SUPPORTING INFORMATION

The mitochondrial amidoxime reducing component (mARC) is involved in detoxification of \boldsymbol{N}-hydroxylated base analogues

Nina Krompholz, Carmen Krischkowski, Debora Reichmann, Dieter Garbe-Schönberg, Florian Bittner, Ralf-R. Mendel, Bernd Clement ${ }^{*}$, Antje Havemeyer

Table of contents page
SUPPLEMENTARY FIGURE S1: S2
SUPPLEMENTARY FIGURE S2: S3

SUPPLEMENTARY FIGURE S1:

Western blot analysis of subcellular hepatic fractions

$0.05 \mu \mathrm{~g}$ recombinant protein $\mathrm{mARC} 1 / \mathrm{mARC} 2,20 \mu \mathrm{~g}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$ or $12 \mu \mathrm{~g}(\mathrm{D}, \mathrm{E})$ hepatic fraction per lane was subjected to SDS-PAGE, for immunoblot analysis anti-mARC1 antibody, anti-mARC2 antibody, anti-GAPDH antibody, anti-VDAC antibody or anti-calnexin antibody was used. Masses are indicated in kDa to the left of each panel.
A

D

E

SUPPLEMENTARY FIGURE S2:

Western blot analysis of mARC1 and mARC2 in the porcine hepatic and extrahepatic mitochondria
$0.05 \mu \mathrm{~g}$ recombinant protein $\mathrm{mARC} 1 / \mathrm{mARC}, 20 \mu \mathrm{~g}$ (anti-mARC1 Blot) or $15 \mu \mathrm{~g}$ (anti-mARC2 Blot) mitochondrial fraction per lane was subjected to SDS-PAGE, for immunoblot analysis anti-mARC1 or anti-mARC2 antibody was used. Masses are indicated in kDa to the left of each panel.

