5}$ graphics XP (BrukerAXS, 2000).

[^0]
Procedures, Analytical and Spectroscopic Data

Compounds 8a,b: ${ }^{6} 40 \%$ Peracetic acid in AcOH (Wofasteril®, $40.0 \mathrm{~g}, 210 \mathrm{mmol}, 2.3$ eq.)
 was weighed into a 2 -necked flask equipped with dropping funnel and thermometer and was cooled with an ice/sodium chloride bath to ca. $0^{\circ} \mathrm{C}$. Under vigorous stirring a solution of (Z, Z)-1,5cyclooctadiene ($10.0 \mathrm{~g}, 92 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{AcOH}(20 \mathrm{~mL})$ was added dropwise so that the temperature ranged between -5 and $+10^{\circ} \mathrm{C}$. After complete addition stirring was continued under cooling. In the course of the reaction the emulsion turned into a clear solution. The reaction mixture was allowed to warm to rt overnight. 10% aqueous NaOH was added dropwise until the solution had reached pH 10 . The hot solution was cooled to rt and exposed to continuous extraction for 3 days with ethyl acetate. The organic layer was stirred with $\mathrm{FeSO}_{4}(50 \mathrm{~g})$ until complete destruction of excess peroxides and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by crystallization from acetone affording a mixture of products $\mathbf{8 a , b}$ as colorless crystalline solid ($13.5 \mathrm{~g}, 85$ $\mathrm{mmol}, 92 \%$).

Mp: $108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=4.47-4.37(\mathrm{~m}, 2 \mathrm{H},[\mathbf{8 b}]), 4.06-3.89(\mathrm{~m}, 2 \mathrm{H},[8 \mathbf{a}] ;$ $2 \mathrm{H},[\mathbf{8 b}]$), 3.81-3.78 (m, 2H, [8a]), 2.18-1.54 (m, 8H, [8a]; 8H, [8b]); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{D}_{2} \mathrm{O}$): 80.4 (d, [8a]), 71.1 (d, [8a]), 69.4 (d, [8b]), 68.0 (d, [8b]), 27.2 (t, [8b]), 27.1 (t, [8a]), 23.7 (t, [8a]), 21.5 (t, [8b]); IR (KBr): 3403, 2960, 2850, 2931, 1564, 1443, 1259, 1219, 1081, $1018 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 158$ (6), 140 (9), 130 (2), 122 (2), 112 (10), 101 (36), 97 (32), 96 (19), 84 (53), 79 (66), 71 (23), 70 (45), 69 (81), 68 (77), 67 (96), 58 (28), 57 (100), 55 (66), 44 (28), 43 (38), 41 (49); HRMS (ESI): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 181.0835$; found 181.0855 .

Compounds 9a,b: ${ }^{6}$ A solution of diols $\mathbf{8 a}, \mathbf{b}$ ($3.36 \mathrm{~g}, 21.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) in vinyl acetate (100

9b mL) together with immobilized lipase of candida rugosa ($1302 \mathrm{U} / \mathrm{mg}, 2.98 \mathrm{~g}$) was frequently shacked at $30^{\circ} \mathrm{C}$. After 16 h the reaction was stopped by filtration when conversion reached 60% by GCanalysis. The solvent was removed under reduced pressure and the residue was purified by column chromatography (cyclohexane/EtOAc, 3:1 $\rightarrow 0: 1$) affording a $68: 32$ mixture 7 of products $\mathbf{9 a}, \mathbf{b}$ as a colorless oil $(1.70 \mathrm{~g}, 8.50 \mathrm{mmol}, 58 \%, e e=96 \%[9 a], e e=76 \%[9 b]) .{ }^{8}$
$[\alpha]_{D}^{20}=+23.4^{\circ}\left(c=1.16, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.17-4.98(\mathrm{~m}, 1 \mathrm{H},[\mathbf{9 a}]$, $1 \mathrm{H},[\mathbf{9 b}]), 4.63-4.50(\mathrm{~m}, 1 \mathrm{H},[\mathbf{9 a}]), 4.50-4.39(\mathrm{~m}, 1 \mathrm{H},[9 \mathbf{a}]), 4.17-3.93(\mathrm{~m}, 1 \mathrm{H},[9 \mathbf{a}], 1 \mathrm{H},[9 \mathrm{~b}])$,

[^1]3.89-3.86 (m, 1H, [9b]), 3.82-3.78 (m, 1H, [9b]), 2.23-1.57 (m, 8H, [9a], 8H, [9b], overlap), $2.06\left(\mathrm{~s}, 3 \mathrm{H}\right.$, [9a], overlap), $2.05\left(\mathrm{~s}, 3 \mathrm{H},[\mathbf{9 b}]\right.$, overlap); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.4$, 170.3 (2s, [9a,b]), 81.5 (d, [9a]), 77.7 (d, [9a]), 73.7 (d, [9a]), 72.0 (d, [9a]), 70.7 (d, [9b]), 69.7 (d, [9b]), 68.4 (d, [9b]), 66.5 (d, [9b]), 28.5 (t, [9b]), 28.3 (t, [9a]), 25.5 (t, [9a]),), 25.3 (t, [9a]), $25.3(\mathrm{t},[\mathbf{9 a}]), 23.8(\mathrm{t},[\mathbf{9 b}]), 22.9(\mathrm{t},[\mathbf{9 b}]), 21.7(\mathrm{t},[\mathbf{9 a}]), 21.2(\mathrm{q},[\mathbf{9 a}]), 21.2(\mathrm{q},[\mathbf{9 b}])$; IR (film): 3625, 3469, 3452, 2975, 2873, 2928, 2852, 1741, 1556, 1446, 1382, 1371, 1250, 1122, 1078, 1038, $983 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 200 (<1), 140 (13), 122 (6), 112 (6), 97 (19), 96 (23), 95 (15), 94 (17), 84 (57), 81 (21), 71 (26), 70 (17), 69 (34), 68 (57), 67 (56), 58 (13), 57 (28), 55 (23), 43 (100), 41 (17); HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 232.0941; found 232.0939.

Compounds 25a,b: Dihydropyran ($0.77 \mathrm{~mL}, 8.5 \mathrm{mmol}, 1.7 \mathrm{eq}$) and $p-\mathrm{TsOH}(95 \mathrm{mg}, 0.5$
 mmol, 0.1 eq) were added to a solution of acetates $9 \mathbf{9}, \mathbf{b}(1.0 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL). The mixture was stirred overnight. Then a solution of $\mathrm{KOH}(1.40 \mathrm{~g}, 25 \mathrm{mmol}, 5.0 \mathrm{eq})$ in $\mathrm{MeOH}(13 \mathrm{~mL})$ was added dropwise and the mixture was for additional 20 h . After complete conversion the mixture was neutralized with 4 N aqueous HCl and diluted with water. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by column chromatography (cyclohexane/EtOAc, $3: 1 \rightarrow 0: 1$) affording a mixture of products $\mathbf{2 5 a}, \mathbf{b}$ as a yellowish oil ($887 \mathrm{mg}, 3.61 \mathrm{mmol}, 72 \%$).
$[\alpha]_{D}^{20}=+16.9^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.73-4.66(\mathrm{~m}, 1 \mathrm{H},[\mathbf{2 5 b}])$, 4.66-4.57 (m, 2H, [25b]; 1H, [25a]), 4.57-4.37 (m, 2H, [25a]), 4.08-3.81 (m, 3H, [25a]; 4H, [25b]), 3.81-3.72 (m, 1H, [25a]), 3.56-3.42 (m, 1H, [25a]; 1H, [25b]), 2.38-1.61 (m, 9H, [25a]; 9H, [25b]), 1.61-1.44 (m, 5H, [25a]; 5H, [25b]); ${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$): 98.7 (d, [25a]), 98.1, 97.8 (2d, [25b]), 97.6 (d, [25a]), 81.3, 81.3 (2d, [25a]), 79.9, 78.9 (2d, [25a]), $76.8,76.2$ (2d, [25a]), 73.5, 73.5 (2d, [25b]), 72.2, 72.1 (2d, [25a]), 69.9, 69.8 (2d, [25b]), 68.9 (d, [25b]), 68.8 (d, [25b]), 67.4 (d, [25b]), 62.9, 62.9 (2t, [25b]), 62.7 (t, [25a]), 31.2, 31.1 (2 t , [25a,b]), 28.9, 28.8 (2t, [25b]), 28.8, 28.4 (2 t , [25a]), 27.5, 26.0 (2t, [25b]), 25.5, 25.4, 25.4, 25.4 (4t, [25a]), 25.2, 25.0 (2t, [25a]), 24.0, 24.0, (2t, [25a]), 22.9, 22.6 (2t, [25b]), 22.1, 22.0, (2t, [25b]), 19.9, 19.9 (2t, [25b]), 19.8 (t, [25a]); MS (EI): m/z (\%): 242 (1), 224 (1), 206 (1), 157 (1), 155 (4), 141 (7), 139 (7), 101 (4), 85 (92), 84 (61), 83 (23), 81 (15), 79 (21), 71 (32), 70 (23), 69 (33), 68 (28), 67 (61), 58 (14), 57 (71), 56 (24), 55 (100), 54 (16), 53 (21), 44 (22), 43 (42), 42 (16), 41 (79), 40 (45); HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 265.1410$; found 265.1407 .

Compounds 10a,b: Sodium hydride (60% in paraffin, $7.0 \mathrm{~g}, 174 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in
 one portion to a solution of THP-ethers 25a,b $(28.1 \mathrm{~g}, \quad 116 \mathrm{mmol}, \quad 1.0 \mathrm{eq})$ in abs. THF $(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was
stirred for 20 min at this temperature, then warmed to rt for 1 h . TBAI $(4.3 \mathrm{~g}, 12 \mathrm{mmol}, 0.1$ eq) and $\operatorname{BnBr}(23.5 \mathrm{~mL}, 198 \mathrm{mmol}, 1.7 \mathrm{eq})$ were added successively and the reaction mixture was stirred for 10 min prior to refluxing for 2 h . After cooling to ambient temperature it was quenched with silica gel and transferred with ethyl acetate in a round bottom flask. The solvent was removed under reduced pressure and the crude product absorbed on silica. Column chromatography (cyclohexane/EtOAc, $60: 1 \rightarrow 10: 1$) yielded a mixture of products $\mathbf{1 0 a , b}(34.3 \mathrm{~g}, 103 \mathrm{mmol}, 89 \%)$ as a yellowish oil.
$[\alpha]_{D}^{20}=+13.4^{\circ}\left(c=0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.22(\mathrm{~m}, 5 \mathrm{H},[\mathbf{1 0 a}] ;$ $5 \mathrm{H},[\mathbf{1 0 b}]), 4.72-4.40(\mathrm{~m}, 4 \mathrm{H},[\mathbf{1 0 a}] ; 3 \mathrm{H},[\mathbf{1 0 b}]), 4.05-3.69(\mathrm{~m}, 9 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 2 \mathrm{H})(2 \mathrm{~m}$, 5H, [10a]; 6H, [10b]), 2.34-1.39 (m, 14H, [10a]; 14H, [10b]); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): 138.9 (s), 138.7 (s), 138.6 (s), 128.4 (d), 128.3 (d), 127.5 (d), 127.5 (d), 127.4 (d), 127.3 (d), 98.5 (d), 98.0 (d), 97.8 (d), 97.6 (d), 80.5 (d), 79.4 (d), 79.3 (d), 79.3 (d), 79.1 (d), 79.0 (d), 77.2 (d), 76.8 (d), 75.4 (d), 75.4 (d), 73.5 (d), 73.5 (d), $71.0(\mathrm{t}), 71.0(\mathrm{t}), 70.5(\mathrm{t}), 70.5(\mathrm{t}), 69.2$ (d), $67.7(\mathrm{~d}), 67.7(\mathrm{~d}), 67.6(\mathrm{~d}), 62.9(\mathrm{t}), 62.8(\mathrm{t}), 62.8(\mathrm{t}), 62.6(\mathrm{t}), 31.2(\mathrm{t}), 31.2(\mathrm{t}), 31.3(\mathrm{t})$, $27.4(\mathrm{t}), 26.7(\mathrm{t}), 26.4(\mathrm{t}), 26.3(\mathrm{t}), 26.0(\mathrm{t}), 25.4(\mathrm{t}), 25.4(\mathrm{t}), 25.2(\mathrm{t}), 25.2(\mathrm{t}), 25.0(\mathrm{t}), 24.7(\mathrm{t})$, $24.7(\mathrm{t}), 22.8(\mathrm{t}), 22.7(\mathrm{t}), 22.6(\mathrm{t}), 22.5(\mathrm{t}), 19.9(\mathrm{t}), 19.8(\mathrm{t}), 19.8(\mathrm{t}), 19.8(\mathrm{t})$, IR (film): 2939, 2870, 2363, 1453, 1349, 1201, 1115, 1065, 1029, 990, 896, 870, 736, $698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 332 (1), 314 (1), 247 (1), 225 (1), 155 (3), 142 (10), 141 (21), 139 (21), 124 (10), 97 (10), 95 (23), 92 (14), 91 (100), 85 (55), 84 (27), 83 (21), 71 (42), 67 (23), 65 (15), 57 (16), 55 (25); HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 355.1880$; found 355.1885.

Compounds 11a,b: Jones reagent ${ }^{9}(14.5 \mathrm{~mL})$ and 4.5 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(8.6 \mathrm{~mL})$ were added
 dropwise at $0^{\circ} \mathrm{C}$ to a solution of protected diols $\mathbf{1 0 a , b}(3.70 \mathrm{~g}, \quad 11.1 \mathrm{mmol}, \quad 1.0 \mathrm{eq})$ in acetone $(110 \mathrm{~mL})$. A dark green precipitate was formed immediately. The reaction mixture was stirred at rt. After 3.5 h the reaction was quenched with $i-\mathrm{PrOH}(10 \mathrm{~mL})$ and diluted with water $(250 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by column chromatography (cyclohexane/EtOAc, 10:1) affording a mixture of products 11a,b as a yellowish oil ($2.42 \mathrm{~g}, 9.7 \mathrm{mmol}, 88 \%$).
$[\alpha]_{D}^{20}=+14.1^{\circ}\left(c=0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.39-7.25(\mathrm{~m}, 5 \mathrm{H},[\mathbf{1 1 a}] ; 5 \mathrm{H}$, [11b]), 4.71-4.65 (m, 1H, [11a]), 4.61(d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H},[11 \mathrm{a}]), 4.57$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, [11a]), $4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H},[\mathbf{1 1 b}]), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H},[\mathbf{1 1 b}]), 4.42-4.32(\mathrm{~m}, 1 \mathrm{H}$, [11b], overlap), 4.36 (dd, $J=9.9,1.9 \mathrm{~Hz}, 1 \mathrm{H},[\mathbf{1 1 a}]$, overlap), 4.01 (br d, $1 \mathrm{H}, J=5.6 \mathrm{~Hz}$, [11b]), 3.79 (dt, $J=4.6,11.3 \mathrm{~Hz}, 1 \mathrm{H},[\mathbf{1 1 a}]), 3.69$ (dt, $J=5.0,11.7 \mathrm{~Hz}, 1 \mathrm{H},[67]), 2.81-2.66$ (m, 1H, [11a]; 1H, [11b]), 2.39-2.19 (m, 2H, [11a]; 2H, [11b]), 2.14-1.83 (m, 4H, [11a]; 3H, [11b]), 1.82-1.69 (m, 1H, [11b]), 1.57-1.33 (m, 1H,[11a]; 1H, [11b]); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 217.0 (s, [11a]), 215.7 (s, [11b]), 138.3 ($\mathrm{s},[\mathbf{1 1 a , b}]$), 128.4 (d, [11a]), 128.4 (d,

[^2][11b]), 127.7 (d, [11b]), 127.7 (d, [11a]), 127.5 (d, [11a,b]), 83.7 (d, [11a]), 80.3 (d, [11a]), 78.7 (d, [11a]), 76.9 (d, [11b]), 74.7 (d, [11b]), 71.3 (t, [11a]), 70.5 (t, [11b]), 67.4 (d, [11b]), 36.9 (t, [11a]), 34.5 (t, [11b]), 31.1 (t, [11a]), 26.9 (t, [11b]), 24.2 (t, [11a]), 23.0 (t, [11a]), 22.7 (t, [11b]), 18.9 (t, [11b]); IR (film): 3064, 3031, 2937, 2872, 2360, 2339 ,1713, 1454, 1086, 1073, 1039, 955, 876, 737, $698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 246 (9), 190 (38), 161 (15), 156 (30), 155 (100), 140 (26), 137 (69), 127 (30), 112 (27), 111 (55), 109 (32), 92 (64), 91 (99), 87 (30), 85 (75), 83 (31), 81 (67), 79 (47), 77 (20), 69 (35), 65 (67), 57 (19), 55 (32), 41 (38), 39 (31); HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 269.1148$; found 269.1161.

Compound 12: Oxone ($4.57 \mathrm{~g}, 7.43 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added in several portions at $0^{\circ} \mathrm{C}$ over

12 a 8 h period to a stirred solution of ketones $\mathbf{1 1 a , b}(1.22 \mathrm{~g}$, $4.96 \mathrm{mmol}, 1.0 \mathrm{eq})$ in formic acid (15 mL). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 days. Then the mixture was diluted with water before $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(1.41 \mathrm{~g}, 7.43 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was dissolved in a small amount of toluene and evaporated, this operation was repeated three times. Acid $\mathbf{1 2}(1.40 \mathrm{~g})$ was obtained as a viscous yellow oil, which was used without further purification in the next step.
$[\alpha]_{D}^{20}=+3.7^{\circ}\left(c=1.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.12(\mathrm{~m}$, $5 \mathrm{H}), 4.71(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dt}, J=8.1$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.42(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.76(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): 178.7 (s), 177.2 (s), 137.8 (s), 128.5 (d), 128.0 (d), 127.9 (d), 82.3 (d), 79.1 (d), 73.2 (t), 29.5 (t), 28.4 (t), 25.0 (t), 24.4 (t); IR (film): 2939, 2362, 1772, 1709, 1496, 1454, 1361, 1173, 1098, 1066, 1027, $984,919,812,734,697 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 278 (2), 193 (10), 176 (6), 147 (10), 126 (31), 92 (15), 91 (100), 85, 65 (19); HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 301.1064$; found 301.1044.

Compound 26: A soltion of $\mathrm{BH}_{3} \mathrm{SMe}_{2}(0.43 \mathrm{~mL}, 4.04 \mathrm{mmol}, 0.8 \mathrm{eq})$ in abs. THF (5 mL) was

26 added slowly over a period of 15 min to a stirred solution of crude acid $\mathbf{1 2}(1.40 \mathrm{~g}$, max. 5.05 mmol , max. 1.0 eq$)$ in abs. THF (5 mL) at $-15^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm slowly to rt over night and was quenched at $0{ }^{\circ} \mathrm{C}$ with MeOH . The solvent was removed under reduced pressure. The residue was dissolved in a small amount of MeOH and evaporated, this operation was repeated three times. The residue was purified by column chromatography (cyclohexane/EtOAc, $1: 1 \rightarrow 0: 1$) affording product 26 as a yellowish oil ($845 \mathrm{mg}, 3.2 \mathrm{mmol}, 65 \%$ over 2 steps).
$[\alpha]_{D}^{20}=-11.7^{\circ}\left(c=1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{td}, J=7.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H})$, 3.52-3.45 (m, 1H), 2.63-2.40 (m, 2H), 2.29-2.16 (m, 1H), 2.09-1.90 (m, 1H), 1.76-1.56 (m,

4H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 177.6 (s), 138.0 (s$), 128.5$ (d), 127.9 (d), 127.8 (d), 82.1 (d), 80.3 (d), $72.9(\mathrm{t}), 62.5(\mathrm{t}), 28.5(\mathrm{t}), 28.3(\mathrm{t}), 26.3(\mathrm{t}), 24.4(\mathrm{t})$; IR (film): 3429, 2929, 2870, 1766, 1454, 1361, 1182, 1061, 1027, 985, 915, 739, $699 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 336 (1), 321 (3), 251 (8), 181 (28), 159 (33), 140 (64), 92 (56), 91 (100), 85 (87), 75 (73), 73 (62), 71 (59), 65 (42), 59 (15); HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1254$; found 287.1255.

Compound 13: A solution of DMSO ($0.96 \mathrm{~mL}, 13.4 \mathrm{mmol}, 2.1 \mathrm{eq}$) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a stirred solution of oxalylchloride $(0.61 \mathrm{~mL}, 7.0$

13 $\mathrm{mmol}, 1.1 \mathrm{eq})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. It was stirred for 2 min at $-78{ }^{\circ} \mathrm{C}$ prior to the addition of a solution of alcohol 26 $(1.82 \mathrm{~g}, 6.4 \mathrm{mmol}, 1.0 \mathrm{eq})$ in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$. The mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$ before $\mathrm{NEt}_{3}(4.43 \mathrm{~mL}, 32.0 \mathrm{mmol}, 5.0$ eq) was added at that temperature. It was kept for another 2 min at $-78^{\circ} \mathrm{C}$ and then warmed quickly to rt . Water (25 mL) was added and the biphasic system was stirred for 1.5 h . Then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed successively with brine, 20% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, water and diluted aqueous NaHCO_{3}, dried over MgSO_{4} and the solvent was removed under reduced pressure. The pure product $\mathbf{1 3}$ was obtained without further purification as a yellowish oil ($1.61 \mathrm{~g}, 6.13$ mmol, 96 \%).
$[\alpha]_{D}^{20}=+7.2^{\circ}\left(c=0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.72(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 4.69(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dt}, J=7.3,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{dt}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.74(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 201.5 (d), 177.0 (s , 137.8 (s), 128.5 (d), 128.1 (d), 128.0 (d), 82.3 (d), 79.2 (d), $73.0(\mathrm{t}), 39.5(\mathrm{t}), 28.3(\mathrm{t}), 24.5(\mathrm{t}), 22.5(\mathrm{t})$; IR (film): 2936, 2872, 2731, 2362, 2337, 1768, 1720, 1454, 1361, 1180, 1116, 1068, 1027, 986, 915, 740, $699 \mathrm{~cm}^{-1} ;$ MS (EI): m / z (\%): 262 (<1), 177 (17), 154 (3), 92 (16), 91 (100), 85 (63), 69 (11), 65 (19); HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 285.1097$; found 285.1087.

Compound 14: A solution of NaHMDS in THF ($2 \mathrm{M}, 32 \mathrm{~mL}, 32.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added
 dropwise to a stirred solution of (tridecyl)triphenylphosphonium bromide ($18.5 \mathrm{~g}, 35.2 \mathrm{mmol}, 1.1 \mathrm{eq}$) while the reaction mixture was kept at rt with a water bath. It was stirred for another 30 min at rt before it was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of aldehyde $\mathbf{1 3}(8.37 \mathrm{~g}, 31.9 \mathrm{mmol}, 1.0 \mathrm{eq})$ in abs. THF ($48+5 \mathrm{~mL}$) was added dropwise via transfer syringe. The color of the reaction mixture changed from bright redorange to dark yellow. The reaction mixture was allowed to warm slowly to rt overnight. The resulting suspension was quenched at $0{ }^{\circ} \mathrm{C}$ with silica $(60 \mathrm{~g})$ and was transferred with $\mathrm{Et}_{2} \mathrm{O}$ to a 1 L round bottom flask and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, 10:1) affording product $\mathbf{1 4}$ as a yellowish oil ($11.2 \mathrm{~g}, 26.1 \mathrm{mmol}, 82 \%, Z: E=94: 6$).
$[\alpha]_{D}^{20}=-11.8^{\circ}\left(c=0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.40(\mathrm{dtt}$, $J=10.7,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dtt}, J=10.7,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{td}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.39(\mathrm{~m}, 2 \mathrm{H})$, $2.28-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.12(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 177.3 (s), 138.2 (s), 131.2 (d), 128.4 (d), 128.4 (d), 127.8 (d), 127.8 (d), 81.9 (d), 80.1 (d), 72.8 (t$), 31.9$ (t$), 29.8(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t})$,
 2918, 2850, 1773, 1454, 1188, 1094, 1068, 1068, 1025, 987, 912, 737, $669 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 428 (<1), 410 (1), 343 (13), 337 (9), 325 (12), 319 (28), 207 (8), 115 (12), 95 (14), 92 (21), 91 (100), 85 (79), 83 (19), 81 (20), 69 (25), 67 (32), 65 (21), 57 (22), 55 (30); HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 451.3183$; found 451.3179; EA: calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{3}, \mathrm{C}: 78.46 \%, \mathrm{H}: 10.35 \%$; found, C: $78.38 \%, \mathrm{H}: 10.53 \%$.

Compounds 15a,b: NMO ($1.03 \mathrm{~g}, 8.8 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added to a vigorously stirred
 suspension of alkene $14(3.14 \mathrm{~g}, 7.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ in acetone/water 1:2 $(4.5 \mathrm{~mL})$. A solution of OsO_{4} in tert-butanol ($2.5 \mathrm{wt} \%, 55 \mu \mathrm{~L}, 44 \mu \mathrm{~mol}, 0.6 \mathrm{~mol} \%$) was added and stirring was continued at rt with exclusion of light for 25 h . Saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(75 \mathrm{~mL})$ was added and the mixture was diluted with water. Then the layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, $1: 1 \rightarrow 1: 2$) affording syn-diols 15a,b as a colorless waxy solid ($3.07 \mathrm{~g}, 6.6 \mathrm{mmol}, 90 \%$).
$[\alpha]_{D}^{20}=-25.6^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.75-4.61$ $(\mathrm{m}, 2 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.44(\mathrm{~m}, 3 \mathrm{H}), 2.68-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.12(\mathrm{~m}, 25 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 177.4 (s), 177.3 (s), 138.0 (s), 138.0 (s), 128.5 (d), 128.1 (d), 128.0 (d), 127.9 (d), 127.9 (d), 82.4 (d), 82.0 (d), 80.8 (d), 80.2 (d), 74.7 (d), 74.6 (d), 74.6 (d), 74.3 (d), 73.1 $(\mathrm{t}), 72.8(\mathrm{t}), 31.9(\mathrm{t}), 31.6(\mathrm{t}), 31.7(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.6(\mathrm{t}), 29.4(\mathrm{t}), 28.5(\mathrm{t}), 26.8$ $(\mathrm{t}), 26.8(\mathrm{t}), 26.2(\mathrm{t}), 26.1(\mathrm{t}), 26.1(\mathrm{t}), 26.0(\mathrm{t}), 24.5(\mathrm{t}), 24.4(\mathrm{t}), 22.7(\mathrm{t}), 14.1(\mathrm{q}) ;$ IR (film): 3367, 3087, 3066, 3033, 2915, 2850, 1758, 1467, 1313, 1202, 1098, 1060, 925, 737, 697 cm^{-1}; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 485.3237; found 485.3238; EA: calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5}, \mathrm{C}: 72.69 \%, \mathrm{H}: 10.02 \%$; found, C: $72.40 \%, \mathrm{H}: 10.16 \%$.

Compounds 16a,b: $\mathrm{SOCl}_{2}(0.48 \mathrm{~mL}, 6.56 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added dropwise to a stirred
 suspension of diols $\mathbf{1 5 a}, \mathrm{b}(1.38 \mathrm{~g}, 2.97 \mathrm{mmol}, 1.0 \mathrm{eq})$ in abs. $\mathrm{CCl}_{4}(22 \mathrm{~mL})$ at rt . The mixture was stirred until a clear solution was formed and subsequently refluxed for 20 min . As TLC indicated full conversion, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{MeCN}(22 \mathrm{~mL}) . \mathrm{NaIO}_{4}(1.91 \mathrm{~g}$, $8.94 \mathrm{mmol}, 2.0 \mathrm{eq}$) and rutheniumtrichloride trihydrate (41% $\mathrm{Ru}, 31 \mathrm{mg}, 60 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) were added followed by water $(35 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously at $0^{\circ} \mathrm{C}$ for 5 min , than at rt for 2 days. The mixture was diluted
with $\mathrm{Et}_{2} \mathrm{O}$, the layers were separated and the organic layer was washed successively two times with water and with saturated aqueous NaHCO_{3}. The organic layer was dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, 3:1) affording sulfate 16a ($727 \mathrm{mg}, 1.39 \mathrm{mmol}, 47 \%$) and $\mathbf{1 6 b}$ ($653 \mathrm{mg}, 1.25 \mathrm{mmol}, 42 \%$) as colorless oils.

Diastereomer 16a: $[\alpha]_{D}^{20}=+7.2^{\circ}\left(c=1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.40-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 4.88-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{td}, J=7.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dt}, J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2)$, $2.31-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.16(\mathrm{~m}, 22 \mathrm{H}), 0.88(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 176.9 (s), 137.8 (s), 128.6 (d), 128.3 (d), 128.1 (d), 86.1 (d), 85.7 (d), $81.8(\mathrm{~d}), 78.5(\mathrm{~d}), 72.6(\mathrm{t}), 31.9(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.5(\mathrm{t}), 29.3$ (t$), 29.3(\mathrm{t}), 29.0(\mathrm{t}), 28.4(\mathrm{t}), 28.3(\mathrm{t}), 25.3(\mathrm{t}), 25.3(\mathrm{t}), 24.5(\mathrm{t}), 23.7(\mathrm{t}), 22.7(\mathrm{t}), 14.1(\mathrm{q})$; IR (film): 3064, 3032, 2926, 2854, 1776, 1729, 1456, 1380, 1262, 1208, 1065, 1026, 966, 870, 837, 700, $648 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 547.2700$; found 547.2699 .

Diastereomer 16b: $[\alpha]_{D}^{20}=-0.90^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.39-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 4.90-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{td}, J=$ $7.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.15(\mathrm{~m}, 22 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): 176.8 (s), 137.8 (s$), 128.6$ (d), 128.3 (d), 128.1 (d), 86.4 (d), 86.1 (d), 82.8 (d), 79.8 (d), $73.6(\mathrm{t}), 31.9(\mathrm{t}), 29.7(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.5(\mathrm{t}), 29.3(\mathrm{t}), 29.3(\mathrm{t}), 29.1(\mathrm{t}), 28.4(\mathrm{t})$, 28.3 (t), 26.5 (t), 25.3 (t), 24.6 (t), 24.6 (t), 22.7 (t), 14.1 (q); IR (film): 3089, 3064, 3032, 2926, 2855, 1776, 1456, 1379, 1208, 1067, 968, 871, 700, $648 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 547.2700$; found 547.2704.

Compound 17: A solution of BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~m}, 2.54 \mathrm{~mL}, 2.54 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added to stirred solution of cyclic sulfate $\mathbf{1 6 a}(666 \mathrm{mg}, 1.27 \mathrm{mmol}, 1.0$ eq) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3 min at $-78^{\circ} \mathrm{C}$ and for 2 h at $0^{\circ} \mathrm{C}$ before being cooled again to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added and stirring was continued for 40 min at $-78^{\circ} \mathrm{C}$ and for further 20 min at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and residue suspended on $\mathrm{EtOH}(25 \mathrm{~mL}$). The resulting slurry was added to precooled $\mathrm{NaH}(60 \%, 65 \mathrm{mg}, 1.66 \mathrm{mmol}, 1.3 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and allowed to warm slowly to rt overnight. The solvent was removed under reduced pressure and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL}) .20 \%$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ was added and the biphasic reaction mixture was stirred vigorously for 24 h . The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with saturated aqueous NaHCO_{3}, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc,
$5: 1 \rightarrow 3: 1)$ affording THP lactone $17(300 \mathrm{mg}, 0.85 \mathrm{mmol}, 67 \%, e e=92 \%)$ as a colorless solid. ${ }^{10}$

Mp: $65^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-25.7^{\circ}\left(c=1.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.52-4.48(\mathrm{~m}, 1 \mathrm{H})$, 4.05-4.00 (m, 1H), 3.81 (dt, $J=7.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (dd, $J=11.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, J $=17.6,10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=17.7,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.14$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.34-$ $1.10(\mathrm{~m}, 19 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{H}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 177.6 (s), 83.7 (d), 81.0 (d), $80.8(\mathrm{~d}), 74.4(\mathrm{~d}), 33.7(\mathrm{t}), 31.9(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t})$, 29.4 (t), 28.3 (t), 27.9 (t), 27.7 (t), 25.6 (t), 24.5 (t), 22.7 (t), 14.1 (q); IR (film): 3400, 2918, 2849, 2362, 2337, 1750, 1467, 1432, 1192, 1076, 1008, 979, 946, 903, $810 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 354 (< 1), 269 (6), 251 (1), 233 (2), 185 (5), 181 (5), 157 (27), 156 (26), 155 (15), 138 (100), 112 (16), 111 (21), 110 (22), 96 (19), 85 (15), 83 (28), 81 (22), 71 (33), 69 (38), 67 (28), 60 (50), 57 (52), 55 (61), 43 (52), 44 (45); HRMS (ESI): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 377.2662$; found 377.2655 ; EA: calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4}, \mathrm{C}: 71.14 \%, \mathrm{H}: 10.80 \%$; found, C: 71.13%, H: 10.70%.

Compound 19: A solution of DIBAL in hexane ($1 \mathrm{M}, 0.78 \mathrm{~mL}, 0.78 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added
 dropwise to a stirred solution of THP-lactone $17(110 \mathrm{mg}$, $0.31 \mathrm{mmol}, 1.0 \mathrm{eq})$ in abs. THF (1.6 mL) at $-78^{\circ} \mathrm{C}$. After 3 h MeOH was added and stirring was continued for 1 h at -78 ${ }^{\circ} \mathrm{C}$ and then allowed to warm to rt overnight. The solvent was removed under reduced pressure at rt and the residue suspended in THF. In a separate flask ethyl triphenylphosphonium bromide ($459 \mathrm{mg}, 1.24 \mathrm{mmol}, 4.0 \mathrm{eq}$) was suspended in abs. THF (2.0 mL) and a solution of NaHMDS ($2 \mathrm{M}, 0.64 \mathrm{~mL}, 1.24 \mathrm{mmol}, 4.0 \mathrm{eq}$) was added dropwise at rt . The resulting ylide solution was added via syringe and the reaction mixture was refluxed for 48 h . The reaction was quenched by addition of a 1 N aqueous solution of HCl at $0{ }^{\circ} \mathrm{C}$ and diluted with ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, 8:1) affording alkene 19 (112 mg, $3.04 \mathrm{mmol}, 98 \%$, $E / Z=16 / 84$) as a colorless solid.

Mp: $35{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-1.1^{\circ}\left(c=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.53-5.43(\mathrm{~m}, 1 \mathrm{H})$, $5.43-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.30-2.11(\mathrm{~m}, 2 \mathrm{H})$, $2.00-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.10$ $(\mathrm{m}, 19 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 130.9 (d), 130.0 (d), 125.4 (d), 124.5 (d), 82.8 (d), 82.8 (d), 74.3 (d), 73.8 (d), 34.1 ($t), 33.8$ ($t), 31.9$ (t), 29.7 (t), 29.7 (t),
 (q); IR (film): 3326, 2917, 2850, 1468, 1311, 1070, 1018, 969, 721, 663, $565 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 368 (4), 350 (1), 269 (9), 199 (6), 170 (21), 169 (4), 125 (21), 109 (13), 99 (55), 97

[^3](32), 95 (19), 84 (45), 83 (32), 81 (45), 71 (100), 69 (53), 57 (55), 55 (79), 43 (57), 41 (47); HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 391.3183$; found 391.3179; EA: calcd. for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3}, \mathrm{C}: 74.95 \%, \mathrm{H}: 12.03 \%$; found, C: 74.53%, $\mathrm{H}: 11.96 \%$.

Compound 20: 1,4 -Benzoquinone ($1.7 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.56 \mathrm{eq}$) and $2^{\text {nd }}$ generation
 Hoveyda-Grubbs catalyst ($1.8 \mathrm{mg}, 0.0028$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$) were added to a stirred solution of alkene $19(10.0 \mathrm{mg}, 0.028$ $\mathrm{mmol}, 1.0 \mathrm{eq})$ and lactone $\mathbf{2 3}^{11}(15.0 \mathrm{mg}$, $0.06 \mathrm{mmol}, 2.15 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction mixture was stirred for 17 h at rt . Then the solvent was removed under reduced pressure and the residue was purified by column chromatography (cyclohexane/EtOAc, $1: 1 \rightarrow 0: 1)$ affording alkene $\mathbf{2 0}(11.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 71 \%)$ as a yellowish waxy solid.

Mp: $38{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+9.9^{\circ}\left(c=1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.60-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{qd}, J=6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 2 \mathrm{H})$, $2.57-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30-1.86(\mathrm{~m}, 6 \mathrm{H}), 1.86-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$, overlap), 1.61-1.39 (m, 7H, overlap), 1.39-1.13 (m, 27H), $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.7 (s), 151.9 (d), 131.2 (s), 131.1 (d), 129.7 (d), 82.7 (d), 82.6 (d), 78.0 (d), 74.4 (d), 73.7 (d), 69.9 (d), 37.4 (t), 34.2 (t), 33.9 (t), 33.3 (t), 32.5 (t), 31.9 (t$)$, 29.7 (t$), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.4(\mathrm{t}), 29.3(\mathrm{t}), 29.3(\mathrm{t}), 29.3(\mathrm{t}), 29.2(\mathrm{t}), 28.9(\mathrm{t}), 28.1$ $(\mathrm{t}), 28.1(\mathrm{t}), 28.1(\mathrm{t}), 25.7(\mathrm{t}), 25.5(\mathrm{t}), 22.7(\mathrm{t}), 19.1(\mathrm{q}), 14.1(\mathrm{q}) ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 601.4439$; found 601.4439.

16,19-cis-Murisolin (2): A solution of $\mathrm{NaOAc}(103 \mathrm{mg}, 1.26 \mathrm{mmol}, 90 \mathrm{eq}$) in water (4.8 mL)
 was added via syringe pump over 4 h to a stirred solution of alkene $\mathbf{2 0}(4.9 \mathrm{mg}, 0.014 \mathrm{mmol}, 1.0 \mathrm{eq})$ and p-toluenesulfonyl hydrazide ($182 \mathrm{mg}, 0.98 \mathrm{mmol}, 70$ eq) in DME (4.1 mL) at $100{ }^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to rt , diluted with water and extracted with ethyl acetate. The combined organic layers were successively washed three times with 0.1 M aqueous HCl and then with brine. The combined aqueous layers extracted again with ethyl acetate. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, 2:1) affording 16,19-cis-Murisolin (2) (4.7 mg, $0.008 \mathrm{mmol}, 60 \%$) as a colorless waxy solid.

[^4]Mp: $66{ }^{\circ} \mathrm{C}\left[\right.$ Lit. $\left.:^{12,13} 75.5-77.5^{\circ} \mathrm{C}\right] ;[\alpha]_{D}^{20}=+6.5^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $7.16(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{qq}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.43-3.37$ $(\mathrm{m}, 2 \mathrm{H}), 2.51(\mathrm{ddt}, J=15.1,3.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddt}, J=15.2,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{s}$, 2 H), 2.26 (br s, 1H), 1.95-1.88 (m, 2H), 1.77-1.70 (m, 2H), 1.50-1.20 (m, 42H, overlap), 1.41 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, overlap), $0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.8 (s), 151.9 (d), 131.4 (s$), 82.8$ (d), 78.1 (d), 74.5 (d), 70.1 (d), 37.6 (t), $34.3(\mathrm{t}), 34.3(\mathrm{t}), 33.5(\mathrm{t})$, $32.1(\mathrm{t}), 29.9(\mathrm{t}), 29.8(\mathrm{t}), 29.8(\mathrm{t}), 29.8(\mathrm{t}), 29.8(\mathrm{t}), 29.8(\mathrm{t}), 29.8(\mathrm{t}), 29.7(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t})$, $29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.5(\mathrm{t}), 28.3(\mathrm{t}), 25.9(\mathrm{t}), 25.8(\mathrm{t}), 25.7(\mathrm{t}), 22.9(\mathrm{t}), 19.3(\mathrm{q}), 14.3$ (q); IR (film): 3390, 2918, 2850, 1732, 1678, 1598, 1525, 1385, 1339, 1293, 1158, 1090, 968, $859,814 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 603.4595$; found 603.4603.

Compound 18: A solution of BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{M}, 0.53 \mathrm{~mL}, 0.53 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added to stirred solution of cyclic sulfate $\mathbf{1 6 b}(153 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$
 eq) in abs. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 3 min at $-78^{\circ} \mathrm{C}$ and for 2 h at $0^{\circ} \mathrm{C}$ before being cooled again to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{MeOH}(0.6 \mathrm{~mL})$ was added and stirring was continued for 40 min at $-78^{\circ} \mathrm{C}$ and for further 20 min at $0^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure and residue suspended on $\mathrm{EtOH}(5.8 \mathrm{~mL})$. The resulting slurry was added to precooled $\mathrm{NaH}(60 \%, 15 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.3 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and allowed to warm slowly to rt overnight. The solvent was removed under reduced pressure and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(5.8 \mathrm{~mL}) .20 \%$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2.9 \mathrm{~mL})$ was added and the biphasic reaction mixture was stirred vigorously for 24 h . The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with saturated aqueous NaHCO_{3}, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, $5: 1 \rightarrow 3: 1)$ affording THP-lactone $\mathbf{1 8}(85 \mathrm{mg}, 0.24 \mathrm{mmol}, 83 \%, e e=92 \%)$ as a colorless solid. ${ }^{10}$

Mp: $96{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-7.5^{\circ}\left(c=0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.48(\mathrm{ddd}, J=8.0$, $5.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dt}, J=8.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.72-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.59(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.16(\mathrm{~m}, 19 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}): 177.4 (s$), 83.5(\mathrm{~d}), 81.2$ (d), 80.8 (d), 73.7 (d), 33.8 (t), 31.9 (t), 29.7 (t), 29.7 (t$)$, $29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.4(\mathrm{t}), 28.3(\mathrm{t}), 28.2(\mathrm{t}), 28.1(\mathrm{t}), 25.6(\mathrm{t}), 24.7(\mathrm{t}), 22.7(\mathrm{t}), 14.1(\mathrm{q}) ; \mathbb{R}$ (film): 3437, 2918, 2852, 1762, 1472, 1299, 1235, 1198, 1132, 1072, 1022, 945, 719, 685 cm^{-1}; MS (EI): m/z (\%): 354 (<1), 269 (22), 251 (1), 233 (2), 185 (3), 181 (7), 168 (5), 157 (27), 156 (28), 155 (78), 138 (100), 137 (27), 111 (53), 85 (28), 83 (41), 81 (39), 71 (51), 69 (48), 67 (33), 60 (32), 57 (79), 55 (85), 43 (79), 41 (70); HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 377.2662$; found 377.2657 ; EA: calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4}, \mathrm{C}: 71.14 \%, \mathrm{H}$: 10.80%; found, C: 70.91%, H: 10.86%.

[^5]Compound 21: A solution of DIBAL in hexane ($1 \mathrm{M}, 0.71 \mathrm{~mL}, 0.71 \mathrm{mmol}, 2.5 \mathrm{eq}$) was added
 dropwise to a stirred solution of THP-lactone $\mathbf{1 8}(100 \mathrm{mg}$, $0.28 \mathrm{mmol}, 1.0 \mathrm{eq})$ in abs. THF (1.5 mL) at $-78{ }^{\circ} \mathrm{C}$. After 3 h MeOH was added and stirring was continued for 1 h at $78{ }^{\circ} \mathrm{C}$ and then allowed to warm to rt overnight. The solvent was removed under reduced pressure at rt and the residue suspended in THF. In a separate flask ethyl triphenylphosphonium bromide ($417 \mathrm{mg}, 1.13 \mathrm{mmol}, 4.0 \mathrm{eq}$) was suspended in abs. THF (1.9 mL) and a solution of NaHMDS ($2 \mathrm{M}, 0.57 \mathrm{~mL}, 1.13 \mathrm{mmol}, 4.0$ eq) was added dropwise at rt. The resulting ylide-solution was added via syringe and the reaction mixture was refluxed for 48 h . The reaction was quenched by addition of a 1 N aqueous solution of HCl at $0^{\circ} \mathrm{C}$ and diluted with ethyl acetate. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, $8: 1$) affording alkene $21(44 \mathrm{mg}, 0.12$ $\mathrm{mmol}, 43 \%, E / Z=15 / 85$) as a colorless solid.

Mp: $40{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+14.9^{\circ}\left(c=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.53-5.43(\mathrm{~m}$, $1 \mathrm{H}), 5.43-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.27-2.14(\mathrm{~m}$, $2 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.35-$ 1.11 (m, 19H), 0.88 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 130.8 (d), 130.0 (d), 125.4 (d), 124.6 (d), 82.7 (d), 82.6 (d), 74.1 (d), 73.5 (d), 33.5 (t), 33.2 ($t), 31.9$ (t), 29.7 (t), 29.7 (t), 29.7 (t), 29.7 (t), 29.6 (t), 29.6 (t), 29.4 (t), 28.8 (t), 25.6 (t), $23.0(t), 22.7(t), 14.1$ (q), 12.8 (q); MS (EI): m/z (\%): 368 (9), 350 (1), 299 (1), 269 (17), 251 (2), 199 (1), 169 (21), 151 (9), 133 (17), 125 (40), 109 (23), 99 (64), 97 (36), 95 (32), 84 (26), 83 (61), 81 (62), 71 (100), 70 (32), 69 (74), 67 (36), 57 (77), 55 (100), 43 (79), 41 (67); HRMS (ESI): $m / z ~ c a l c d . ~$ for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 391.3183$; found 391.3182 .

Compound 22: 1,4 -Benzoquinone ($0.8 \mathrm{mg}, 0.007 \mathrm{mmol}, 0.26 \mathrm{eq})$ and $2^{\text {nd }}$ generation
 Hoveyda-Grubbs catalyst ($1.0 \mathrm{mg}, 0.0017$ $\mathrm{mmol}, 6 \mathrm{~mol} \%$) were added to a stirred solution of alkene $19(9.9 \mathrm{mg}, 0.028 \mathrm{mmol}$, $1.0 \mathrm{eq})$ and lactone $\mathbf{2 3}^{7}(16.1 \mathrm{mg}, 0.064$ $\mathrm{mmol}, 2.3 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$.
The reaction mixture was stirred for 6 h at $0^{\circ} \mathrm{C}$. Then a second portion of 1,4 -benzoquinone $(0.5 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.18 \mathrm{eq})$ and $2^{\text {nd }}$ generation Hoveyda-Grubbs catalyst ($0.7 \mathrm{mg}, 0.0011$ $\mathrm{mmol}, 4 \mathrm{~mol} \%$) were added and the reaction was allowed to warm to rt for 17 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography (cyclohexane/EtOAc, 4:1 $\rightarrow 0: 1$) affording alkene $22(5.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 37 \%$) as a colorless waxy solid.

Mp: $51{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.20(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.06$ (qd, $J=6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.30(\mathrm{~m}, 6 \mathrm{H}), 2.28-1.90$ (m, 2H), 1.78-1.58 (m, 2H), 1.43 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, overlap), 1.58-1.14 (m, 34H, overlap), $0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.7 (s), 151.9 (d), 131.1 (s$), 131.1$
(d), 129.7 (d), 82.7 (d), 82.6 (d), 78.0 (d), 74.1 (d), 73.4 (d), 69.9 (d), 37.3 (t), 33.7 (t), 33.3 $(\mathrm{t}), 33.3(\mathrm{t}), 32.5(\mathrm{t}), 31.9(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.7(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.6(\mathrm{t}), 29.3(\mathrm{t}), 29.3$ (t), 29.0 (t), 28.8 (t), $28.6(t), 28.1(t), 27.0(t), 26.9(t), 25.6(t), 25.5(t), 22.7(t), 19.1(q)$, 14.1 (q); HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 601.4439$; found 601.4452.

Murisolin (1): A solution of NaOAc ($428 \mathrm{mg}, 5.22 \mathrm{mmol}, 90 \mathrm{eq}$) in water (20 mL) was added

1 via syringe pump over 4 h to a stirred solution of alkene 22 ($34 \mathrm{mg}, 0.058 \mathrm{mmol}, 1.0 \mathrm{eq}$) and p toluenesulfonyl hydrazide ($767 \mathrm{mg}, 4.12 \mathrm{mmol}, 70 \mathrm{eq}$) in DME (17 mL) at $100^{\circ} \mathrm{C}$. Then the reaction mixture was cooled to rt, diluted with water and extracted with ethyl acetate. The combined organic layers were successively washed three times with 0.1 m aqueous HCl and then with brine. The combined aqueous layers extracted again with ethyl acetate. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by column chromatography (cyclohexane/EtOAc, 2:1) affording Murisolin (1) ($10 \mathrm{mg}, 0.016 \mathrm{mmol}, 30 \%$) as a colorless waxy solid.

Mp: $63{ }^{\circ} \mathrm{C}\left[\right.$ Lit. $\left.::^{12,13} 72.0-73.5^{\circ} \mathrm{C}\right] ;[\alpha]_{D}^{20}=+10.4^{\circ}\left(c=0.15, \mathrm{CHCl}_{3}\right)\left[\mathrm{Lit}:[\alpha]_{D}^{20}=+21.5^{\circ}(c=\right.$ $\left.0.36, \mathrm{CHCl}_{3}\right) ;{ }^{12}[\alpha]_{D}^{20}=+20.6^{\circ}\left(c=0.42, \mathrm{CHCl}_{3}\right) ;{ }^{13}{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.18(\mathrm{q}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{qq}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 3 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (ddt, $J=15.2,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddt}, J=15.2,8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.02-1.95(\mathrm{~m}$, 2 H), 1.73-1.64 (m, 2H), 1.54-1.21 (m, 42H, overlap), 1.43 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, overlap), 0.88 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.5 (s$), 151.7$ (d), 131.2 (s), 82.6 (d), 78.0 (d), 74.0 (d), 70.0 (d), 37.4 (t), 33.5 (t), 33.4 (t), 31.9 (t), 29.7 (t), 29.7 (t), 29.7 (t), 29.7 (t), $29.6(t), 29.6(t), 29.6(t), 29.5(t), 29.5(t), 29.5(t), 29.5(t), 29.3(t), 28.7(t), 25.6(t), 25.6(t)$, 25.5 (t), 22.7 (t), 19.1 (q), 14.1 (q); IR (film): 3472, 3291, 2916, 2850, 1750, 1469, 1341, $1165,1073,1030,961,932,849,814,671 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 603.4595$; found 603.4588 .

Table S-1. Comparison of the recorded ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ of murisolin (1) with literature data. ${ }^{14}$

$\begin{gathered} \text { Experimental (150 MHz) } \\ \delta[\mathrm{ppm}] \\ \hline \end{gathered}$	$\begin{gathered} \text { Literature }^{14}(151 \mathrm{MHz}) \\ \delta[\mathrm{ppm}] \\ \hline \end{gathered}$	$\Delta \delta$	Position
174.5	174.2	+0.3	1
151.7	151.9	-0.2	33
131.2	131.3	-0.1	2
$82.6(2 \mathrm{C})^{15}$	82.7	-0.1	16, 19
	82.7	-0.1	
78.0	78.1	-0.1	34
74.0	74.1	-0.1	15, 20
70.0	70.0	0	4
37.4	37.5	-0.1	5
33.5 (2C)	33.6 (2C)	-0.1	3,14, 21
33.4	33.4	0	
31.9	32.0	-0.1	30
29.7	29.8	-0.1	$\begin{gathered} 6-13 \\ 22-29 \end{gathered}$
29.7	29.8	-0.1	
29.7	$29.8{ }^{15}$	-0.1	
29.7		-0.1	
29.6	29.7	-0.1	
29.6	29.7	-0.1	
29.6	29.7	-0.1	
29.5	29.7	-0.2	
29.5	29.6	-0.1	
29.5	29.6	-0.1	
29.5	29.5	0	
29.3	29.4	-0.1	
28.7 (2C)	28.8 (2C)	-0.1	17, 18
25.6	25.7	-0.1	6-1322-29
25.6	25.6 (2C) ${ }^{15}$	0	
25.5		-0.1	
22.7	22.8	-0.1	31
19.1	19.2	-0.1	35
14.1	14.2	-0.1	32

14. Curran, D. P.; Zhang, Q.; Richard, C.; Lu, H.; Gudipati, V.; Wilcox, C. S. J. Am. Chem. Soc. 2006, 128, 9561.
15. NMR spectra were recorded using the same frequencies as in literature. Nevertheless, some signals, especially of the aliphatic chain-carbons, that are reported as single peaks turned out to be in fact two very closely adjacent signals. For an excellent article on NMR studies of murisolins see also: Curran, D. P.;
Zhang, Q.; Lu, H.; Gudipati, V. J. Am. Chem. Soc. 2006, 128, 9943.

Table S-2. Comparison of the recorded ${ }^{1} \mathrm{H} N \mathrm{NR}$ data $\left(\mathrm{CDCl}_{3}\right)$ of murisolin (1) with literature data. ${ }^{14}$

Experimental (600 MHz) $\delta[p p m]$ mult. (J in Hz)	Literature ${ }^{14}(600 \mathrm{MHz})$ δ [ppm] mult. (J in Hz)	$\Delta \delta$	Position
7.18 q (1.6)	7.19 s	-0.01	33
5.06 qq (6.8, 1.6)	5.07 q (6.6)	-0.01	34
$3.87-3.77$ m	$3.86-3.79 \mathrm{~m}$	0	4, 16, 19
$3.45-3.38 \mathrm{~m}$	$3.43-3.40 \mathrm{~m}$	0	15. 20
$2.53 \mathrm{ddt}(15.2,3.1,1.5)$	2.53 d (15.3)	0	3 a
$2.40 \mathrm{ddt}(15.2,8.3,1.3)$	2.41 dd (15.1, 8.9)	-0.01	3b
$2.34 \mathrm{br} \mathrm{s}^{16}$	--	--	OH
$2.02-1.95 \mathrm{~m}$	$2.02-1.96 \mathrm{~m}$	0	17a, 18a
$1.73-1.64$ m	$1.72-1.64$ m	0	17b, 18b
$1.54-1.21 \mathrm{~m}$	$\begin{aligned} & 1.54-1.45 \mathrm{~m} \\ & 1.43-1.39 \mathrm{~m} \end{aligned}$	-0.01	$\begin{gathered} 5-14 \\ 21-31 \end{gathered}$
1.43 d (6.8)	1.44 d (6.8)	-0.01	35
0.88 t (7.1)	0.89 t (6.8)	-0.01	32

Table S-3. Comparison of the recorded ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ of 16,19 -cis-murisolin (2) with literature data. ${ }^{14}$

Experimental (150 MHz)	$\begin{gathered} \text { Literature }^{14} \\ (151 \mathrm{MHz}) \\ \hline \end{gathered}$	$\Delta \delta$	Position
174.8	174.7	+0.1	1
151.9	151.9	0	33
131.4	131.3	+0.1	2
82.8 (2C)	82.8 (2C)	0	16, 19
78.1	78.1	0	34
74.5 (2C)	74.5 (2C)	0	15,20
70.1	70.1	0	4
37.6	37.5	+0.1	5
34.3	34.2	+0.1	3,14, 21
34.3	34.2	+0.1	
33.5	33.4	+0.1	
32.1	32.0	+0.1	30
29.9	$29.8{ }^{15}$	+0.1	$\begin{gathered} 6-14 \\ 22-29 \end{gathered}$
29.8		0	
29.8	29.8	0	
29.8	29.7	+0.1	
29.8	$29.7{ }^{15}$	+0.1	
29.8		+0.1	
29.8	$29.7{ }^{15}$	+0.1	
29.7		0	
29.6	29.7	-0.1	
29.6	$29.6{ }^{15}$	0	
29.6		0	
29.6	29.6	0	
29.6	29.5	+0.1	
29.5	29.4	+0.1	
28.3 (2C)	28.2 (2C)	+0.1	17, 18
25.9	25.8	+0.1	$\begin{gathered} 6-14 \\ 22-29 \end{gathered}$
25.8	25.7	+0.1	
25.7	25.6	+0.1	
22.9	22.8	+0.1	31
19.3	19.2	+0.1	35
14.3	14.2	+0.1	32

Table S-4. Comparison of the recorded ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ of 16,19 -cis-murisolin (2) with literature data. ${ }^{14}$

Experimental (600 MHz) $\delta[\mathrm{ppm}]$ mult. $(J$ in Hz)	Literature ${ }^{14}(600 \mathrm{MHz})$ δ [ppm] mult. (J in Hz)	$\Delta \delta$	Position
7.16 q (1.3)	7.19 q (1.4)	-0.03	33
$5.06 \mathrm{qq}(6.8,1.6)$	5.07 qq (6.6, 1.5)	-0.01	34
$3.85-3.76 \mathrm{~m}$	$3.87-3.80 \mathrm{~m}$	-0.03	4, 16,19
$3.43-3.37 \mathrm{~m}$	$3.44-3.41 \mathrm{~m}$	-0.02	15.20
2.51 ddt (15.1, 3.2, 1.5)	2.54 ddt (15.1, 3.4, 1.5)	-0.03	3 a
2.38 ddt (15.2, 8.4, 1.2)	2.41 ddt (15.1, 8.9, 1.2)	-0.03	3b
$2.35 \mathrm{br} \mathrm{s}^{16}$	--	--	OH
$2.26 \mathrm{br} \mathrm{s}^{16}$	$1.66-1.69 \mathrm{~m}$	+0.58	OH
$1.95-1.88 \mathrm{~m}$	$1.99-1.91 \mathrm{~m}$	-0.03	17a, 18a
$1.77-1.70 \mathrm{~m}$	$1.79-1.72 \mathrm{~m}$	-0.02	17b, 18b
$1.50-1.20 \mathrm{~m}$	$\begin{aligned} & 1.53-1.45 \mathrm{~m} \\ & 1.42-1.32 \mathrm{~m} \\ & 1.32-1.24 \mathrm{~m} \\ & \hline \end{aligned}$	-0.03	$\begin{gathered} 5-14 \\ 21-31 \end{gathered}$
1.41 d (6.8)	1.44 d (6.8)	-0.03	35
0.86 t (7.1)	0.89 t (6.9)	-0.03	32

${ }^{13} \mathrm{C}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$

NiN Ni

T	1	1	1	1	T	T	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1
105	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5

ल్~N
ฟั~~~~~~

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

13
${ }^{13} \mathrm{C}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1		1	1		1	I	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1		1	T	I
240	230	220	210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20	10	0	-10	-20

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

80
-8
10
10

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ハーが

，	1	1	，	1		1	T	，	1		T	T	T	1		1		1
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\text { N- }}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	+	I	1	1	1
180	170	160	150	140	130	120	110	100	${ }^{90}$	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Γ	1	T	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	T
80	170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0	-10

	T	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

S58

,	,	1	1	1	1	T	1	1	1	1	1	,	,	1	1	1	,	1	1	1
5.2	5.0	4.8	4.6	4.4	4.2	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2
										ppm)										

Parts of the ${ }^{1} \mathrm{H}$ NMR spectra $(300 \mathrm{MHz})$ of the racemic $52: 48$ mixture (GC) of monoacetates $9 \mathbf{a}$ and $9 \mathbf{b}$ in CDCl_{3} with Eu(hfc) $)_{3}(0$ to $99 \mathrm{~mol} \%)$

Part of the ${ }^{1} \mathrm{H}$ NMR Spectrum (300 MHz) of a $62: 38$ mixture $(G C)$ of the monoacetates $9 \mathbf{a}$ and $\mathbf{9 b}$ after lipase catalyzed monoacetylation of the diols $\mathbf{8 a}$ and $\mathbf{8 b}$ with addition of $40 \mathrm{~mol} \%$ of $\mathrm{Eu}(\mathrm{hfc})_{3}$.

Filename: C:\EZChrom Elite\Enterprise\Projects\Uni Münster\Peter\Data\PEP 12-1 40-60 OJ-RH.dat

Run Time: 28.05.2010 13:03:02
Print Time: $\quad 10.10 .2012$ 14:26:18
Overview

ee-Determination

Ri-Detektor S 2300 Results
Name
Solvent

$17-(S, S, R, R)$	10,317	49,023
$17-(R, R, S, S)$	12,067	

Totals		100,000

HPLC of the racemic mixture of compound 17.

Filename: C:\EZChrom Elite\Enterprise\Projects\Uni Münster\Peter\Data\PEP 12-2 40-60 OJ-RH

Run Time: $\quad 28.05 .2010$ 13:48:23
Print Time: 10.10.2012 14:33:35
Overview

ee-Determination

Ri-Detektor S 2300 Results
Name
Retention Time
Area Percent
Solvent
$17-(S, S, R, R)$
10,600
12,217
3,792
17-(R, R, S, S)
96,208

Totals		100,000

HPLC of $(R, R, S, S)-17$ (92\% ee).

Filename: C:\EZChrom Elite\Enterprise\Projects\Uni Münster\Peter\Data\PEP 12-4 (40-60) rac OJ-RH.dat

Run Time:
02.06.2010 15:39:41

Print Time: 10.10.2012 15:03:52
Overview

ee-Determination

Ri-Detektor S 2300 Results
Name
$18-(R, R, R, R)$
Retention Time
Area Percent
10,450
50,287
Totals
100,000
HPLC of the racemic mixture of compound 18.

Filename: C:\EZChrom Elite\Enterprise\Projects\Uni Münster\Peter\Data\PEP 12-3 (40-60) OJ-RH.dat

Run Time: 02.06.2010 13:33:54
Print Time: 10.10.2012 14:42:41
Overview

ee-Determination

Ri-Detektor S 2300 Results
Name

Retention Time
Area Percent
18-(S,S,S,S)
10,483
Totals
100,000
HPLC of (R, R, R, R)-18 (92\% ee).

[^0]: 1 Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 4th ed., Butterworth-Heinemann, Oxford, 1996.
 2 Otwinowski, Z.; Minor, W. Methods in Enzymology 1997, 276, 307-326.
 3 Otwinowski, Z.; Borek, D.; Majewski, W.; Minor, W. Acta Cryst. 2003, A59, 228-234.
 4 Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473.
 5 Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

[^1]: 6 Behr, S.; Hegemann, K.; Schimanski, H.; Fröhlich, R.; Haufe, G. Eur. J. Org. Chem. 2004, 3884.
 7 The ratio was determined by GC.
 8 The enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR using $40 \mathrm{~mol} \% \mathrm{Eu}(\mathrm{hfc})_{3}$ as chiral shift reagent in CDCl_{3}; see spectral data.

[^2]: 9 preparation: $\mathrm{CrO}_{3}(26 \mathrm{~g})$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(23 \mathrm{~mL})$, filled up with water to 100 mL .

[^3]: 10 The enantiomeric excess was determined by chiral HPLC: $\mathrm{OJ}-\mathrm{RH}, 150 \times 4.6 \mathrm{~mm}, \mathrm{H}_{2} \mathrm{O} /$ acetonitrile 40:60, $0.60 \mathrm{~mL} / \mathrm{min}$

[^4]: 11 Avedissian, H.; Sinha, S. C.; Yazbak, A.; Sinha, A.; Neogi, P.; Sinha, S. C.; Keinan, E. J. Org. Chem. 2000, 65, 6035.

[^5]: 12 Maezaki, N.; Kojima, N.; Sakamoto, A.; Tominaga, H.; Iwata, C.; Tanaka, T.; Monden, M.; Damdinsuren, B.; Nakamori, S. Chem. Eur. J. 2003, 389.

 13 Hattori, Y.; Kimura, Y.; Moroda, A.; Konno, H.; Abe, M.; Miyoshi, H.; Goto, T.; Makabe, H. Chem. Asian J. 2006, $1,894-904$.

