Supporting Information

Reactive Probes for Ratiometric Detection of Co^{2+} and Cu^+ Based on ESIPT Mechanism

Debabrata Maity, Vikash Kumar and T. Govindaraju*

New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore-560064, India. Fax: +91 80 22082627; Tel: +91 80 22082969. E-mail: tgraju@jncasr.ac.in.

Contents

General experimental procedure	page 2
Synthetic details	page2-3
General method for measurements of photophysical properties	page 4
Fluorescence study, pH study, mass spectra,	page 5-12
Proposed mechanism of oxidative benzylic ether cleavage	page 13-14
Competitive experiment	page 15
NMR and HRMS spectra	page 16-20
References	page 21

General experimental procedure

All the solvents and reagents were obtained from Sigma-Aldrich and used as received unless otherwise mentioned. The solutions of metal ions were prepared from Al(ClO₄)₃·9H₂O, LiClO₄·3H₂O, NaClO₄, Mg(ClO₄)₂, Ca(ClO₄)₂·4H₂O, Sr(NO₃)₂, Ba(ClO₄)₂, Mn(ClO₄)₂·6H₂O, Fe(ClO₄)₂·H₂O, Co(ClO₄)₂·6H₂O, Cd(ClO₄)₂·H₂O, Ag(ClO₄)₂, Hg(ClO₄)₂, Pb(ClO₄)₂, Ni(ClO₄)₂·6H₂O, Cu(ClO₄)₂·6H₂O, [Cu(CH₃CN)₄]PF₆ and Zn(ClO₄)₂·6H₂O respectively in CH₃CN. ¹H and ¹³C NMR were recorded on a Bruker AV-400 spectrometer with chemical shifts reported as ppm (in *CDCl₃*, tetramethylsilane as internal standard). HRMS were recorded on Agilent 6538 UHD Accurate-Mass Q-TOF LC/MS analyzer. Fluorescence spectra were recorded on a Perkin Elmer LS 55 spectrophotometer.

Synthesis of HBTCo and HBTCu

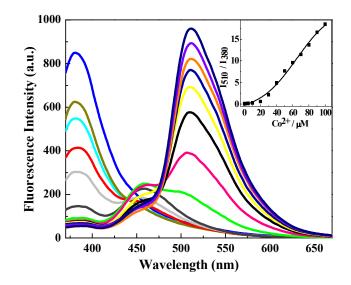
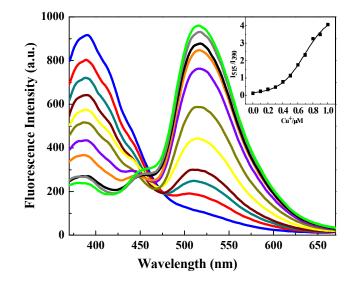
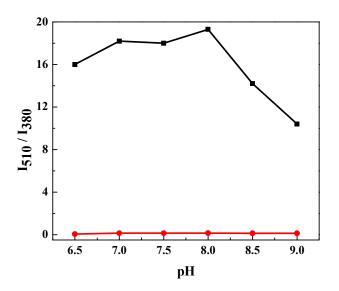
Synthesis of HBTCo. A mixture of 2-hydroxybenzothiazole (65 mg, 0.28 mmol) and N₃O ligand¹ (100 mg, 0.34 mmol) was dissolved in DMF (10 mL). K₂CO₃ (400 mg, 2.8 mmol) was added and the resulting mixture was heated at 90 °C for overnight. After cooling to room temperature, solvent was evaporated in vacuo. The residue in H₂O (50 mL) was extracted with of CH₂Cl₂ (3×20 mL). This organic layer was washed with brine, dried over Na₂SO₄, solvent was evaporated in vacuo and the residue was purified on basic alumina column (solvent. CH₂Cl₂/MeOH: 95/5) to obtain the product as light yellow oil (121 mg, yield 88%). ¹H NMR (400 MHz, *CDCl₃*) δ 2.90 (2H, t, *J* = 5.2 Hz), 3.69 (2H, t, *J* = 5.2 Hz), 3.96 (4H, d, *J* = 4 Hz), 5.47 (2H, s), 7.11-7.16 (3H, m), 7.27-7.31 (2H, m), 7.34-7.43 (2H, m), 7.47-7.51 (2H, m), 7.54-7.58 (1H, td, *J* = 6 Hz, 1.6 Hz), 7.63 (1H, t, *J* = 7.6 Hz), 7.88 (1H, d, *J* = 8 Hz), 8.09 (1H, d, *J* = 8 Hz), 8.51-8.55 (2H, m) (*Note: HBTCo contains one exchangeable alcoholic proton. Therefore the signal for this proton not appeared in the spectrum*). ¹³C NMR (400 MHz, *CDCl₃*) δ 56.8, 59.7, 60.0, 60.1, 71.4, 113.1, 120.2, 121.2, 121.6, 122.1, 122.2, 122.7, 122.8, 123.0, 124.6, 125.9,

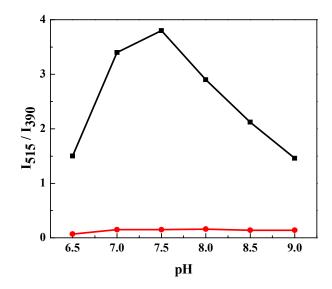
129.9, 131.8, 136.0, 136.5, 137.4, 149.0, 152.2, 155.8, 155.9, 159.1, 159.2, 163.0. HRMS: observed m/z = 505.1667 $[M + Na]^+$ and calculated m/z = 505.1674 for C₂₈H₂₆N₄NaO₂S.

Synthesis of HBTCu. A mixture of 2-hydroxybenzothiazole (80 mg, 0.35 mmol) and N₄ ligand² (143 mg, 0.42 mmol) was dissolved in DMF (10 mL). K₂CO₃ (490 mg, 3.5 mmol) was added and the resulting mixture was heated at 90 °C for overnight. After cooling to room temperature, the solvent was evaporated in vacuo. The residue in H₂O (50 mL) was extracted with of CH₂Cl₂ (3×20 mL). This organic layer was washed with brine, dried over Na₂SO₄, evaporated in vacuo and the residue was purified on neutral alumina column (solvent. ethyl acetate) to obtain the product as light yellow oil (168 mg, yield 90%). ¹H NMR (400 MHz, *CDCl₃*) δ 3.92 (4H, s), 3.93 (2H, s), 5.46 (2H, s), 7.08-7.16 (4H, m), 7.33-7.39 (2H, m), 7.46-7.49 (2H, m), 7.50-7.70 (6H, m), 7.86 (1H, d, *J* = 7.6 Hz), 8.08 (1H, d, *J* = 8 Hz), 8.50 (1H, dd, *J* = 6.4 Hz, 1.6 Hz), 8.53 (2H, d, *J* = 4.4 Hz). ¹³C NMR (400 MHz, *CDCl₃*) δ 59.0, 59.2, 70.6, 76.1, 112.0, 119.0, 120.2, 120.5, 121.0, 121.1, 121.6, 121.8, 121.9, 123.6, 124.9, 128.8, 130.7, 135.0, 135.4, 136.3, 148.1, 151.2, 154.7, 154.9, 158.1, 158.3, 162.0. HRMS: observed m/z = 530.2014 [M + H]⁺ and calculated m/z = 530.2015 for C₃₃H₂₈N₅OS.

General method for measurements of photophysical properties

Fluorescence spectra were recorded on a Perkin Elmer model LS 55 spectrophotometer. 1 cm cells were used for emission titration. For fluorescence titrations stock solution of ligands **HBTCo** and **HBTCu** were prepared ($c = 2000 \mu$ M) in CH₃CN. The solutions of guest cations were prepared in CH₃CN in the order of 10⁻³ M. Working solutions of **HBTCo** and **HBTCu** and metal ions were prepared from the stock solutions. Excitation was carried out at 350 nm for **HBTCo** and **HBTCu** with 10 nm excitation and 10 nm emission slit widths.


Figure S1. Fluorescence responses of HBTCo (20.0 μ M) upon addition of 0.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0 μ M of Co²⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH) (λ_{ex} = 350 nm).

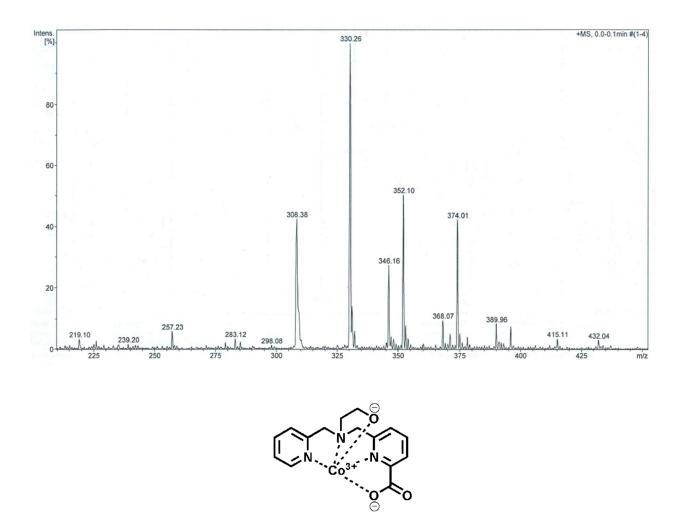

Figure S2. Fluorescence responses of **HBTCu** (20.0 μ M) upon addition of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 μ M of Cu⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH) (λ_{ex} = 350 nm).

Figure S3. Effect of pH on the ratiometric fluorescence emission of **HBTCo**. **HBTCo** (20.0 μ M) with 100.0 μ M of Co²⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2). Black trace: with 2 mM GSH and red trace: without GSH in the buffer.

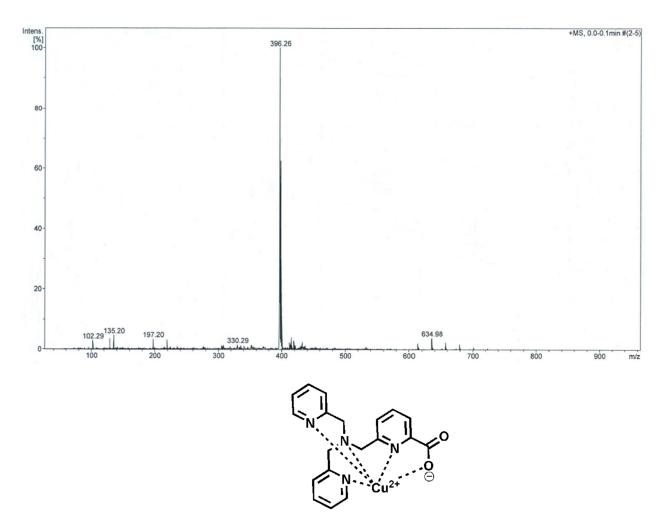


Figure S4. Effect of pH on the ratiometric emission of **HBTCu**. **HBTCu** (20.0 μ M) with 1.0 μ M of Cu⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2). Black trace: with 2 mM GSH and red trace: without GSH in the buffer.

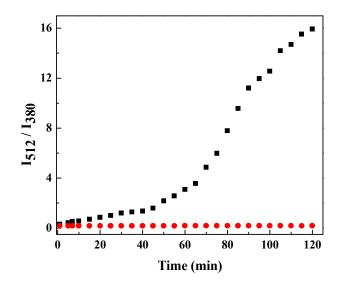
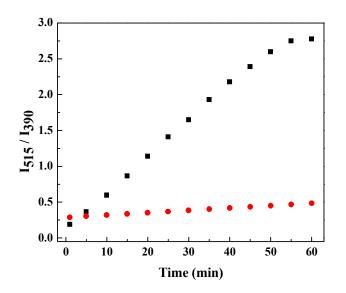

Calculated m/z = 344:04 for C₁₅H₁₆CoN₃O₃ (N₃O-Co complex)

Figure S5. ESI mass spectra (positive ion mode) for the reaction of 20.0 μ M **HBTCo** with 100.0 μ M Co²⁺ in water in presence of 100.0 μ M GSH. Mass peaks observed at 346.16 ([M + 2H]⁺), 368.07 ([M + H+ Na]⁺) and 389.96 ([M + 2Na]⁺) are corresponds to N₃O-Co complex C₁₅H₁₆CoN₃O₃. Mass peaks observed at 308.38 ([M + H]⁺), 330.26 ([M + Na]⁺), 352.10 ([M + 2Na-H]⁺) and 374.01([M + 3Na-2H]⁺) are corresponds to GSH.



Calculated m/z = 396.06 for $C_{19}H_{17}CuN_4O_2$ (N₄-Cu complex)

Figure S6. ESI mass spectra (positive ion mode) for the reaction of 20.0 μ M **HBTCu** with 10.0 μ M Cu⁺ in water in presence of 100.0 μ M GSH. Mass peaks observed at 396.26 ([M + H]⁺) is corresponds to N₄-Cu complex C₁₉H₁₇CuN₄O₂. Mass peaks observed at 330.29 ([M + Na]⁺) is corresponds to GSH.

Figure S7. Time dependent ratiometric study of 20.0 μ M **HBTCo** incubated with 100 μ M of Co²⁺ in aqueous solution (50 mM HEPES, pH 7.2) with (**black trace**) and without (**red trace**) 2 mM GSH.

Figure S8. Time dependent ratiometric study of 20.0 μ M **HBTCu** incubated with 1.0 μ M of Cu⁺ in aqueous solution (50 mM HEPES, pH 7.2) with (**black trace**) and without (**red trace**) 2 mM GSH.

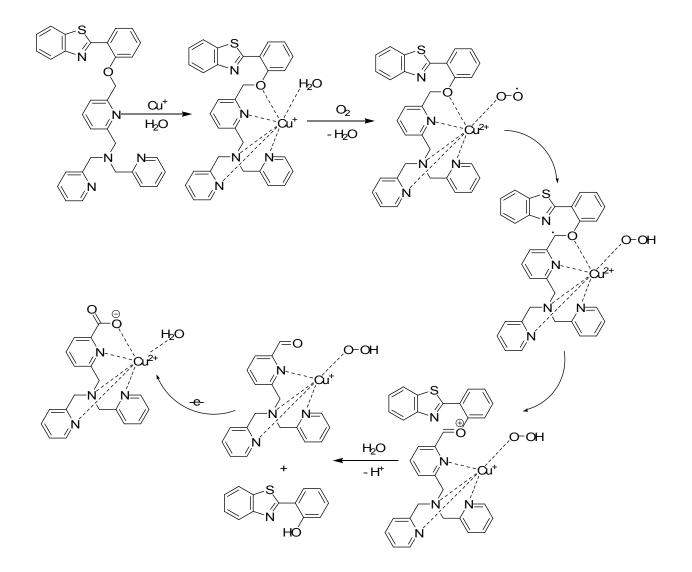
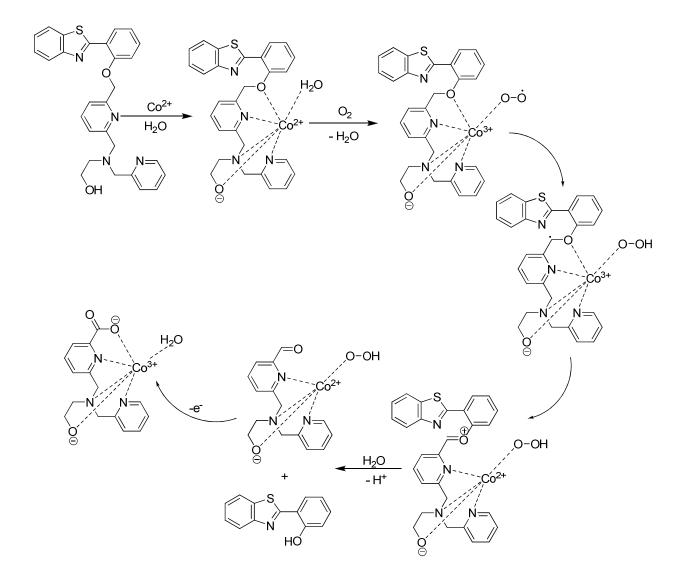
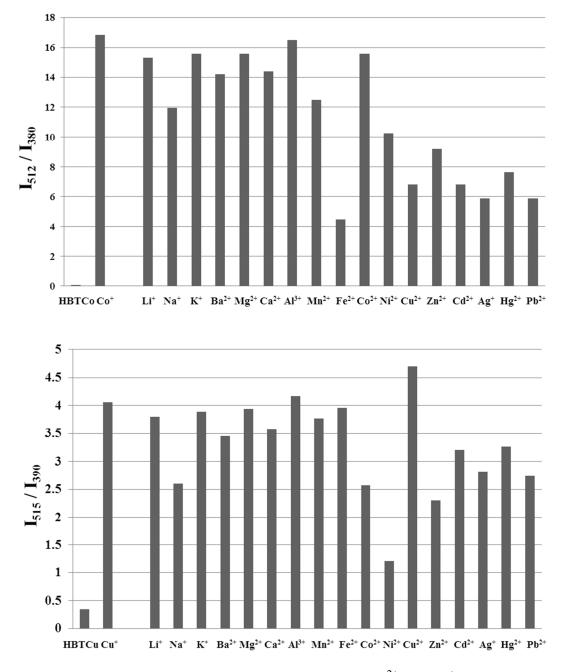
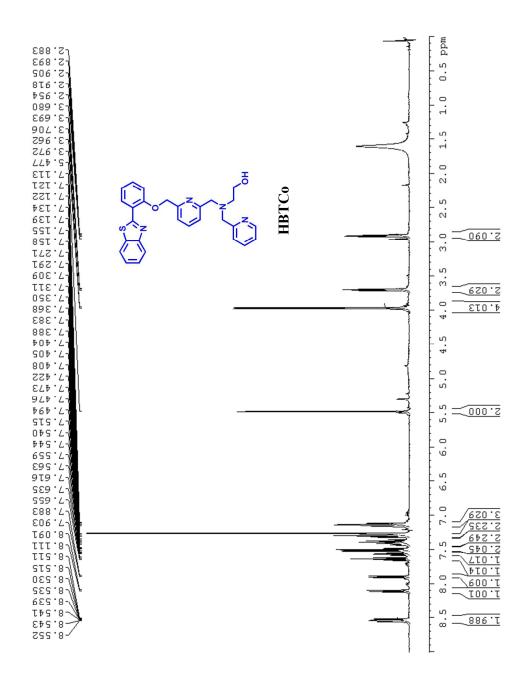
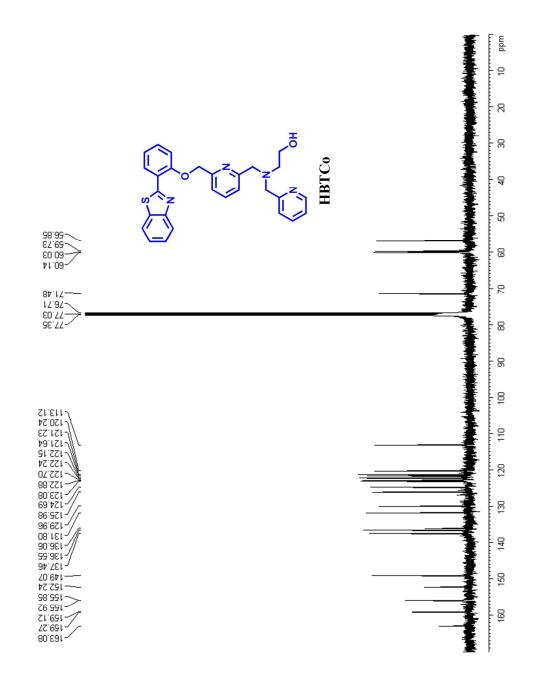


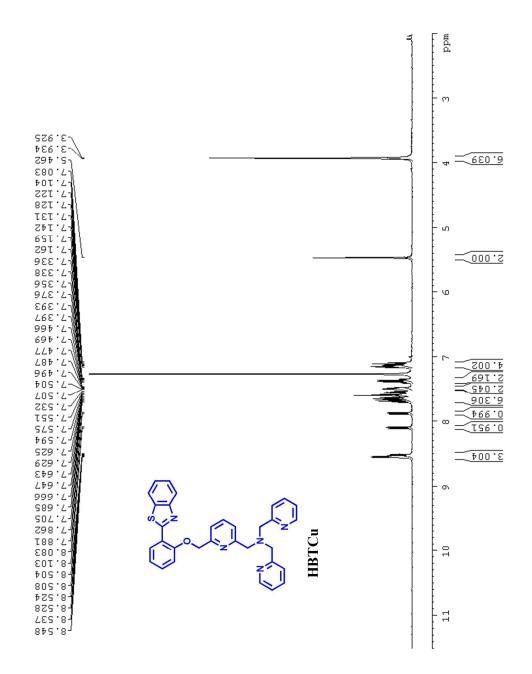
Figure S9. Proposed mechanism for oxidative cleavage of benzylic ether bond in HBTCu

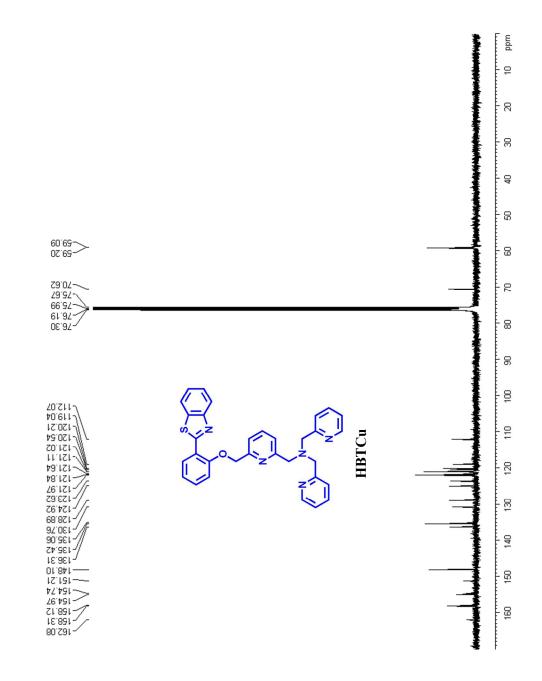



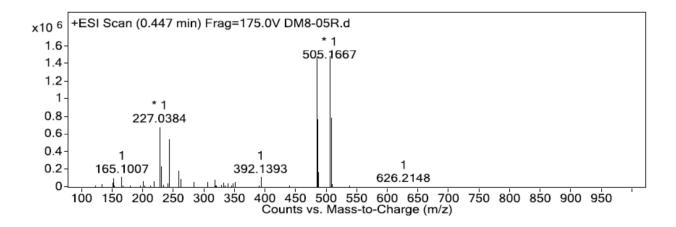

Figure S10. Proposed mechanism for oxidative cleavage of benzylic ether bond in HBTCo


Figure S11. Competitive experiment for the detection of Co^{2+} and Cu^+ using 20.0 μ M **HBTCo** and **HBTCu** respectively. Top: 100.0 μ M Co^{2+} is mixed with100.0 μ M of corresponding metal ions. Bottom: 100.0 μ M Cu^+ is mixed with100.0 μ M of corresponding metal ions. Left two bars are control response of the corresponding probe and only metal ion.

NMR spectra




¹³C NMR spectrum of HBTCo


¹H NMR spectrum of HBTCu

¹³C NMR spectrum of HBTCo

HRMS spectra

Figure S12. HRMS spectra of **HBTCo.** Observed $m/z = 505.1667 [M + Na]^+$ and calculated m/z = 505.1674 for $C_{28}H_{26}N_4NaO_2S$.

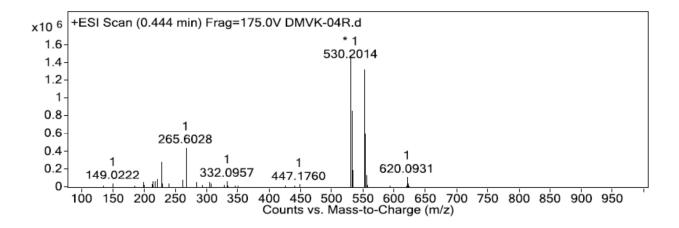


Figure S13. HRMS spectra of HBTCu. HRMS: observed $m/z = 530.2014 [M + H]^+$ and calculated m/z = 530.2015 for $C_{32}H_{28}N_5OS$.

References

(1) Au-Yeung H. Y.; New E. J.; Chang C. J. Chem. Commun. 2012, 48, 5268.

(2) Lucchese B.; Humphreys K. J.; Lee D.; Incarvito C. D.; Sommer R. D.; Rheingold A. L.; Karlin K. D. *Inorg. Chem.* **2004**, *43*, 5987.