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1. Details of the SJEM setup 

Figure S1 shows a detailed schematic diagram of the scanning Joule expansion microscopy (SJEM) 

setup. The AFM tip scans the sample surface in contact mode. A laser-photodiode system detects the 

cantilever deflection caused by intrinsic height variations as well as those due to thermomechanical 

expansion. A lock-in amplifier operating at the Joule heating frequency captures the expansion signal to 

form the thermal expansion image. A feedback loop with a cut-off frequency much smaller than the 

Joule heating frequency processes the topographical signal to form the image and it also controls the 

piezoelectric stage for scanning
1
.  

 
Figure S1. Detailed schematic diagram of the SJEM setup. 
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2. Details of the two dimensional (2D) analytical model for thermal transport and 

thermomechanical  response 

 

a) Temperature Distribution  

 

Figure S2. Schematic illustration of the domain for the 2D analytical model  

The 2D heat transfer governing equation temperature is  

 
2 2
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

    
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where k is thermal conductivity,   is density, c is specific heat capacity, and / ( )  k c  is thermal 

diffusivity.  In the equations below, the subscripts 0, 1 and 2 denote PMMA, SiO2 and Si, respectively. 

Setting T T   , where T  is the ambient temperature, the above equation is equivalent to 
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Due to symmetry (
0

0
xx









), we only focus on the region with 0x . The boundary conditions are 

(1) 0y h   (top surface) 

 

0

0 0
y h

k
y






 


 (3) 

 

(2) 0y   (PMMA/SiO2 interface) 
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where b=r0/2 (r0 is the radius of the SWNT) is the half width of the heat source; 0P and 1P  is the heat 

flux from the heat source at the interface, which satisfy 0 1
2

Q
P P

b
   , Q is the power dissipation per 

unit length along the SWNT; 0cP and 1cP is the heat flux at the interface where no heat source presents, 

which satisfy 0 1 0c cP P    due to the continuity (note 0cP and 1cP are included to show the completeness 

of the boundary condition; they are not needed to obtain the temperature distribution). 

  

(3) 1y h (SiO2/Si interface) 

 
1 1y h y h
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(4) 1 2 ~y h h    

 
1 2

0h h    (6) 

For an applied voltage  cosdsV V t with the angular frequency 2 f  , the Joule heating power 

density is 0(1 cos(2 ))Q Q t  , which has both DC (i.e. 0Q ) and AC (i.e. 0 cos(2 )Q t ) components. In 

the following, we will obtain the solution for the AC component, which corresponds to the 

measurements of SJEM.  Assuming the alternating temperature rise is ( , , ) ( , ) exp(2 )x y t x y i t   , we 

have 
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 (7) 

where 2 2 i
q




 . 

Eq. (7) can be solved via the Fourier cosine transform 
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we have 
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Solving the above equation gives 
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where A and B are to be obtained from the boundary conditions. The temperature is then obtained by 

 2 2 2 2

0

2
( , ) exp( ) exp( ) cos( )x y A y s q B y s q sx ds




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   (11) 

Therefore, the temperature in Fourier space at each layer is obtained as:  

 PMMA layer:   2 2 2 2

0 0 0 0 0, exp( ) exp( )s y A y s q B y s q       

 SiO2 layer:   2 2 2 2

1 1 1 1 1, exp( ) exp( )s y A y s q B y s q       

 Si layer:     2 2 2 2

2 2 2 2 2, exp( ) exp( )s y A y s q B y s q       

With boundary conditions (3)-(6) in Fourier space, we can obtain the temperature at each layer.  For 

example, 
0A  and 0B  are given by 
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where 
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The temperature in PMMA layer is then obtained as 

2 2 2 2 2 2

0 0 0 0 0 0
0

2
( , ) exp( ) exp( 2 ) cos( )x y A y s q y s q h s q sx ds


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   (13) 
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b) Thermal Expansion Based on the temperature distribution 

 

 

Figure S3.  Schematic illustration of the thermo-mechanical model 

 

Only the PMMA layer is considered in calculations of the thermal expansion.  Its top surface is 

traction-free and the bottom surface is fully constrained.  The problem is solved by superposing the 

following two solutions: 

 (1) Infinite plane with  0 ,x y , and 

 (2) Finite plane without  0 ,x y  but with its upper boundary tractions prescribed as the negative 

of yy  and xy  along 0y h  , and the lower boundary displacements prescribed as the negative u and v 

calculated along 0y  .  

For problem (1), the potential of thermal displacement is given by 
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     (14) 

where 0  and 0  are the Poisson ratio and coefficient of thermal expansion (CTE) of PMMA. 
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The displacements can be obtained  

 
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The stresses are given by 
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where  
 

0
0

02 1

E
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


 is the shear modulus of PMMA and 0E  is the Young’s modulus of PMMA.  The 

tractions at 0y h   are 
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The displacement at 0y   are 
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For problem (2), 

Consider the Airy stress function  
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Substituting the above equations in the biharmonic equation and solving for  , one can  obtain  
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Combining with the constitutive relation 
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The superposition of problem (1) and problem (2) gives the out-of-plane displacement at 0y h   as 
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and its amplitude, which is the value measured by SJEM is  0,yu x y h  .  

 

c) Thermal Expansion at Low Frequencies 

The model in Section 2(b) above is accurate and does not involve any assumptions. At low 

frequencies, when the thermal diffusion length for PMMA is much larger than the PMMA thickness, the 

temperature throughout the thickness of PMMA is approximately equal to its surface temperature.  

Under the assumptions of (1) plane strain in z direction because the length of SWNT is much larger than 

its radius and (2) plane stress in y direction because the film is thin and the temperature is thickness 

independent, the amplitude of the oscillating vertical displacement of the PMMA top surface can be 

obtained as: 

   0
0 0 0 0 0

0

1
, ( , )

1
yu x h h x h


 




  


 (26) 

where 0  and 0  are the Poisson’s ratio and coefficient of thermal expansion (CTE) of the PMMA, 

respectively.  Figure S4 clearly shows that the simple formula is valid for low frequencies (e.g., smaller 

than 100 kHz, simulated for the case of PMMA thickness 120 nm and SiO2 thickness 200 nm at Q0 = 1 

μW/μm heating along the SWNT). 
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Figure S4.  Comparison between the complex formula and the simplified one for (a) f = 15 kHz, (b), 68 

kHz, (c) 142 kHz, (d) 300 kHz. Values are simulated for Q0 = 1 μW/μm with PMMA thickness 120 nm 

and SiO2 thickness 200 nm. The simplified formula serves as a good approximation when the frequency 

is low, e.g. <100 kHz for the physical conditions selected here.   

 

 

 

 

 

 

 



 12 

3. Properties of the materials used in the analytical model and finite element 

analysis (FEA) 

 

Table S1. Thermal and Mechanical parameters used in analytical and FE models 

Materials Thermal 

Conductivity 

(Wm
-1

K
-1

) 

Thermal 

Diffusivity 

10
-6 

(m
2
s

-1
) 

Coefficient of 

Thermal Expansion 

10
-6 

(K
-1

)  

Young’s 

Modulus 

10
9 

(Pa)  

Poisson Ratio 

 

Si  120 (ref 2) 73 2.6 (ref 3) 165 (ref 4) 0.28 (ref 5) 

SiO2 1.3 (ref 6) 0.84 (ref 6) 0.50 (ref 7) 64 (ref 4) 0.17 (ref 8) 

PMMA 0.19 (ref 9) 0.11 (ref 10) 50 (ref 11) 3.0 (ref 12) 0.35 (ref 13) 

 

Note: Si is Boron doped, with resistivity ~0.005 cm . 

 

4. Additional 2D FEA 

 

 

Figure S5. Structure used in the 2D FEA. 
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Figure S6. FEA simulation shows the total thermal expansion (black curve, extracted from the top 

surface of PMMA) and the thermal expansion of SiO2/Si substrate (red curve). The contribution from 

SiO2 is negligible due to very small CTE (~0.5x10
-6 

K
-1

). Although the Si (CTE ~ 2.6 x10
-6 

K
-1

) 

substrate is thick, its temperature rise is insignificant and broadly distributed. Therefore, together, the 

SiO2/Si substrate only contributes a nearly flat background to the thermal expansion. The simulation is 

based on 25 nm PMMA and 90 nm SiO2, at f = 30 kHz.  

 

Figure S7. (a) Full width of half maximum (FWHM) for the expansion profiles across the SWNT with 

PMMA coating ranging from 25 nm to 1500 nm (Values are simulated at f = 30 kHz and SiO2 thickness 

= 90 nm). (b) Expansion magnitude for SWNT with constant temperature (Values are simulated under 

the same conditions as (a)). The signal increases almost linearly with PMMA thickness when the 
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thickness is small (e.g. <100 nm), then reaches a maximum point (at ~500 nm here) and subsequently 

decreases, as the thermal diffusion length at this frequency becomes larger than the PMMA thickness.  

5. Validation of the 2D models 

  A 3D FEA model was also built to justify the effectiveness of the 2D models. Figure S8a shows the 

structure used for the simulation. The width is 3 m and the length of the left and right edges (where no 

SWNTs are present) are set to be at 2 m. A SWNT placed at the interface between PMMA (120 nm) 

and SiO2 (200 nm) has a diameter of 2 nm and power density of 0 1 W/ mQ   . Ignoring the metal 

electrodes and the silicon substrate simplifies the calculation. Regarding thermal transport, the bottom 

surface of the structure and the two ends of the SWNT are set to a temperature of 300 K.  All other 

boundary surfaces are thermal insulating and all interfaces are continuous. For calculations of the 

thermal expansion, the bottom surface is set to be fixed, all other boundary surfaces are free of motion 

and all the interfaces are characterized by no-slip behavior. Figure S8b shows the typical simulated 

result, where color represents the temperature and the exaggerated deformation indicates corresponding 

thermal expansion. Figure S8c shows how the cross-section of thermal expansion (across the center of 

the SWNT, along Y direction) changes with the length of the SWNT, together with a comparison to 

results from 2D models. The inset provides a plot of the maximum expansion (i.e. expansion value at Y 

= 0 m in the cross-section) and its dependence on the lengths of the SWNTs. As the length increases, 

the magnitude of the cross-section also increases, finally approaching a constant value when LSWNT is 

larger than about 1 m (this value for 3D is smaller than that for 2D, because the 3D model here does 

not include the thick Si substrate, in which case the overall temperature and expansion are 

underestimated). The results indicate that the power will be overestimated if the 2D model is used for 

short channel devices (e.g. L < 1 μm) due to the effect of the contacts. Figure S8d provides a 

comparison between the temperature of the SWNT (red curve, here the SWNT is 2 m) and the 

maximum thermal expansion on the PMMA surface (black curve), along the length of the SWNT (x 

direction). The shape of the thermal expansion curve matches the shape of the temperature curve. This 
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indicates that the 2D models are valid for calculating the temperature distribution along the SWNT (by 

fitting the cross section of the expansion at each point), with the exception of the regions near the 

contacts, where the expansion does not accurately reflect the temperature of the SWNT. 

 

Figure S8. (a) Structure used for the 3D FEA simulation. (b) The result of a 3D simulation, where the 

color indicates the temperature and the deformation shows the corresponding thermal expansion. (c) 

Cross-sections of the thermal expansion (across the center of the SWNT, along Y direction) for SWNTs 

with different lengths, and the comparison with that from the 2D model. The inset shows how the 

maximum expansion (i.e. the point at Y = 0 m in the cross-section) scales with the lengths of SWNTs. 

(d) The maximum expansion (black curve) along the length of the SWNT (X direction), and the 

temperature of the SWNT (red curve).  Here the length of the SWNT is fixed as 2 m.  

Moreover, as a particular consideration, the SWNT shown in Figure 3 has a joint where two segments 

of distinct temperature merge. The 2D analysis near this location has some inaccuracies due to non-
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uniformities in the temperature. To evaluate these errors, we note that the thermal transport 

characteristics at the joint region and the contact regions are essentially the same, i.e. both regions show 

temperature changes from one constant value to another constant value, and the transition distance is 

characterized by thermal transfer length TL . Therefore, the analysis associated with Figure S8d not only 

reflects the errors caused by 2D analysis for the contact region, but the joint region as well. 

To further understand the approximation, we solved the thermal transport equation along this SWNT, 

2

02

int

( , ) 1 1 ( , )
cos(2 ) (1/ ( )) ( , )

sur

x t x t
kA Q t x t CA

x g g t

 
  

 
   

 
        

(27)
 

Here the SWNT is considered as of two segments, with input power density of 0Q =3.9 μW/μm, 

length~1.7 m, diameter~1 nm for one segment and 0Q
 
= 1.7 μW/μm, length~4.1 m, diameter~1.2 nm 

for the other one. The power and length are chosen to match the power density distribution and the total 

length of the SWNT; all boundary conditions and other physical parameters are the same with the 2D 

simulation described in the main text. In detail, the joint of the two segments are considered to have 

continuous heat flux and temperature change; Contacts of the SWNT are kept at room temperature. 

Thermal conductivity of SWNT k is 3000 W/m/K; int 02g r h  (                 ) and

0.74 / /surg W m K are the same with the 2D model. This 1D analytical treatment has been widely 

used for understanding the thermal transport along SWNTs.
14-17

 As shown in figure S9, the resulting 

profile from the modeling matches fairly well with the one obtained from 2D analysis of the SJEM 

results (i.e. Figure 3f). As expected, per the discussion above, some similar inaccuracies exist at the 

contact and joint regions. 
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Figure S9. Comparison between the temperature profile (red dashed line) from solving the thermal 

transport equation along the SWNT and the one from 2D analysis (black solid square) of the SJEM 

results. Note most parts of the two profiles matches well except for those at the joint region and the 

contact regions, where similar differences exist. 

 

6. Tip-sample interaction and the resonant enhancement effect 

 

 

Figure S10. Expansion images from a portion of a SWNT (arrow indicates the direction along the 

SWNT) collected at (a) f = 30 kHz, and (b) f = 142 kHz, respectively. The same voltage (Vds = 3 V) is 

used for the Joule heating.  The z axis in both images is set at the same scale for purposes of 

comparison. The image at 142 kHz shows much larger signal (~11 times) than that from 30 kHz due to 

contact resonance enhancement.  
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The tip-sample interaction can be captured in a simple way with a damped harmonic oscillator model 

(with driving frequency of 2ω), where the amplitude of the cantilever Ac can be related to that of the 

surface As according to: 
18-20 

 

     
  

     
 

  
  

 

√         
          

    
      

 
       (28)  

where    and   
  are the free resonant frequency and resonance frequency that accounts for the tip-

sample interaction (ie. contact resonant frequency), respectively, and      is the quality factor. 

When     
 , then      

  
     

 

  
     .  In our setups,   

         , which is much larger than 

           , such that the cantilever deflection is almost identical to the sample expansion in this 

low frequency regime. Operating at high frequency can enhance the signal, with a maximum when the 

heating frequency matches with the contact resonant frequency (     
 ), resulting in 

  

  
 

  
 

  
    .   

 

7. Simulation of thermomechanical response for  point defects in SWNTs  

The heat transport for the SWNTs with point defects can be understood by using a 1D heat diffusion 

picture. Heat generated at the defect site (total power defQ ) will flow along the SWNT and into the 

surrounding materials (here is PMMA and SiO2), as shown in figure S11a. The governing equation to 

solve the temperature rise ( , )x t due to the defect heating can be written as:  

2

2

int

( , ) 1 1 ( , )
(1/ ( )) ( , )

sur

x t x t
kA x t CA

x g g t

 
 

 
  

 
     (29) 

with boundary conditions 

2
( , )

( 0)
2

i t

defQ ed x t
kA x

dx




   and  ( ) 0x L   . We represent the 

oscillating temperature as      0, exp 2x t x i t   , and equation (28) can be simplified as: 

2

0
0 02 2 2

( ) 1 2
( ) ( ) 0

T D

x i
x x

x L L


 


  


        

(30) 
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Where int(1/ 1/ )T surL kA g g   is the thermal transfer length and D

k
L

c 
  is the thermal diffusion 

length. Equation (30) indicates that both TL  and DL are constrains for the heat flow along the SWNT. 

While both of them scales linearly with the square root of the thermal conductivity k , TL is mainly 

controlled by interface thermal property and DL is mainly controlled by frequency.  

Under the experimental condition where D TL L and TL L holds, the temperature can be 

approximated as: 

/

0 ( )
2

T
def T x L

Q L
x e

kA
 


         

(31) 

This shows that the temperature along the SWNT decays exponentially from the defect site to the rest 

of the SWNT, with a characteristic length of TL . Since the amount of heat flow into the PMMA is 

proportional to the local temperature, the shape of the expansion profile is also directly related to TL . 

Finally, the temperature ratio between the defect and the rest of the SWNT is:  

0 (0) /
2

def

ave

T ave

Q

L Q
            (32),  

where int(1/ 1/ )ave ave surQ g g    is the temperature of the rest of the SWNT. 

Rigorous simulation of the heat transport and expansion with defects relies on the 3D FEA model (see 

Methods). We used two sets of parameters (Table S2), to yield similar results that match the 

experimental profiles quite well (Figure S11b is for the profiles along the SWNT and Figure S11c is for 

the cross-sections perpendicular to the SWNT). Both of the two sets of parameters yield ~ 40 nmTL . 

Although the temperature magnitudes are different (Figure S11d), the temperature ratio between the 

defect and the rest part of the SWNT are similar (ratio~13), as suggested by the simple 1D analytical 

model. 
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Table S2. Physical parameters of SWNTs and interface property 

Parameter Diameter 

(nm) 

Thermal 

conductivity 

(W/m/K) 

Thermal coupling between 

the SWNT and surroundings 

per unit area  (W/m
2
/K) 

Set 1 1 700 81.5 10  

Set 2 1 1200 84.5 10  

 

 

 

Figure S11. (a) Schematic representation of heat diffusion along the SWNT and heat flow into the 

surroundings. (b)-(c) Experimental (black solid square) and FEA simulated (red dotted line and blue 

dashed line) profiles from two sets of different parameters listed in table S2. The yellow dashed line in 

the inset indicates the location where the profiles are extracted. (d) Simulated temperature distribution 

along the SWNT for both sets of parameters. 
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8. Justification of the adiabatic thermal transport boundary condition used at the 

top surface of the PMMA 

To justify the adiabatic boundary condition for the top surface of the PMMA, we calculated both 

convective and radiative heat losses and compared them with the total input power. 

The convective heat loss from the PMMA surface can be described by C surfaceQ h dA  ,where h is 

the coefficient of natural convection (ranging from 5~25
2/ /W m K ), surface is the temperature rise at the 

top-surface, and A is the surface area. To do the estimation, we take a typical case shown in figure S12, 

where ~ 1.5surface K for a given power density 0 ~ 4 /Q W m . By using the upper bounds of other 

parameters (width of the temperature profile ~1m and
225 / /h W m K ), we can get the maximum 

convective heat loss per unit length along the SWNT as ~
53.75 10 /W m , which is about 5 order 

smaller than the input power density. For other various cases in the experiments, the temperature rise at 

the top-surface is typically smaller than 1K per 1W/m (input power), and width of the profile smaller 

than 2m. Therefore, we conclude that the convective heat loss can be neglected in our simulations. 

 

Figure S12. Temperature rise at the top surface of the PMMA, along the cross section marked by dotted 

lines A from figure 3b. The curve is calculated by FEA simulation, assuming an adiabatic boundary 

condition of heat transfer at the top surface of the PMMA. 
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   The heat loss due to radiation can be described as
4 4

0 0[( ) ]R surfaceQ T T dA    ,where 

8 2 4~ 5.67 10 / /W m K  is the Stefan-Boltzmann constant and 0 300T K is the ambient temperature. 

Again, doing estimation using ~ 1.5surface K and width of the temperature profile ~1m, we get the 

radiation loss~
69.2 10 /W m , which is also much smaller than the input power. 
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