Supporting Information for

"In-vitro Replication Studies on O^2 -Methylthymidine and O^4 -Methylthymidine"

Nisana Andersen¹, Jianshuang Wang¹, Pengcheng Wang², Yong Jiang² and Yinsheng Wang^{1,2,*}

¹Department of Chemistry and ²Environmental Toxicology Graduate Program, University of

California, Riverside, California 92521-0403

Chem. Res. Toxicol., 2012

Figure S1. Product-ion spectrum of the $[M-4H]^{4-}$ ion (*m/z* 1300.4) of the 17-mer ODN d(CCATGGCAXGAGAATTC), where "X" is O^2 -MdT (A) and O^4 -MdT (B). Shown in the inset is the negative-ion ESI-MS for the ODNs.

Figure S2. Calibration curves for the ratios of unextended primer d(AATTCTC) to d(AATTCTCATGC) (i.e., 11A) (A); d(AATTCTCA) (i.e., 8A) to 11A (B); d(AATTCTCG) (i.e., 8G) to 11A (C); d(AATTCTCTGC) (i.e., 10Del) to 11A (D); d(AATTCTCCTGC) (i.e., 11C) to 11A (E); d(AATTCTCTTGC) (i.e., 11T) to 11A (F); d(AATTCTCGTGC) (i.e., 11G) to 11A (G).

Figure S3. Representative gel images for steady-state kinetic assays measuring nucleotide incorporation opposite undamaged dT (A), O^2 -MdT (B), and O^4 -MdT (C) with Kf⁻ (0.7-7 nM). Reactions were conducted in the presence of individual dNTPs with the highest concentrations indicated in the figures. The ratios of dNTP concentrations were 0.5-0.6 between neighboring lanes.

Figure S4. Representative gel images for steady-state kinetic assays measuring nucleotide incorporation opposite undamaged dT (A), O^2 -MdT (B), and O^4 -MdT (C) with human DNA polymerase κ (1-5 nM). Reactions were conducted in the presence of individual dNTPs with the highest concentrations indicated in the figures. The concentration ratios of dNTP between neighboring lanes were 0.5-0.6.

Figure S5. Representative gel images for steady-state kinetic assays measuring nucleotide incorporation opposite undamaged dT (A), O^2 -MdT (B), and O^4 -MdT (C) with yeast polymerase η (7.5 nM). Reactions were conducted in the presence of individual dNTPs with the highest concentrations indicated in the figures. The concentration ratios of dNTP between neighboring lanes were 0.5-0.6.

Figure S6. (A) The total-ion chromatogram derived from the LC-MS/MS analysis of the human pol κ -induced replication products of O^2 -MdT-containing substrates that have been treated with two restriction enzymes, NcoI and EcoRI plus shrimp alkaline phosphatase. (B) ESI-MS averaged from the peaks eluting in 18.5-20.5 min in part (A), where 'T*' designates the remnant of the digested template containing the damaged site, i.e., d(CATGGCAXGAG), where 'X' is O^2 -MdT, and 'P*' designates the 5' portion of the digested primer, i.e., d(GCTAGGATCATAG)

Figure S7. Analysis of the unextended primer and +1 extension products from the human pol κ induced replication reaction arising from replication of O^2 -MdT-containing substrates that have been treated with two restriction enzymes, NcoI and EcoRI, and shrimp alkaline phosphatase. Product-ion spectra of the ESI-produced [M-2H]²⁻ ion of: the 7mer, d(AATTCTC) (precursor ion m/z 1026.2) (A); 8A, d(AATTCTCA) (precursor ion m/z 1182.7) (B); 8G, d(AATTCTCG) (precursor ion m/z 1190.7) (C); 10Del, d(AATTCTCGC) (precursor ion m/z 1487.3) (D). In this and the following MS/MS figures, the arrow indicates the fragmentation process, and the solid and open circles represent the precursor ion and fragment ions, respectively.

Figure S8. Analysis of full-length extension products from the human pol κ -induced replication reaction arising from replication of O^2 -MdT-containing substrates that have been treated with

two restriction enzymes, NcoI and EcoRI, and shrimp alkaline phosphatase. Product-ion spectra of the ESI-produced $[M-2H]^{2-}$ ions of: 11C, d(AATTCTCCTGC) (precursor ion m/z 1631.8) (A); 11T, d(AATTCTCTTGC) (precursor ion m/z 1639.3) (B); 11A, d(AATTCTCATGC) (precursor ion m/z 1643.8) (C); 11G, d(AATTCTCGTGC) (precursor ion m/z 1651.7) (D).

Figure S9. The selected-ion chromatograms (SICs) derived from the LC-MS/MS analysis of the replication mixture of the substrate containing dT with: Klenow fragment exo^{-} (A), yeast pol η (B), and human pol κ (C).

Figure S10. The SICs derived from the LC-MS/MS analysis of the replication mixture of the substrate containing O^2 -MdT with: Klenow fragment exo⁻ (A), and yeast pol η (B).

Figure S11. The SICs derived from the LC-MS/MS analysis of the replication mixture of the substrate containing O^4 -MdT with: Klenow fragment exo⁻ (A), yeast pol η (B), and human pol κ (C).

Figure S12. LC-MS/MS for monitoring possible demethylation of O^2 -MdT-containing template following primer extension with human pol κ and restriction digestion. Shown are the SICs derived from ultra-zoom scans monitoring the [M-3H]³⁻ ions from the unmethylated and O^2 -MdT 12mer arising from the digestion of the original O^2 -MdT-containing template.

Figure S13. LC-MS/MS for monitoring possible demethylation of O^2 -MdT-containing templates following primer extension with human pol κ . Shown are the product-ion spectra of the ESI-produced [M-3H]³⁻ ions of: unmethylated 12mer, d(CATGGCCATGAG) (precursor ion m/z 1221.9) (A); original 12mer, d(CATGGCCA[O^2 -MdT]GAG) (precursor ion m/z 1226.5) (B).

Figure S14. The SICs derived from the LC-MS/MS analysis of the replication mixture of the substrate containing O^4 -MdT with yeast pol η : low dNTPs (A), 6 hr (B).

Figure S15. Representative gel images for steady-state kinetic assays measuring extension past undamaged dT (A), O^2 -MdT (B), and O^4 -MdT (C) with the base opposite the lesion indicated in the figure. Reactions were conducted with human polymerase κ (1-5 nM) in the presence of individual dNTPs with the highest concentrations indicated in the figures. The concentration ratios of dNTP between neighboring lanes were 0.5-0.6.

Table S1. Summary of the percentages of replication products produced for O^4 -MdT-containing substrates by yeast pol η as determined by LC-ESI-MS/MS experiments. Reactions were conducted under two separate conditions: (1) low dNTPs concentrations (50 µM each) at 37°C overnight; (2) 1 mM dNTPs at 37°C for 6 hr. The template was d(CCATGGCAXGAGAATTCTATGATCCTAG), where 'X' represents O^4 -MdT.

Table S2. Efficiency and fidelity of human polymerase κ -mediated nucleotide extension with dATP and dGTP opposite undamaged dT, O^2 -MdT and O^4 -MdT as determined by steady-state kinetic measurements.

Figure S1.

4

(A)

(B)

Figure S2.

Figure S2.

(C)

Figure S2.

(E)

Figure S2.

(G)

dNTP incorporation Primer: 5'- ³²pGCTAGGATCATAGAATTCTC Template: 3'- GATCCTAGTATCTTAAGAG[X]ACGGTACC - 5'

Figure S3.

Primer: 5'- ³²pGCTAGGATCATAGAATTCTC Template: 3' - GATCCTAGTATCTTAAGAG[X]ACGGTACC - 5'

Figure S4.

Figure S5.

Figure S6.

Figure S7.

Figure S7.

Figure S8.

Figure S8.

Figure S9.

Figure S9.

Figure S9.

Figure S10.

(a) 7mer $m/z 1026.2 \rightarrow$	m/z 610.1, 753.6, 909.1	17.7	_
(b) 8A $m/z 1182.7 \rightarrow$	<i>m/z</i> 910.1, 923.6, 1066.5,		
(c) 8G $m/z 1190.7 \rightarrow$	<i>m/z</i> 918.1, 939.0, 1074.5	18.5	
(d) 10 Del m/z 1487.0 \rightarrow	<i>m/z</i> 1214.3, 1258.3, 1370.7		<u></u>
(e) 11C m/z 1631.7 \rightarrow	<i>m/z</i> 1228.2		<u> </u>
(f) 11T m/z 1639.2 \rightarrow	<i>m/z</i> 1243.1		<u>~</u>
(g) 11A <i>m</i> / <i>z</i> 1643.7 →	<i>m/z</i> 1252.2	20.4	
(h) 11G m/z 1651.7 \rightarrow	<i>m/z</i> 1268.2	20.2	
0 5	10 15 Time (min)	20	25
5'- GC A 3'-	X G AGA ATT -3' C TCT TAA -5'	- 7mer 6%	ſ
3′-	AC TCT TAA -5'	8A 2%	
3′–	GC TCT TAA -5′	8G 6%	O^2 -MdT
3'- CG T	C TCT TAA -5'	10Del 1%	Replication From
3'- CG T	CC TCT TAA -5'	11C 5%	polη
3' - CG T	TC TCT TAA $-5'$	11T 6%	
3' - CG'T	AC TOT TAA $-5'$	11A 45%	
3 - CG T	GC ICI IAA -5'	TTG 71% _	J

Figure S10.

 3' C
 TCT
 TAA
 -5'
 7mer
 7%
 0⁴-MdT

 3' GC
 TCT
 TAA
 -5'
 8G
 5%
 Replication From

 3' CG
 TCT
 TAA
 -5'
 11A
 7%
 Klenow fragment

 3' CG
 TCT
 TAA
 -5'
 11G
 80%
 exo⁻

Figure S11.

Figure S11.

(a) 7mer $m/z 1026.2 \rightarrow m/z 610.1, 753.6, 909.1$		-
(b) 8G $m/z 1190.7 \rightarrow m/z 918.1, 939.0, 1074.5$		
(c) 11C $m/z \ 1631.7 \rightarrow m/z \ 1228.2$		<u> </u>
(d) 11T $m/z 1639.2 \rightarrow m/z 1243.1$		-
(e) 11A $m/z \ 1643.7 \rightarrow m/z \ 1252.2$		
(f) 11G m/z 1651.7 $\rightarrow m/z$ 1268.2		- -
0 5 10 15	20 25	'
$5' - GC A \mathbf{X} G A GA A T - 3'$		
3' - C TCT TAA -5'	7mer 119	8
3'- GC TCT TAA -5'	8G 18 ⁹	
3'- CG TCC TCT TAA -5'	11C 2%	- Replication From
3'- CG TTC TCT TAA -5'	11T 3%	polĸ
3'- CG TAC TCT TAA -5'	11A 8%	
3'- CG TGC TCT TAA -5'	11G 589	×

Figure S11.

Figure S12.

Figure S13

Figure S14.

Figure S14.

 $(\mathbf{A})\mathbf{X} = [\mathbf{dT}]$

Figure S15

Name	Sequence	O ⁴ -MdT (low dNTPs)	O⁴-MdT (6 hr)			
Yeast Polymerase η						
7mer	d(AATTCTC)	6	26			
8mer	d(AATTCTCA)	3	3			
8mer	d(AATTCTCG)	8	7			
11A	d(AATTCTCATGC)	10	3			
11G	d(AATTCTCGTGC)	73	62			

Table S1.

dNTP	$k_{\rm cat}~({\rm min}^{-1})$	$K_{\rm m}$ ($\mu { m M}$)	$k_{\text{cat}}/K_{\text{m}} (\text{mM}^{-1}\text{min}^{-1})$	fext			
Extension with dTTP							
dT:dATP	9.5 ± 0.4	0.56 ± 0.02	17	1			
dT:dGTP	5.3 ± 0.1	2.2 ± 0.3	2.5	0.15			
O ² -MdT:dATP	9.5 ± 0.4	7.8 ± 0.8	1.2	1			
O ² -MdT:dGTP	13 ± 1	7.5 ± 0.5	1.7	1.4			
O^4 -MdT:dATP	10 ± 1	26 ± 2	0.38	1			
O ⁴ -MdT:dGTP	27 ± 2	11 ± 1	2	5.2			
*The $K_{\rm m}$ and $k_{\rm cat}$ were average values based on three independent measurements							

Table S2.