Supporting Information

for

Generation of the Volatile Spiroketals Conophthorin and Chalcogran by Fungal Spores on Polyunsaturated Fatty Acids Common to Almonds and Pistachios

John J. Beck, $*,^{\dagger}$ Noreen E. Mahoney, [†] Daniel Cook, [‡] and Wai S. Gee [†]

[†] Plant Mycotoxin Research, Western Regional Research Center, Agricultural Research Service,
U. S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States;
[‡] Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of
Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States

Table of Contents

Page ii	Summary of all volatiles detected
Page iii	Detailed pairwise day-to-day comparisons
Page iv	Picture of volatile collection chamber

 Table S1. Tentative and verified compounds detected from control experiments with just fatty acids or experiments with individual fungal spores on individual fatty acids. Compounds with no authentication retention time should be considered tentative. Volatile difference between treatments is not delineated.

 Volatile difference between treatments is not delineated.
 Auth. DT

Volatile difference between treatments		
Volatiles detected	RT (DB-Wax)	Auth. RT
a-Pinene	3.36	0.00
1-Propananol 2-Hexanone	3.38 3.78	3.28 3.76
Hexanal	3.79	3.78
3-Pentanol	3.92	3.92
2-Pentanol	4.04	4.03
2-Butyl furan	4.26	4.24
Butanol	4.32	
1,2-Epoxyheptane	4.44	
1-Penten-3-ol	4.48	4.47
3-Methyl-4-heptanone	4.50	
2-Heptanone	4.86	4.86
Cyclopentanone	4.99	4.99
Limonene 2-Hexanol	5.16 5.27	5.27
Butyl butyrate	5.32	5.27
Hexyl formate	5.37	5.22
2-Pentyl furan	5.52	5.52
Pentanol	5.75	5.75
1-Acetylcyclohexene	5.80	
3-Octanone	5.90	5.91
Styrene	5.97	
2-Penten-1-ol acetate	6.18	
2-Octanone	6.40	6.40
Conophthorin (CONO)	6.54	6.54
2-Heptanol	6.92	6.93
2-Penten-1-ol, (Z)-	6.94	6.94
2-Heptenal, (E)- 6-Octen-2-one	7.12 7.22	7.12
4-Ethylcyclohexanone	7.51	
Hexanol	7.58	7.57
Chalcogran, (E)- (CHALC 1)	7.69	7.69
Chalcogran, (Z)- (CHALC 2)	7.77	7.78
3-Hexen-1-ol, (Z)-	8.20	8.20
2-Nonanone	8.33	8.32
3-Octanol	8.36	8.37
Nonanal	8.40	
1-Ethyl-1-methylcyclopentane	8.61	51
2-Octanol	8.90	8.89
2-Octenal, (E)-	9.18	9.17
1-Octen-3-ol Heptanol	9.53 9.68	9.52 9.68
5-Octen-2-ol	9.78	9.82
2,4-Heptadienal, (E,E)-	9.88	3.02
2-Ethylhexanol	10.40	
2-Hepten-1-ol, (E)-	10.88	
Pentyl hexanoate	10.91	10.88
2-Hepten-1-ol, (Z)-	10.98	
6-Undecanone	11.22	11.22
Cyperene	11.35	
2-Butyltetrahydrofuran	11.41	
Cyclohexanol, 2,4-dimethyl-	11.49	
Butyric anhydride	11.60	11 75
Octanol Calarene	11.75 12.33	11.75
2-Octen-1-ol, (E)-	12.49	12.49
2-Octen-1-ol, (Z)-	12.52	12.40
5-Octen-1-ol, (Z)-	12.53	12.53
6-Dodecanone	12.68	
Hexanoic anhydride	13.00	
1,3-Cyclooctadiene / 1,3,6-Octatriene	13.23	
3-Nonen-1-ol, (Z)-	13.23	13.23
2,4-Heptadien-1-ol	13.26	
γ-Hexalactone	13.41	13.38
2,4-Decadienal, (E,Z)-	13.92	
Benzeneethanol, α-methyl-	14.39	
Hexanoic acid	14.52	
1-Nonen-4-ol / 1,2-Heptanediol		
1-Nonen-1-ol / 1 2. Hantanadial	14.81	
1-Nonen-4-ol / 1,2-Heptanediol Nonalactone	14.81 15.27 15.80	15.73

Table S2. Two way ANOVA followed by pairwise comparison (Bonferroni t-test) of spore ages. Days compared are dependent upon amount of time between volatile analyses (Permeation time). Compared are days 6, 8, 13 (Permeation = 24 h); and, days 4 and 11 (Permeation = 72 h).

		Linoleic Acid					Linolenic				
	-	Conophthorin		Chalcogran 1		Chalcogran 2		Chalcogran 1		Chalcogran 2	
	Day	Sig.	-	Sig.	-	Sig.	-	Sig.	-	Sig.	-
Spore	Comparison	Diff.	P =	Diff.	P =	Diff.	P =	Diff.	<i>P</i> =	Diff.	P =
A. flavus	11 to 4	Yes	< 0.001	No	1	No	1	No	1	No	1
(atoxigenic)	13 to 8	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001
	13 to 6	No	1	Yes	< 0.001	Yes	0.003	Yes	< 0.001	Yes	< 0.001
	8 to 6	Yes	0.001	No	0.148	Yes	0.030	No	1	No	1
A. flavus	11 to 4	Yes	< 0.001	No	0.169	No	0.060	No	1	No	0.572
(toxigenic)	13 to 8	No	1	No	1	No	1	No	1	No	1
C	13 to 6	No	1	No	1	No	1	No	1	No	1
	8 to 6	No	1	No	1	No	1	No	1	No	1
A. niger	11 to 4	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001
Ū	13 to 8	Yes	< 0.001	No	0.066	Yes	0.010	No	0.978	No	1
	13 to 6	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	No	0.127	No	0.068
	8 to 6	No	1	No	1	No	1	No	1	No	1
A. parasiticus	11 to 4	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	No	0.089	Yes	0.023
	13 to 8	No	0.515	No	1	No	1	No	1	No	1
	13 to 6	Yes	< 0.001	Yes	0.020	No	0.091	No	1	No	1
	8 to 6	Yes	< 0.001	Yes	0.002	Yes	0.008	No	1	No	1
Penicillium	11 to 4	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	Yes	0.004	Yes	0.003
glabrum	13 to 8	Yes	0.002	Yes	< 0.001	Yes	0.037	No	1.000	No	0.814
0	13 to 6	Yes	< 0.001	Yes	< 0.001	Yes	< 0.001	No	0.569	No	0.448
	8 to 6	No	1	No	1	No	1	No	1	No	1
Rhizopus	11 to 4	Yes	< 0.001	No	0.666	No	0.164	nd	nd	nd	nd
stolonifer	13 to 8	No	1	No	1	No	1	nd	nd	nd	nd
	13 to 6	No	1	No	1	No	1	nd	nd	nd	nd
	8 to 6	No	1	No	1	Yes	0.012	nd	nd	nd	nd

Figure S1

