Supporting Information (i): High Salt systems with M^{III} as background ions.

Addition of 1M AI^{3+} or Fe³⁺ completely dissolves FePP_i, see Figure A1. This might be caused by the lowered pH, see Table A2.

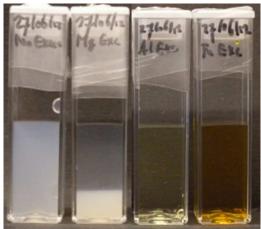


Figure A1. M^{II}/M^{III} excess dispersions: (a) Freshly prepared FePP_i (b) 1M MgCl₂, (c) 1M AlCl₃, (d) 1M FeCl₃.

Table A2. pH of FePP _i dispersions.				
Added	Added	рН		
cation	concentration (M)			
No salt*	0	3.30		
Li⁺	2	2.84		
K ⁺	2	2.69		
Mg ²⁺	1	2.68		
Al ³⁺	1	1.79		
Fe ³⁺	1	0.81		
Fe ³⁺ 10%	0.0002	2.80		

*No additional salt: freshly prepared FePP_i system.

Supporting Information (ii): Fe or PP_i deficient systems

Fe/PP_i deficient samples were prepared by reducing the amount of the respective salt by 10%. The PP_i deficient systems had a positive zeta-potential insufficient to keep the system dispersed, see Table A1. The Fe deficient system remained stable but did not have an increased zeta-potential that might be expected for an electrocratic system.

Table A1. 10% Fe or PP _i deficient systems				
Size		ζ-potential	Conductivity	
	(nm)	(mV)	(mS/cm)	
Stoichiometry	210	-37	2.2	
Fe deficit	250	-40	2.1	
PP _i deficit	*20000	*4.2	2.5	

*Indicative values, size and measurement polydispersity too large for accurate analysis.

Supporting Information (iii) Solubility of iron(III) pyrophosphate

The solubility of iron pyrophosphate at pH 3.8 and a solid content of 25 g/L (0.14 M iron, 0.11 M pyrophosphate assuming pure $FePP_i$) was determined by ICP-AES analysis to be 0.61 mM iron and 0.67 mM pyrophosphate. Solubility of similar materials have been shown to vary with experimental conditions such as solid content[1].

References

[1]Leach, S. A. Electrophoresis of Synthetic Hydroxyapatite. Arch. Oral Biol. 1960, 3, 48-56.