Supporting Information

Ion Permeation by a Folded Multiblock Amphiphilic Oligomer Achieved by Hierarchical Construction of Self-Assembled Nanopores

Takahiro Muraoka,^{*,†} Tatsuya Shima,[†] Tsutomu Hamada,[‡] Masamune Morita,[‡] Masahiro Takagi,[‡] Kazuhito V. Tabata,[§] Hiroyuki Noji,[§] and Kazushi Kinbara^{*,†}

[†]Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan.

[‡]School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan.

[§]Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.

Table of Contents

- 1. Conductance Recordings
- 2. Time Course Fluorescence Measurements
- 3. Calculation of Bending Elastic Moduli
- 4. References

1. Conductance Recordings

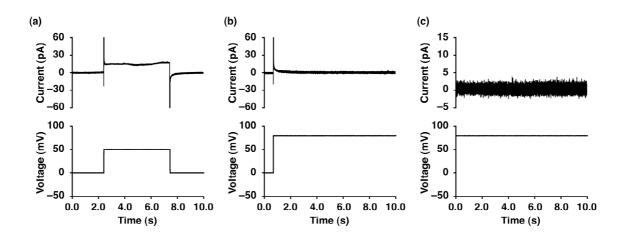


Figure S1. Ion channel current recordings of a DOPC liposomal membrane containing 1 ((a) 10 nM) and 2 ((b) 10 nM, (c) 1.0 pM) in HEPES buffer (20 mM, containing 50 mM KCl, pH 7.5) at 20 $^{\circ}$ C

2. Time Course Fluorescence Measurements

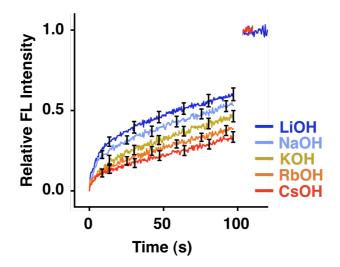


Figure S2. Changes in fluorescence intensity of HPTS entrapped in LUVs containing 1 ([1]/[DOPC] = 0.0075) in 20 mM HEPES at 20 °C (excitation at 460 nm, emission at 510 nm) as a function of time after the addition of an alkali metal hydroxide (LiOH, NaOH, KOH, RbOH or CsOH) at 0 sec followed by 1% triton X-100 at 100 sec. Δ pH = 0.8 (7.1 to 7.9). Data are means (± standard deviations at every 16 s for clarity) of three independent experiments.

3. Calculation of Bending Elastic Modulus^{1,2}

Aspiration pressure (*P*) applied to a GUV produces a membrane tension τ , which can be described as below,

$$\tau = PD_{\rm p}/4(1 - D_{\rm p}/D_{\rm ves}) \tag{S1}$$

where D_p and D_{ves} are the diameters of pipette caliber and of the GUV spherical segment outside the pipette, respectively. An increase of the aspirated projection length (ΔL_p) of the vesicle membrane inside the pipette provides a direct determination of the area expansion (ΔA) of the aspirated vesicle membrane by a proportional relationship expressed as equation S2 based on a first-order approximation.

$$\Delta A \approx \pi D_{\rm p} (1 - D_{\rm p}/D_{\rm ves}) \Delta L_{\rm p} \tag{S2}$$

Changes in the vesicle membrane area and volume were calculated from L_p using the geometric relationship for the total membrane area (A_{tot}) and volume (V_{tot}) of the aspirated GUV. Because a pressurized fluid bilayer vesicle is a perfect sphere, the membrane areas and the volumes of the hemispherical cap portion (A_{cap} and V_{cap} , respectively) and of the cylindrical portion of the projection inside the pipette (A_{cyl} and V_{cyl} , respectively) can be evaluated by equations S3–S6.

$$A_{\rm cap} = \pi D_{\rm p}^{2}/2 \tag{S3}$$

$$A_{\rm cyl} = \pi D_{\rm p} (L_{\rm p} - D_{\rm p}/2) \tag{S4}$$

$$V_{\rm cap} = \pi D_{\rm p}^{-3} / 12$$
 (S5)

$$V_{\rm cyl} = \pi D_{\rm p}^{2} (L_{\rm p} - D_{\rm p}/2)/4$$
(S6)

The membrane areas and the volumes of the GUV spherical segment outside the pipette (A_{ves} and V_{ves} , respectively) can be evaluated by equations S7 and S8.

$$A_{\rm ves} = \pi D_{\rm ves}^{2} (1+u)/2 \tag{S7}$$

$$V_{\rm ves} = \pi D_{\rm ves}^{3} (2 + 3u - u^{3})/24 \tag{S8}$$

$$u = [1 - (D_{\rm p}/D_{\rm ves})^2]^{1/2}$$
(S9)

 A_{tot} and V_{tot} were evaluated by equations S10 and S11.

$$A_{\rm tot} = A_{\rm cap} + A_{\rm cyl} + A_{\rm ves} \tag{S10}$$

$$V_{\rm tot} = V_{\rm cap} + V_{\rm cyl} + V_{\rm ves} \tag{S11}$$

 $D_{\rm p}$, $D_{\rm ves}$, and $L_{\rm p}$ were measured at the beginning of each experiment, which were used to calculate the changes in either area (for the volume $V_{\rm tot}$ held constant) or volume (for the area $A_{\rm tot}$ held constant).

The bending elastic modulus B is evaluated by the logarithmic dependence of the apparent area expansion on the tension τ expressed as below,

$$\log \Delta \tau \approx (8\pi B/k_{\rm B}T)\Delta A/A_{\rm o}$$

where $k_{\rm B}$ is the Boltzmann constant, T is the temperature, and $\Delta A/A_0$ is the area expansion.

4. References

- (1) Olbrich, K. C.; Rawicz, W.; Needham, D.; Evans, E. *Biophys. J.* **2000**, *79*, 321–327.
- Rawicz, W.; Olbrich, K. C.; McIntosh, T.; Needham, D.; Evans, E. *Biophys. J.* 2000, 79, 328–339.