Supporting Information

1. Detailed derivation process of the model

The dissociation constant of D- and L-PHG:

$$
\begin{equation*}
K_{\mathrm{a}}=\frac{\left[\mathrm{D}^{+}\right]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{[\mathrm{DH}]_{\mathrm{w}}}=\frac{[\mathrm{L}]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{[\mathrm{LH}]_{\mathrm{w}}} \tag{1}
\end{equation*}
$$

The complexation equilibrium constants of CuPF_{6}-(s)-BINAP (BINAP-Cu) with PHG enantiomers at the interface can be written as follows:

$$
\begin{align*}
& K_{\mathrm{D}}=\frac{[\mathrm{CuBD}]_{\text {org }}\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}{[\mathrm{CuB}]_{\mathrm{org}}\left[\mathrm{D}^{-}\right]_{\mathrm{w}}} \tag{2}\\
& K_{\mathrm{L}}=\frac{[\mathrm{CuBL}]_{\text {org }}\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}{[\mathrm{CuB}]_{\mathrm{org}}\left[\mathrm{~L}^{-}\right]_{\mathrm{w}}} \tag{3}
\end{align*}
$$

Due to $V_{\mathrm{a} q}=V_{\text {org }}$, mass balance for D- and L-PHG:

$$
\begin{align*}
& C_{\mathrm{D}}^{\text {tot }}=[\mathrm{DH}]_{\mathrm{w}}+\left[\mathrm{D}^{-}\right]_{\mathrm{w}}+[\mathrm{CuBD}]_{\text {org }} \tag{4}\\
& C_{\mathrm{L}}^{\text {tot }}=[\mathrm{LH}]_{\mathrm{w}}+\left[\mathrm{L}^{-}\right]_{\mathrm{w}}+[\mathrm{CuBL}]_{\text {org }} \tag{5}
\end{align*}
$$

where, $C_{\mathrm{D}}^{\text {tot }}$ and $C_{\mathrm{L}}^{\text {tot }}$ are the initial concentrations of $\mathrm{D}-$ and $\mathrm{L}-\mathrm{PHG}$ in the aqueous phase, respectively; $[\mathrm{DH}]_{\mathrm{w}}$ and $[\mathrm{LH}]_{\mathrm{w}}$ are the concentration of molecular D- and L-PHG in the aqueous phase, respectively; $\left[\mathrm{D}^{-}\right]_{\mathrm{w}}$ and $\left[\mathrm{L}^{-}\right]_{\mathrm{w}}$ are the anion D - and L-PHG in the aqueous phase, respectively; $[\mathrm{CuBD}]_{\text {org }}$ and $[\mathrm{CuBL}]_{\text {org }}$ are the concentrations of the complexes of BINAP-Cu with D- and L-PHG in the organic phase, respectively; $[\mathrm{CuB}]_{\text {org }}$ are the concentrations of $\mathrm{BINAP}-\mathrm{Cu}$ in the organic phase at equilibrium.

With eqs 1-3 substituted in eqs 4 and 5:

$$
\begin{equation*}
C_{\mathrm{D}}^{\text {tot }}=[\mathrm{DH}]_{\mathrm{w}}+\left[\mathrm{D}^{-}\right]_{\mathrm{w}}+[\mathrm{CuBD}]_{\text {org }}=\frac{\left[\mathrm{D}^{-}\right]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+\left[\mathrm{D}^{-}\right]_{\mathrm{w}}+\frac{\left[\mathrm{CuB}_{\text {org }}\left[\mathrm{D}^{-}\right]_{\mathrm{w}} K_{\mathrm{D}}\right.}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
C_{\mathrm{L}}^{\mathrm{ot}}=[\mathrm{LH}]_{\mathrm{w}}+\left[\mathrm{L}^{-}\right]_{\mathrm{w}}+[\mathrm{CuBL}]_{\mathrm{org}}=\frac{[\mathrm{L}]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+\left[\mathrm{L}^{-}\right]_{\mathrm{w}}+\frac{\left[\mathrm{CuB}_{\mathrm{org}_{2}}[\mathrm{~L}]_{\mathrm{w}} K_{\mathrm{L}}\right.}{\left[\mathrm{PF}_{6}\right]_{\mathrm{w}}} \tag{7}
\end{equation*}
$$

where $C_{\text {CuB }}^{\text {tot }}$ is the initial concentration of BINAP-Cu in the organic phase; $\left[\mathrm{PF}_{6}{ }^{-}\right]_{\mathrm{w}}$ is the concentration of $\mathrm{PF}_{6}{ }^{-}$in aqueous phase.
$\left[\mathrm{D}^{-}\right]_{\mathrm{w}}$ and $\left[\mathrm{L}^{-}\right]_{\mathrm{w}}$ can be calculated from eqs 6 and 7 as following:

$$
\begin{align*}
& {\left[\mathrm{D}^{-}\right]_{\mathrm{w}}=\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+1+\frac{[\mathrm{CuB}]_{\mathrm{org}} K_{\mathrm{D}}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}}} \tag{8}\\
& {\left[\mathrm{~L}^{-}\right]_{\mathrm{w}}=\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+1+\frac{[\mathrm{CuB}]_{\mathrm{org}} K_{\mathrm{L}}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}}} \tag{9}
\end{align*}
$$

Mass balance for $\mathrm{C}_{\mathrm{CuB}}$:

$$
\begin{equation*}
C_{\mathrm{CuB}}^{\mathrm{tot}}=[\mathrm{CuB}]_{\text {org }}+[\mathrm{CuBD}]_{\text {org }}+[\mathrm{CuBL}]_{\text {org }} \tag{10}
\end{equation*}
$$

With eqs 2 and 3 substituted in eq 8 :

$$
\begin{equation*}
C_{\mathrm{CuB}}^{\text {tot }}=[\mathrm{CuB}]_{\text {org }}+\frac{[\mathrm{CuB}]_{\text {org }}\left[\mathrm{D}^{-}\right]_{\mathrm{w}} K_{\mathrm{D}}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}+\frac{[\mathrm{CuB}]_{\text {org }}\left[\mathrm{L}^{-}\right]_{\mathrm{w}} K_{\mathrm{L}}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}} \tag{11}
\end{equation*}
$$

Defining $A=1+\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}$, and substituting eqs 8 and 9 in eq 11 :

$$
\begin{align*}
C_{\text {CuB }}^{\text {tot }} & =[\mathrm{CuB}]_{\text {org }}+\frac{K_{\mathrm{D}} \mathrm{C}_{\mathrm{D}}^{\text {tot }}[\mathrm{CuB}]_{\text {org }}}{\left(A+\frac{\left[\mathrm{CuB}_{\text {org }} K_{\mathrm{D}}\right.}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}\right)\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}+\frac{K_{\mathrm{L}} C_{\mathrm{L}}^{\text {tot }}[\mathrm{CuB}]_{\text {org }}}{\left(A+\frac{\left[\mathrm{CuB}_{\text {org }} K_{\mathrm{L}}\right.}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}\right)\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}} \tag{12}\\
& =[\mathrm{CuB}]_{\text {org }}+\frac{K_{\mathrm{D}} \mathrm{C}_{\mathrm{D}}^{\text {tot }}[\mathrm{CuB}]_{\text {org }}}{A\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}+[\mathrm{CuB}]_{\text {org }} K_{\mathrm{D}}}+\frac{K_{\mathrm{L}} \mathrm{C}_{\mathrm{L}}^{\text {tot }}[\mathrm{CuB}]_{\text {org }}}{A\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}+\left[{\mathrm{CuB}]_{\text {org }} K_{\mathrm{L}}}^{2}\right.}
\end{align*}
$$

With further treatment of eq 10 and changing the form of eq 10 into arrangement in descending powers of $[\mathrm{CuB}]$:

$$
\begin{align*}
& \left(K_{\mathrm{D}} K_{\mathrm{L}}-K_{\mathrm{D}} A-K_{\mathrm{L}} A+A^{2}\right)[\mathrm{CuB}]_{\text {org }}^{3}+\left(2 K_{\mathrm{D}} A C_{\mathrm{CuB}}^{\text {tot }}+2 K_{\mathrm{L}} A C_{\mathrm{CuB}}^{\text {tot }}-3 A^{2} C_{\mathrm{CuB}}^{\text {tot }}+K_{\mathrm{D}} K_{\mathrm{L}} C_{\mathrm{D}}^{\text {tot }}-K_{\mathrm{D}} C_{\mathrm{D}}^{\text {tot }} A+\right. \\
& \left.K_{\mathrm{D}} K_{\mathrm{L}} \mathrm{~L}_{\mathrm{L}}^{\mathrm{tot}}-K_{\mathrm{L}} C_{\mathrm{L}}^{\text {tot }} A-K_{\mathrm{D}} K_{\mathrm{L}}^{\text {too }} C_{\mathrm{CuB}}^{\mathrm{tan}}\right)[\mathrm{CuB}]_{\text {org }}^{2}+\left(K_{\mathrm{D}} C_{\mathrm{D}}^{\text {tot }} A C_{\mathrm{CuB}}^{\text {tot }}+K_{\mathrm{L}} C_{\mathrm{L}}^{\text {tot }} A C_{\mathrm{CuB}}^{\text {tot }}-C_{\mathrm{CuB}}^{2} K_{\mathrm{D}} A-C_{\mathrm{CuB}}^{\text {tot } 2} K_{\mathrm{L}} A\right. \tag{13}\\
& \left.+3 A^{2} C_{\mathrm{CuB}}^{\text {tot } 2}\right)[\mathrm{CuB}]_{\text {org }}-A^{2} C_{\mathrm{CuB}}^{\text {to }}=0
\end{align*}
$$

$[\mathrm{CuB}]_{\text {org }}$ can be calculated from the eq 13 , and distribution ratios can be written as
follows:

$$
\begin{gather*}
k_{\mathrm{D}}=\frac{[\mathrm{CuBD}]_{\text {org }}}{[\mathrm{DH}]_{\mathrm{w}}+\left[\mathrm{D}^{-}\right]_{\mathrm{w}}}=\frac{\frac{[\mathrm{CuB}]_{\text {org }}\left[\mathrm{D}^{-}\right]_{\mathrm{w}} K_{\mathrm{D}}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}}{\frac{[\mathrm{D}]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+\left[\mathrm{D}^{-}\right]_{\mathrm{w}}}=\frac{K_{\mathrm{D}}[\mathrm{CuB}]_{\mathrm{org}}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}\left\{1+\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}\right\}}=\frac{K_{\mathrm{D}}[\mathrm{CuB}]_{\text {org }}}{A\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}} \tag{14}\\
k_{\mathrm{L}}=\frac{[\mathrm{CuBL}]_{\text {org }}}{[\mathrm{LH}]_{\mathrm{w}}+\left[\mathrm{L}^{-}\right]_{\mathrm{w}}}=\frac{\frac{[\mathrm{CuB}]_{\text {org }}\left[\mathrm{L}^{-}\right]_{\mathrm{w}} K_{\mathrm{L}}}{\left[\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}\right.}}{\frac{\left[\mathrm{L}^{-}\right]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}+\left[\mathrm{L}^{-}\right]_{\mathrm{w}}}=\frac{K_{\mathrm{L}}[\mathrm{CuB}]_{\text {org }}}{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}\left\{1+\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}\right\}}=\frac{K_{\mathrm{L}}[\mathrm{CuB}]_{\text {org }}}{A\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}} \tag{15}\\
{\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}=C_{\mathrm{CuB}}^{\mathrm{tot}}-[\mathrm{CuB}]_{\text {org }}} \tag{16}
\end{gather*}
$$

By solving eq $11,[\mathrm{CuB}]_{\text {org }}$ can be obtained and $\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}$ is calculated by eq 16 . With the calculated $[\mathrm{CuB}]_{\text {org }}$ and $\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}$ substituted in eq 14 and 15 , distribution ratios k_{D} and k_{L} are calculated as a function of the experimental conditions (such as $C_{\mathrm{D}}^{\text {tot }}, C_{\mathrm{L}}^{\text {tot }}$, $C_{\mathrm{CuB}}^{\text {(ot }}, \mathrm{pH}$) and physicochemical constant (such as $K_{\mathrm{a}}, K_{\mathrm{D}}, K_{\mathrm{L}}$).

Operational enantioselectivity is given by

$$
\begin{equation*}
\alpha_{o p}=\frac{k_{\mathrm{L}}}{k_{\mathrm{D}}} \tag{17}
\end{equation*}
$$

Intrinsic enantioselectivity is given by

$$
\begin{equation*}
\alpha_{i n t}=\frac{K_{\mathrm{L}}}{K_{\mathrm{D}}} \tag{18}
\end{equation*}
$$

Since $k_{\mathrm{D}}=\frac{C_{\mathrm{D}}^{\mathrm{tot}} \text { org }}{C_{\mathrm{D}, \text { aq }}^{\text {tot }}}, C_{\mathrm{D}, \text { org }}^{\text {tot }}+C_{\mathrm{D}, \text { aq }}^{\text {tot }}=C_{\mathrm{D}}^{\text {tot }}, C_{\mathrm{D}, \text { org }}^{\text {tot }}$ can be expressed as:

$$
\begin{equation*}
C_{\mathrm{D}, \mathrm{org}}^{\mathrm{tot}}=\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}} \tag{19}
\end{equation*}
$$

Similarly, $C_{\mathrm{L}, \text { org }}^{\text {tot }}$ can be expressed as:

$$
\begin{equation*}
C_{\mathrm{L}, \text { org }}^{\mathrm{tot}}=\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{L}}} \tag{20}
\end{equation*}
$$

Therefore, enantiomeric excess in the organic phase is calculated by the following
equation:

$$
\begin{equation*}
e e_{\text {org }}=\frac{C_{\mathrm{L}, \text { org }}^{\mathrm{tot}}-C_{\mathrm{D}, \text { org }}^{\mathrm{tot}}}{C_{\mathrm{L}, \text { org }}^{\text {tot }}+C_{\mathrm{D}, \text { org }}^{\text {tot }}}=\frac{\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{L}}}-\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}}}{\frac{C_{\mathrm{L}}^{\text {tot }}}{1+1 / k_{\mathrm{L}}}+\frac{C_{\mathrm{D}}^{\text {tot }}}{1+1 / k_{\mathrm{D}}}} \tag{21}
\end{equation*}
$$

The fraction of L-PHG extracted into the organic phase $\left(f_{\mathrm{L}}\right)$ is given by

$$
\begin{equation*}
f_{\mathrm{L}}=\frac{C_{\mathrm{L}, \text { org }}^{\mathrm{tot}}}{C_{\mathrm{L}}^{\mathrm{tot}}}=\frac{\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{L}}}}{C_{\mathrm{L}}^{\mathrm{tot}}}=\frac{k_{\mathrm{L}}}{k_{\mathrm{L}}+1} \tag{22}
\end{equation*}
$$

The extraction performance factor $(p f)$ is defined as

$$
\begin{equation*}
p f_{\mathrm{L}}=f_{\mathrm{L}} e e_{\text {org }} \tag{23}
\end{equation*}
$$

Detailed derivation process for Regression of the Complexation Equilibrium

Constants

The interfacial reaction equations for D- and L-PHG are
$\left[(\mathrm{S})-\mathrm{BINAP}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cu}\right] \mathrm{PF}_{6}+\mathrm{D}^{-} \mathrm{PHG}^{-} \stackrel{\mathrm{K}_{\mathrm{D}}}{\longleftrightarrow}\left[(\mathrm{S})-\mathrm{BINAP}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{D}-\mathrm{PHG}^{-}\right]+\mathrm{PF}_{6}^{-}$
$\left[(\mathrm{S})-\operatorname{BINAP}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cu}\right] \mathrm{PF}_{6}+\mathrm{L}_{-}-\mathrm{PHG}^{-} \stackrel{\mathrm{K}_{\mathrm{D}}}{\longleftrightarrow}\left[(\mathrm{S})-\mathrm{BINAP}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{L}-\mathrm{PHG}^{-}\right]+\mathrm{PF}_{6}^{-}$
The complexation equilibrium constants are written as defined above (eqs 2 and 3):

$$
\begin{aligned}
& K_{\mathrm{D}}=\frac{[\mathrm{CuBD}]_{\mathrm{org}}\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}{[\mathrm{CuB}]_{\mathrm{org}}\left[\mathrm{D}^{-}\right]_{\mathrm{w}}} \\
& K_{\mathrm{L}}=\frac{[\mathrm{CuBL}]_{\mathrm{org}}\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}}{[\mathrm{CuB}]_{\mathrm{org}}\left[\mathrm{~L}^{-}\right]_{\mathrm{w}}}
\end{aligned}
$$

$[\mathrm{CuBD}]_{\text {org }},\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}},[\mathrm{CuB}]_{\text {org }}$ and $\left[\mathrm{D}^{-}\right]_{\mathrm{w}}$ can be expressed in terms of k_{D} and k_{L} by the following equations:

$$
\begin{equation*}
[\mathrm{CuBD}]_{\mathrm{org}}=C_{\mathrm{D}, \text { org }}^{\mathrm{tot}}=\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}} \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& {[\mathrm{CuB}]_{\text {org }}=C_{\text {CuB }}^{\text {tot }}-[\mathrm{CuBD}]_{\text {org }}-[\mathrm{CuBL}]_{\text {org }}} \\
& =C_{\mathrm{CuB}}^{\mathrm{tot}}-C_{\mathrm{D}, \text { org }}^{\mathrm{tot}}-C_{\mathrm{L}, \text { org }}^{\text {tot }} \\
& =C_{\mathrm{CuB}}^{\mathrm{tot}}-\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}}-\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{L}}} \tag{25}\\
& {\left[\mathrm{PF}_{6}^{-}\right]_{\mathrm{w}}=C_{\mathrm{D}, \text { org }}^{\mathrm{tot}}+C_{\mathrm{L}, \text { org }}^{\mathrm{tot}}} \\
& =\frac{C_{\mathrm{L}}^{\text {tot }}}{1+1 / k_{\mathrm{L}}}+\frac{C_{\mathrm{D}}^{\text {tot }}}{1+1 / k_{\mathrm{D}}} \tag{26}\\
& {\left[\mathrm{D}^{-}\right]_{\mathrm{w}}=\frac{\left[\mathrm{D}^{-}\right]_{\mathrm{w}}}{\left[\mathrm{D}^{-}\right]_{\mathrm{w}}+[\mathrm{DH}]_{\mathrm{w}}} C_{\mathrm{D}, \text { aq }}^{\text {tot }}} \\
& =\frac{\left[\mathrm{D}^{-}\right]_{\mathrm{w}}}{\left[\mathrm{D}^{-}\right]_{\mathrm{w}}+\frac{\left[\mathrm{D}^{-}\right]_{\mathrm{w}}\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}} C_{\mathrm{D}, \mathrm{aq}}^{\text {tot }} \\
& =\frac{1}{1+\frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a}}}} C_{\mathrm{D}, \text { aq }}^{\mathrm{tot}} \\
& =\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{A\left(1+k_{\mathrm{D}}\right)} \tag{27}
\end{align*}
$$

With eqs 24-27 substituted in eq 2 :

$$
\begin{equation*}
K_{\mathrm{D}}=\frac{\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}}\left(\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{L}}}+\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}}\right)}{\left(C_{\mathrm{CuB}}^{\mathrm{tot}}-\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{D}}}-\frac{C_{\mathrm{L}}^{\mathrm{tot}}}{1+1 / k_{\mathrm{L}}}\right)\left(\frac{C_{\mathrm{D}}^{\mathrm{tot}}}{A\left(1+k_{\mathrm{D}}\right)}\right)} \tag{28}
\end{equation*}
$$

With further treatment of eq 28, the following equation is obtained:

$$
\begin{equation*}
A k_{\mathrm{D}}^{2} C_{\mathrm{D}}^{\text {tot }}\left(k_{\mathrm{L}}+1\right)+A k_{\mathrm{D}} k_{\mathrm{L}} C_{\mathrm{L}}^{\text {tot }}\left(k_{\mathrm{D}}+1\right)=K_{\mathrm{D}}\left[C_{\mathrm{CuB}}^{\mathrm{tot}}\left(k_{\mathrm{D}}+1\right)\left(k_{\mathrm{L}}+1\right)-k_{\mathrm{D}} C_{\mathrm{D}}^{\mathrm{tot}}\left(k_{\mathrm{L}}+1\right)-k_{\mathrm{L}} C_{\mathrm{L}}^{\text {tot }}\left(k_{\mathrm{D}}+1\right)\right] \tag{29}
\end{equation*}
$$

Similarly, the following equation can be obtained for K_{L} :

$$
\begin{equation*}
A k_{\mathrm{L}}^{2} C_{\mathrm{L}}^{\text {tot }}\left(k_{\mathrm{D}}+1\right)+A k_{\mathrm{D}} k_{\mathrm{L}} C_{\mathrm{D}}^{\text {tot }}\left(k_{\mathrm{L}}+1\right)=K_{\mathrm{L}}\left[C_{\mathrm{CuB}}^{\mathrm{tot}}\left(k_{\mathrm{D}}+1\right)\left(k_{\mathrm{L}}+1\right)-k_{\mathrm{D}} C_{\mathrm{D}}^{\mathrm{tot}}\left(k_{\mathrm{L}}+1\right)-k_{\mathrm{L}} C_{\mathrm{L}}^{\text {tot }}\left(k_{\mathrm{D}}+1\right)\right] \tag{30}
\end{equation*}
$$

Information about the structure of the selector ([(S)-BINAP($\left.\left.\left.\mathbf{C H}_{3} \mathbf{C N}\right)_{2} \mathbf{C u}\right]\left[\mathrm{PF}_{6}\right]\right)$

$\left[(\mathrm{S})-\operatorname{BINAP}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{PF}_{6}\right]$ was prepared by literature method. ${ }^{\mathrm{Sl}}$ Chemical structure of $\left[(\mathrm{S})-\mathrm{BINAP}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cu}\right]\left[\mathrm{PF}_{6}\right]$ is shown in the following figure.

Chromatogram of enantiome ric separation of phenylglycine

A typical chromatogram of enantiomeric separation of phenylglycine

The retention time is 8.222 min for L-PHG and 8.975 min for D-PHG Each test was run in triplicate under identical conditions, and the standard deviation is in the range of 2%.

Reference

S1. Blue, E. D.; Davis, A.; Conner, D.; Gunnoe, T. B.; Boyle, P. D.; White, P. S. Synthesis, Solid-State Crystal Structure, and Reactivity of a Monomeric Copper(I) Anilido Complex. J. Am. Chem. Soc. 2003, 125, 9435-9441.

