An Oxidopyrylium Cyclization/Ring-Opening Route to Polysubstituted α-Hydroxytropolones

Christine Meck^{$\dagger, \ddagger}$, Noushad Mohd^{\dagger} and Ryan P. Murelli^{$\dagger, \ddagger, *$}</sup>

[†]Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn College 11210 [‡]Department of Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New

York, NY 10016

Supporting Information

Table of Contents

I. General Information	s-2
II. Synthesis and characterization of oxidopyrylium triflate salts	s-2
General Synthetic Scheme	s-2
5-hydroxy-4-methoxy-2-methylpyrylium (3a)	s-2
2-(chloromethyl)-5-hydroxy-4-methoxypyrylium (3b)	
5-hydroxy-4-methoxy-2-(methoxymethyl)pyrylium (3c)	

(1K, 2S, 0S, /K) = 0, 9-almethoxy=4, /-almethyl=5, 11-aloxaticyclo[5.5.1.12,0]aodeca=4, 8-alene=10, 12-alone (7)...

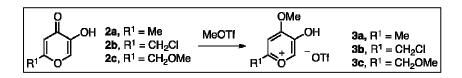
IV. Synthesis and characterization of 8-oxabicyclo[3.2.1] octenes

General Synthesis and Procedures.	s-6
Dimethyl 3-methoxy-1-methyl-4-oxo-8-oxabicyclo[3.2.1]octa-2,6-diene-6,7-dicarboxylate (5a)	s-7
Dimethyl1-(chloromethyl)-3-methoxy-4-oxo-8-oxabicyclo[3.2.1]octa-2,6-diene-6,7-dicarboxylate (5b)	s-8
Dimethyl 3-methoxy-1-(methoxymethyl)-4-oxo-8-oxabicyclo[3.2.1]octa-2,6-diene-6,7-dicarboxylate (5c)	s-9
Ethyl 3-methoxy-5-methyl-2-oxo-8-oxabicyclo[3.2.1]octa-3,6-diene-6-carboxylate (5d)	s-10
6-acetyl-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5e)	s-11
6-benzoyl-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5f)	s-12
Ethyl 3-methoxy-5,7-dimethyl-2-oxo-8-oxabicyclo[3.2.1]octa-3,6-diene-6-carboxylate (5g)	s-13
3-methoxy-5-methyl-6-phenyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5h)	s-14
3-methoxy-5-methyl-6-(4-nitrophenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5i)	s-15

V. Synthesis and characterization of α-methoxytropolones via BBr₃

Dimethyl 7-hydroxy-5-methoxy-3-methyl-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (10a).....s-16

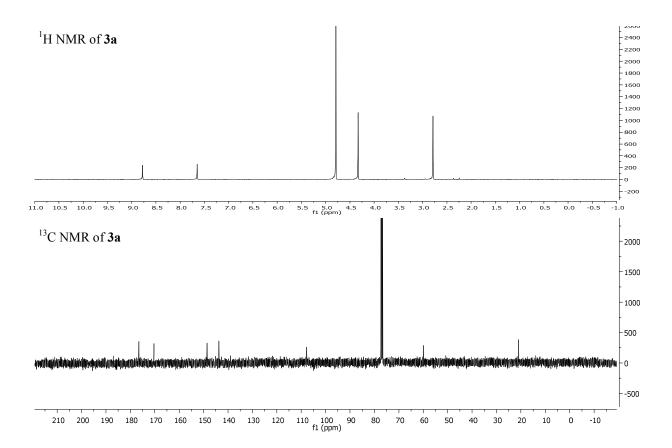
VI. Synthesis and characterization of α-hydroxy and α-methoxytropolones via BCl₃


Dimethyl 5,7-dihydroxy-3-methyl-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (6a)	s-18
Crystal structure of 6a	s-19
Dimethyl 3-(chloromethyl)-5,7-dihydroxy-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (6b)	s-20
Dimethyl 5,7-dihydroxy-3-(methoxymethyl)-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (6c)	s-21
Ethyl 4,6-dihydroxy-2-methyl-5-oxocyclohepta-1,3,6-trienecarboxylate (6d)	s-21
Purification of 6d through HBr/AcOH demethylation	s-22
4-acetyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trienone (6e)	s-23
4-benzoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trienone (6f)	s-24
4-benzoyl-2-hydroxy-7-methoxy-5-methylcyclohepta-2,4,6-trienone (10f)	s-25
Purification of 6f through HBr/AcOH demethylation	s-26

Ethyl 6-hydroxy-4-methoxy-2,7-dimethyl-5-oxocyclohepta-1,3,6-trienecarboxylate (10g)	s-27
2-hydroxy-7-methoxy-5-methyl-4-(4-nitrophenyl)cyclohepta-2,4,6-trienone (10i)	s-27
2,7-dihydroxy-4-methyl-5-(4-nitrophenyl)cyclohepta-2,4,6-trienone (6i)	
NOESY Data of 10 i	
Purification of 6i through HBr/AcOH demethylation	s-30

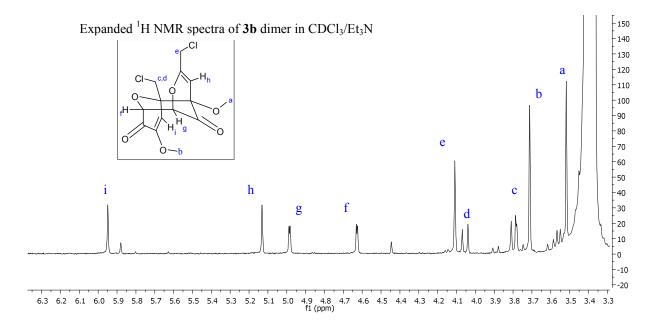
I. General Information

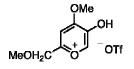
All starting materials and reagents were purchased from commercially available sources and used without further purification, with exception of CH₂Cl₂ and benzene, which was purified on a solvent purification system prior to the reaction. ¹H NMR shifts are measured using the solvent residual peak as the internal standard (CHCl₃ δ 7.26, D₂O δ 4.79), and reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, dd = doublet of doublet, q = quartet, m = multiplet), coupling constant (Hz), and integration. ¹³C NMR shifts are measured using the solvent residual peak as the internal standard (CDCl₃ δ 77.20), and reported as chemical shifts. Infrared (IR) spectral bands are characterized as broad (br), strong (s), medium (m), and weak (w). Microwave reactions were preformed via the Biotage Initiator 2.5. Purification via reverse phase column chromatography was performed on the Biotage Isolera Prime, with Biotage SNAP 12g cartridges, in a solvent system of acetonitrile in water, each solvent containing 0.05% trifluoroacetic acid (TFA).


II. Synthesis and characterization of oxidopyrylium salts (3a-c)¹

5-hydroxy-4-methoxy-2-methylpyrylium (3a). To a solution of $2a^2$ (1.31 g, 10.3 mmol) in CH₂Cl₂ (5.25 ml) was added methyl trifluoromethanesulfonate (MeOTf), (1.77 ml, 15.6 mmol). Reaction stirred at reflux for 4 h, cooled to rt, and then evaporated under reduced pressure to yield crude 3a as an orange to red tinted oil. Crystallization from Ethyl Acetate (EtOAc) yielded pure 3a as an orange solid (1.0g, 33% yield). ¹H NMR (400 MHz, D₂O) δ 8.78 (s, 1H), 7.65 (s, 1H), 4.33 (s, 3H), 2.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.52 (s), 170.34 (s), 148.59 (s), 143.72 (s), 107.80 (s), 59.94 (s), 20.91 (s).

¹ The procedure for the synthesis of **3a-3c** was modified from a published procedure for **3a**: Wender, P. A.; Mascarenas, J. L. *Tetrahedron Lett.* **1992**, 33, 2115-2118.

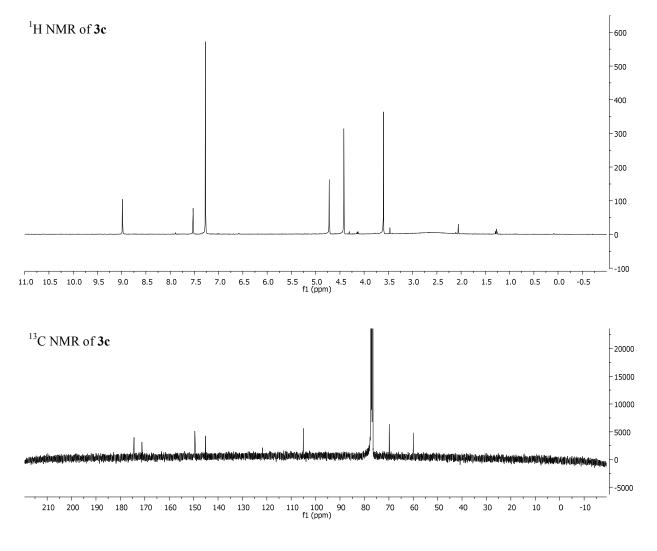

² For preparation of **2a** and **2b**, see: Hider, R. C; et al. *J. Med. Chem.* **2008**, 51, 4539-4552.


2-(chloromethyl) -5-hydroxy-4-methoxypyrylium (3b). To a solution of $2b^2$ (500 mg, 3.1 mmol) in benzene (1.6 ml) was added MeOTf, (1.03 ml, 9.3 mmol). Reaction was run under microwave irradiation for 20 min at 80 °C, and then evaporated under reduced pressure to yield crude 3b as an off white solid (999 mg, >95% yield). Crystallization from Ethyl Acetate (EtOAc) yielded pure 3b as an off white solid (156 mg, 16% yield), which was incompatible in standard deuterated

solvents due to insolubility (CDCl₃) or instability (d-DMSO and D₂O). MP=74-80°C. **IR (thin film, KBr)** 2853 (w), 1622 (m), 1569 (m), 1544 (m), 1503 (m), 1459 (w), 1254 (s), 1227 (s), 1172 (m), 1028 (s), 991 (m), 637 (s), 574 (w). **HRMS (ESI +)** m/z calc'd for C₇H₈O₃Cl: 175.0156. Found: 175.0159. Due to incompatibility with deuterated solvents, NMR verification was found by conversion to dimer and subsequent analysis. To do this, an aliquot of the salt was placed in approximately 10-20% solution of N,N-diethylaniline (Et₂NPh) in CDCl₃, and signature peaks consistent with those of known dimer 7 were observed. ¹H NMR (400 MHz, CDCl₃)³ δ 5.95 (s, 1H), 5.13 (s, 1H), 4.98 (d, *J* = 2.6 Hz, 1H), 4.63 (d, *J* = 2.6 Hz, 1H), 4.11 (s, 2H), 4.05 (d, *J* = 11.8 Hz, 1H), 3.80 (d, *J* = 11.1 Hz, 1H), 3.66 (s, 3H), 3.50 (s, 3H).

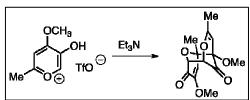
³ Partial ¹H NMR shown to reflect key protons distinguishable from base.

5-hydroxy-4-methoxy-2-(methoxymethyl)pyrylium (3c). To a solution of 2c⁴ (153 mg, 0.994 mmol) in CH₂Cl₂

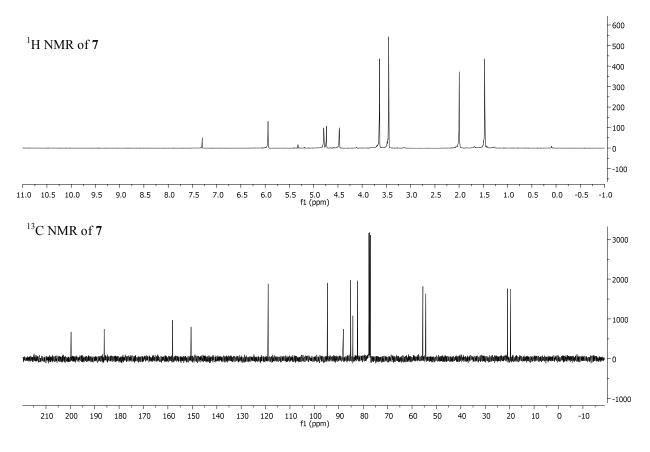


(502 μ L) was added MeOTf, (167 μ L, 1.49 mmol). Reaction stirred at reflux for 3.5 h, cooled to rt, and then evaporated under reduced pressure to yield crude **3c** as an orange to red tinted oil ⁵ (282 mg, 87%). The oil was taken up in hot chloroform, to which was added several drops of EtOAc while hot until the solution became cloudy. Solution was placed on

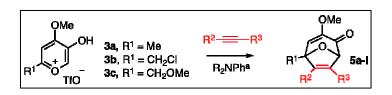
ice, and a white solid crystallized out **3c** (20 mg, 6%) which decomposes at temperatures of 235 °C. **IR (thin film, KBr)** 3486 (br), 1634 (m), 1259 (s), 1174 (m), 1035 (s), 764 (w), 643 (w) cm⁻¹¹. ¹H NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 7.53 (s, 1H), 4.72 (s, 2H), 4.42 (s, 3H), 3.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.37 (s), 171.16 (s), 149.51 (s), 145.13 (s), 105.07 (s), 69.82 (s), 60.01 (s), 59.96 (s). HRMS (ESI+) *m/z* calc'd for C₈H₁₁O₄: 171.0652. Found: 171.0653.


⁴ Prepared from a solution of **2b** in a 0.2 M solution of methanol (MeOH) and 5eq of Na° and stirred at rt over a 72 h period.

⁵ Oil decomposes when stored neat in the freezer. Long-term storage in CHCl₃ is recommended.


III. Synthesis and characterization of oxidopyrylium dimer (7)

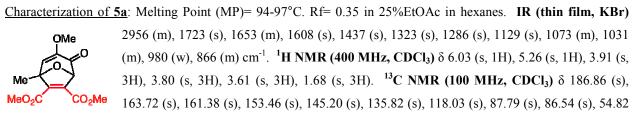
(1R,2S,6S,7R)-6,9-dimethoxy-4,7-dimethyl-3,11-dioxatricyclo[5.3.1.12,6]dodeca-4,8-diene-10,12-dione (7). To a solution of 14a (69.8 mg, 0.240 mmol) in CHCl₃ (1.2 ml) was added triethylamine (29.1 mg, 0.288 mmol). After a



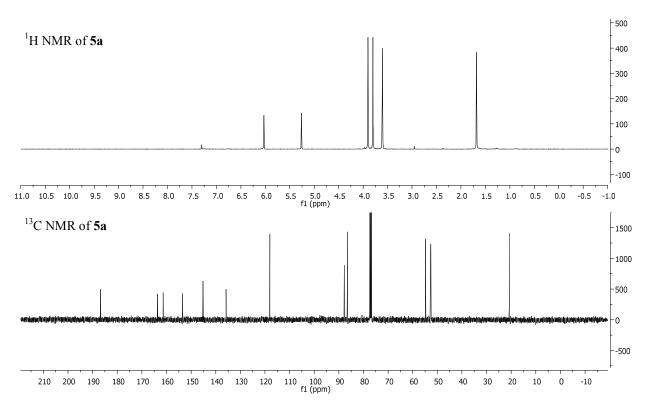
short mixing time (~10 s) at rt, the reaction mixture was washed with NH_4Cl_{aq} (6 x 2mL) to yield **3a** (24.4 mg, 73% yield) as a pale yellow solid that decomposes at 161°C. Rf= 0.29 in 30% ethyl acetate (EtOAc) in hexanes. **IR (thin film, KBr)** 3078 (w), 2982 (w), 1744 (s), 1704 (s), 1663 (m), 1617 (m), 1454 (m)

1367 (m) , 1289 (m), 1249 (m), 1186 (s), 1162 (m), 1133 (m), 1094 (m), 991 (m), 870 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 5.94 (s, 1H), 4.79 (d, J = 2.7 Hz, 1H), 4.74 (s,1H), 4.47 (d, J = 2.7 Hz, 1H), 3.64 (s, 3H), 3.45 (s, 3H), 2.00 (s, 3H), 1.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.67 (s), 186.12 (s), 158.15 (s), 150.52 (s), 118.91 (s), 94.67 (s), 88.15 (s), 85.19 (s), 84.27 (s), 82.28 (s), 55.56 (s), 54.37 (s), 20.86 (s), 19.58 (s). HRMS (ESI+) *m/z* calc'd for C₁₄H₁₆O₆Na+: 303.08391 Found: 303.08455.

IV. Synthesis and characterization of 8-oxabicyclo[3.2.1]octenes (5a-i)


General Procedure A. To a solution of salt 3a and alkyne (20 equiv) in CH_2Cl_2 (0.2 M) was added N,N-dimethylaniline (2 equiv). The reaction stirred at rt and was monitored periodically by ¹H NMR until dimer 7 was completely consumed. Reaction mixture was then loaded directly onto column for chromatography and purified.

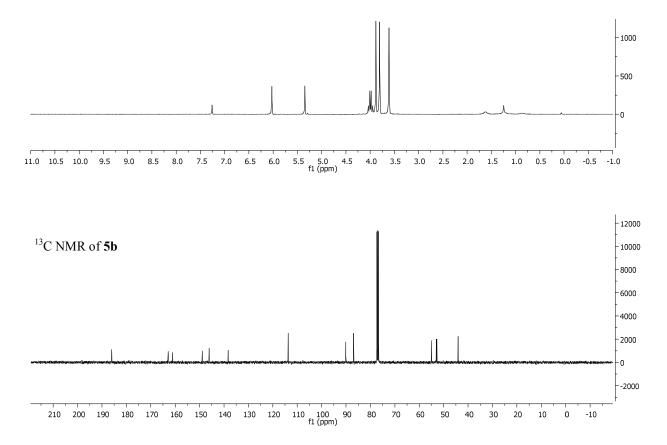
General Procedure B. To a solution of salts **3a-3c** and alkyne (5-20 equiv) in $CHCl_3$ (0.5 M) was added N,N-diisopropylaniline (1.2 equiv). The reaction mixture was subjected to microwave irradiation at 100 °C and was monitored periodically by ¹H NMR until dimer **7** was completely consumed. Reaction mixture was then loaded directly onto column for chromatography and purified.


Dimethyl 3-methoxy-1-methyl-4-oxo-8-oxabicyclo[3.2.1]octa-2,6-diene-6,7-dicarboxylate (5a).

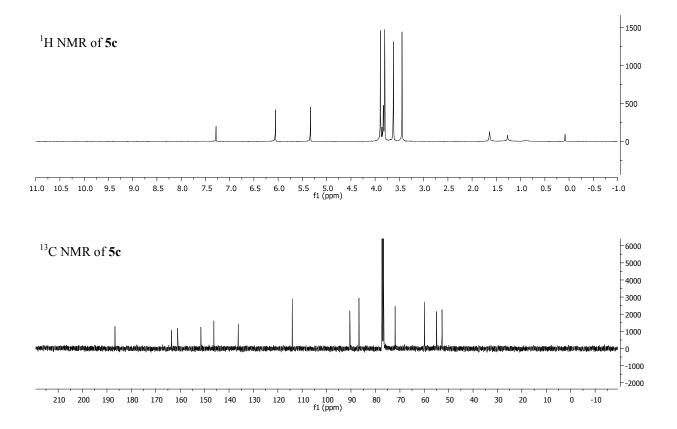
Procedure A: To a solution of **3a** (100 mg, 0.34 mmol) and dimethyl acetylenedicarboxylate (DMAD) (832 μ L, 6.8 mmol) in CH₂Cl₂ (1.7 mL) was added N,N-dimethylaniline (86 μ L, 0.68 mmol). After stirring at rt for 17 h, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: 5% EtOAc in hexanes (100 mL); 10% EtOAc in hexanes (200 mL); 20% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5a** as an orange solid (71 mg, 74% yield).

Procedure B: To a solution of **3a** (110.4 mg, 0.381 mmol) and DMAD (939 μ L, 7.62 mmol) in CHCl₃ (762 μ L) was added N,N-diisopropylaniline (88 μ L, 0.457 mmol). After microwave irradiation at 100 °C for 5 min, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (100 mL); 20% EtOAc in hexanes (100 mL); 25% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5a** as an orange solid (96.8 mg, 90% yield).

(s), 52.76 (s), 52.61 (s), 20.80 (s). HRMS (ESI+) *m/z* calc'd for C₁₃H₁₄O₇H+: 283.08123, Found: 283.08170.


Dimethyl 1-(chloromethyl)-3-methoxy-4-oxo-8-oxabicyclo[3.2.1]octa-2,6-diene-6,7-dicarboxylate (5b).

Following procedure B: To a solution of **3b** (102.7 mg, 0.317 mmol) and DMAD (783 μ L, 6.34 mmol) in CHCl₃ (634 μ L) was added N,N-diisopropylaniline (74 μ L, 0.380 mmol). After microwave irradiation at 100 °C for 60 min, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (100 mL); 20% EtOAc in hexanes (100 mL);


25% EtOAc in hexanes(100 mL)). Product fractions were concentrated to yield **5b** as a light yellow solid (76 mg, 76% yield). MP= 127-130°C. Rf= 0.33 in 40% in EtOAc in hexanes. **IR (thin film, KBr)** 2956 (w), 1720 (s), 1649 (w), 1610 (s), 1437 (s), 1278 (s), 1219 (m), 1129 (s), 1079 (m), 985 (m), 797 (w), 727 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 6.03 (s, 1H), 5.35 (s, 1H), 3.99 (dd, *J* = 12.3, 12.3 Hz, 2H), 3.88 (s, 3H), 3.81 (s, 3H), 3.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.98 (s), 162.87 (s), 161.01 (s), 148.90 (s), 146.05 (s), 138.27 (s), 113.71 (s), 90.08 (s), 86.92 (s), 55.06 (s), 53.00 (s), 52.81 (s), 44.10 (s). HRMS (ESI+) *m/z* calc'd for C₁₃H₁₃ClO₇Na+: 339.02420. Found: 339.02506.

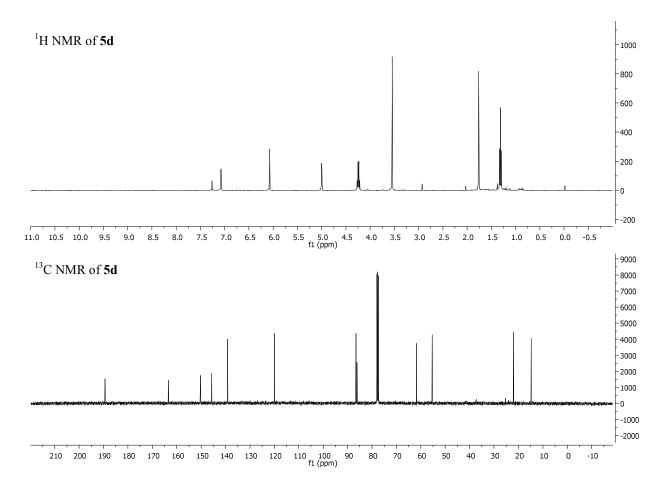
¹H NMR of **5b**

Dimethyl 3-methoxy-1-(methoxymethyl)-4-oxo-8-oxabicyclo[3.2.1]octa-2,6-diene-6,7-dicarboxylate (5c).
Following procedure B: To a solution of 3c (114.6 mg, 0.358 mmol) and DMAD (870 μL, 7.16 mmol) in CHCl₃ (716 μL) was added N,N-diisopropylaniline (84 μL, 0.430 mmol).
After microwave irradiation at 100 °C for 15 min, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10%

MeO₂C[•] CO₂Me[•] chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (100 mL); 20% EtOAc in hexanes (100 mL); 25% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5c** as a light yellow oil (68.3 mg, 58% yield). Rf= 0.22 in 26% EtOAc in hexanes. **IR (thin film, KBr)** 2954 (w), 2841 (w), 1723 (s), 1610 (m), 1437 (m), 1263 (br/s), 1134 (m), 1110 (m), 1080 (w), 1029(w), 977 (w), 809 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 6.03 (s, 1H), 5.31 (s, 1H), 3.87 (s, 3H), 3.81 (dd, J = 3.1, 3.1 Hz, 2H), 3.78 (s, 3H), 3.60 (s, 3H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.75 (s), 163.54 (s), 161.11 (s), 151.49 (s), 146.19 (s), 136.16 (s), 114.06 (s), 90.51 (s), 86.73 (s), 71.94 (s), 59.81 (s), 54.95 (s), 52.73 (s), 52.65 (s). HRMS (ESI+) m/z calc'd for C₁₄H₁₆O₈H+: 313.0918. Found: 313.0922.

Ethyl-3-methoxy-5-methyl-2-oxo-8-oxabicyclo[3.2.1]octa-3,6-diene-6-carboxylate (5d).

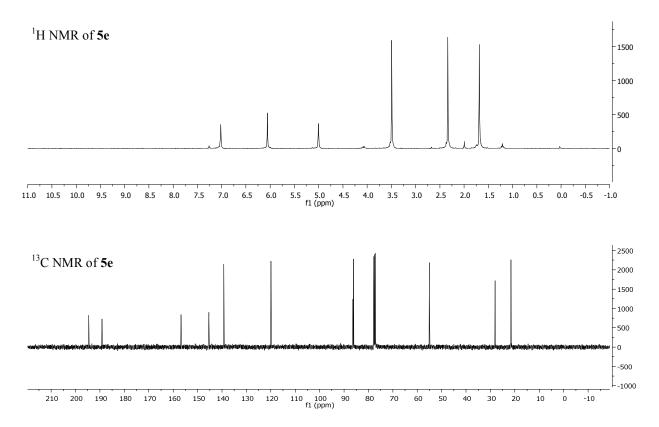
Procedure A: To a solution of **3a** (100 mg, 0.34 mmol) and ethyl propiolate (694 μ L, 6.8 mmol) in CH₂Cl₂ (1.7 mL) was added N,N-dimethylaniline (86 μ L, 0.68 mmol). After stirring at rt for 21 h, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 25% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5d** as an off white solid (36 mg, 44% yield).


Procedure B: To a solution of **3a** (104 mg, 0.359 mmol) and ethyl propiolate (726 μ L, 7.18 mmol) in CHCl₃ (718 μ L) was added N,N-diisopropylaniline (84 μ L, 0.431 mmol). After microwave irradiation at 100°C for 15 min, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (200 mL); Product fractions were concentrated to yield **5d** as an off white solid (75.5 mg, 88% yield).

Characterization of 5d: MP= 52-55°C. Rf= 0.38 in 25% EtOAc in hexanes. IR (thin film, KBr) 2982 (w), 2938

(w), 1711 (s), 1604 (m), 1452 (w), 1317 (m), 1128 (m), 1073 (m), 987 (w), 783 (w) cm⁻¹. ¹H **NMR (400 MHz, CDCl₃)** δ 7.08 (d, J = 2.5 Hz, 1H), 6.07 (s, 1H), 5.00 (d, J = 2.5 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.54 (s, 3H), 1.76 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz,

CDCl₃) δ 189.41 (s), 163.46 (s), 150.25 (s), 145.64 (s), 139.18 (s), 119.99 (s), 86.51 (s), 86.13 (s), 61.80 (s), 55.30 (s), 21.96 (s), 14.78 (s). **HRMS (ESI+**) *m/z* calc'd for C₁₂H₁₄O₅H+: 239.0914. Found: 239.09073.


6-Acetyl-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5e).

Procedure A: To a solution of **3a** (50 mg, 0.172 mmol) and 3-butyn-2-one (270 μ L, 3.4 mmol) in CH₂Cl₂ (862 μ L) was added N,N-dimethylaniline (44 μ L, 0.34 mmol). After stirring at rt for 70 h, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5e** as a white solid (16 mg, 44% yield).

Procedure B: To a solution of **3a** (102.4 mg, 0.353 mmol) and 3-butyn-2-one (540 μ L, 7.06 mmol) in CHCl₃ (706 μ L) was added N,N-diisopropylaniline (82 μ L, 0.424 mmol). After microwave irradiation at 100 °C for 15 min, reaction was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5e** as a white solid (71 mg, 97% yield).

Characterization of 5e:MP=146-150°C. Rf= 0.23 in 25% EtOAc in hexanes. IR (thin film, KBr) 3074 (s), 2931OMe(w), 1708 (s), 1663 (s), 1608 (s), 1441 (w), 1228 (m). 1129 (m). 1063 (m), 990 (w), 881 (w), 660(w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J=1.4 Hz. 1H), 6.08 (s, 1H), 5.03 (d, J = 1.4 Hz, 1H), 3.52 (s, 3H), 2.36 (s, 3H), 1.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.63 (s), 189.16(s), 156.78 (s), 145.40 (s), 139.26 (s), 119.94 (s), 86.40 (s), 86.13 (s), 55.03 (s), 28.07 (s), 21.63

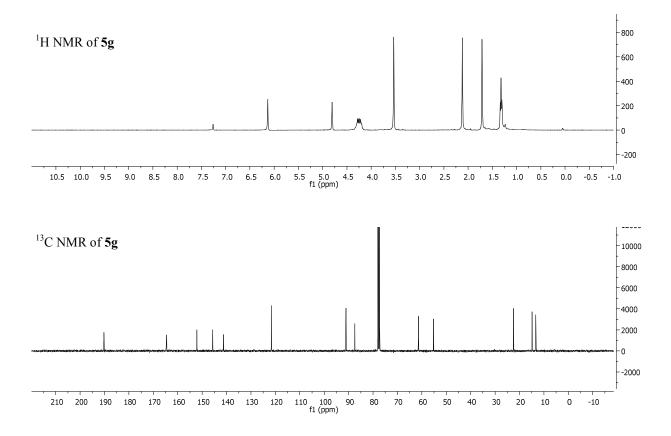
(s). **HRMS (ESI+)** m/z calc'd for C₁₁H₁₂O₄Na+: 231.06278. Found: 231.06338.

6-Benzoyl-3-methoxy-5-methyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5f). Following procedure B: To a solution of 3a (100 mg, 0.340 mmol) and benzyl acetylene (225 mg, 1.72 mmol) in CHCl₃ (680 μ L) was added N,N-diisopropylaniline (80 μ L, 0.408 mmol). After microwave irradiation at 100 °C for 10 min, the reaction mixture was purified by chromatography (silica gel, 26 cm x 2.6 cm, solvent gradient: hexanes (50 mL); 2% EtOAc in hexanes (100 mL), 5% EtOAc in hexanes

(100mL), 10% EtOAc in hexanes (100 mL); 20%-25% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5f** as a light yellow solid (78 mg, 85% yield). Due to high value of benzyl acetylene, fractions containing it were also concentrated (125 mg, 70% recovery (180 mg would be 100% theoretical yield of un-reacted product)). MP= 93-95°C. Rf=0.50 in 30% EtOAc in hexanes. **IR (thin film, KBr)** 3068 (w), 2978 (w), 2936 (w), 1711 (s), 1643 (s), 1608 (s), 1448 (m), 1325 (s), 1227 (m), 1180 (m), 1126 (s), 1075 (m), 988 (m), 819 (m), 843 (m), 701 (m), 667 (m) , 654 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.2 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (dd, *J* = 7.6, 7.6 Hz, 2H), 6.78 (d, *J* = 2.3 Hz, 1H), 6.26 (s, 1H), 5.15 (d, *J* = 2.5 Hz, 1H), 3.56 (s, 3H), 1.74 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.59 (s), 188.44 (s), 155.01 (s), 145.05 (s), 138.84 (s), 136.82 (s), 133.61 (s), 129.01 (s), 128.73 (s), 120.31 (s), 87.04 (s), 86.70 (s), 54.71 (s), 20.80 (s). HRMS (ESI+) *m/z* calc'd for C₁₆H₁₄O₄H+: 271.0965. Found: 271.0964.

Ethyl3-methoxy-5,7-dimethyl-2-oxo-8-oxabicyclo[3.2.1]octa-3,6-diene-6-carboxylate (5g).


Procedure A: To a solution of **3a** (50 mg, 0.17 mmol) and ethyl but-2-ynoate (402 μ L, 3.4 mmol) in CH₂Cl₂ (862 μ L) was added N,N-dimethylaniline (44 μ L, 0.34 mmol). After stirring at rt for 70 h, no conversion to product **5g** was observed.

Procedure B: To a solution of **3a** (106.3 mg, 0.367 mmol) and ethyl but-2-ynoate (855 μ L, 7.34 mmol) in CHCl₃ (734 μ L) was added N,N-diisopropylaniline (86 μ L, 0.440 mmol). After microwave irradiation at 100 °C for 60 min, the reaction mixture was purified by chromatography (silica gel, 18cm x 1.8cm, solvent gradient: hexanes (50 mL); 2% EtOAc in hexanes (50 mL); 5% EtOAc in hexanes (200 mL); 10% EtOAc in hexanes (300 mL)). Product fractions were concentrated to yield **5g** as a white solid (29.3 mg, 32% yield).

Characterization of 5g: MP=64-66°C. Rf= 0.53 in 25% EtOAc in hexanes. IR (thin film, KBr) 2981 (w), 2937

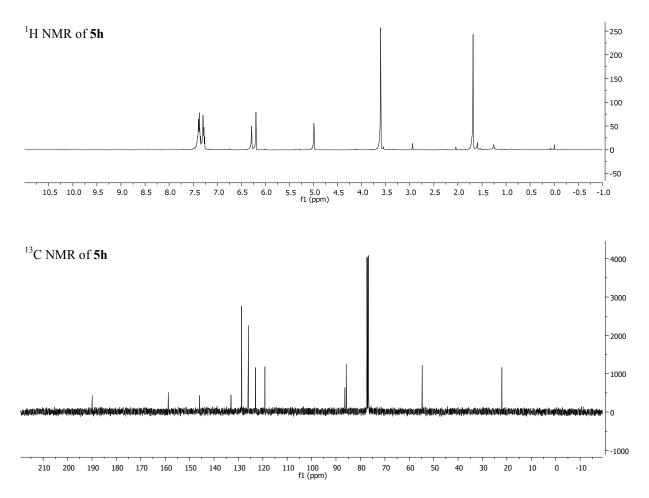
(w), 1706 (s), 1606 (m), 1446 (w), 1328 (m), 1132 (m), 1083 (m), 1048 (m), 871 (w), 785 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 6.13 (s, 1H), 4.80 (s, 1H), 4.36 – 4.15 (m, 2H), 3.54 (s, 3H), 2.12 (s, 3H), 1.71 (s, 3H), 1.32 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.23 (s), 164.58 (s), 152.19 (s), 145.66 (s), 141.22 (s), 121.66 (s), 91.06 (s), 87.45 (s), 61.36 (s), 55.25 (s),

22.45 (s), 14.86 (s), 13.33 (s). **HRMS (ESI+)** m/z calc'd for C₁₃H₁₆O₅H+: 253.1071. Found: 253.1059.

3-methoxy-5-methyl-6-phenyl-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5h).

Procedure A: To a solution of **3a** (100 mg, 0.34 mmol) and phenylacetylene (745 μ L, 6.8 mmol) in CH₂Cl₂ (1.7 mL) was added N,N-dimethylaniline (86 μ L, 0.68 mmol). After stirring at rt for 1 week, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL), 10% EtOAc in hexanes (100 mL); 25% EtOAc in hexanes (100 mL)). Product fractions were concentrated to yield **5h** as an off white solid (29 mg, 35% yield).

Procedure B⁶: To a solution of **3a** (102.8 mg, 0.354 mmol) and phenylacetylene (776 μ L, 7.08 mmol) in CHCl₃ (708 μ l) was added N,N-diisopropylaniline (83 μ L, 0.425 mmol). After microwave irradiation at 100 °C for 30 min, the reaction mixture was purified by chromatography (silica gel, 18 cm x 1.8 cm, solvent gradient: hexanes (50 mL); 10% EtOAc in hexanes (75 mL); 15% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5h** as an off white solid (49 mg, 57% yield).

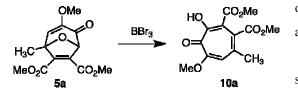

⁶ 5 equiv of alkyne conditions the same as stated with the following amounts: **3a** (97 mg, 0.334 mmol), phenylacetylene (183 μL, 1.67 mmol), N,N-diisopropylaniline (78 μL. 0.400 mmol), neat. Yielded **5h** (34 mg, 42%).

Characterization of 5h: MP= 76-84°C. Rf=0.56 in 26% EtOAc in hexanes. IR (thin film, KBr) 2977 (w), 2934 (w),

2836 (w), 1711 (s), 1606 (m), 1491 (w), 1446 (w), 1130 (m), 1058 (w), 864 (m), 755 (m), 977 (w), 697 (w), 661 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 3H), 7.29 (dd, J = 5.1, 2.8 Hz, 2H), 6.28 (d, J = 2.4 Hz, 1H), 6.19 (s, 1H), 4.99 (d, J = 2.5 Hz, 1H), 3.60 (s, 3H), 1.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.89 (s), 158.72 (s), 145.91 (s), 133.02 (s), 128.73 (s), 128.70

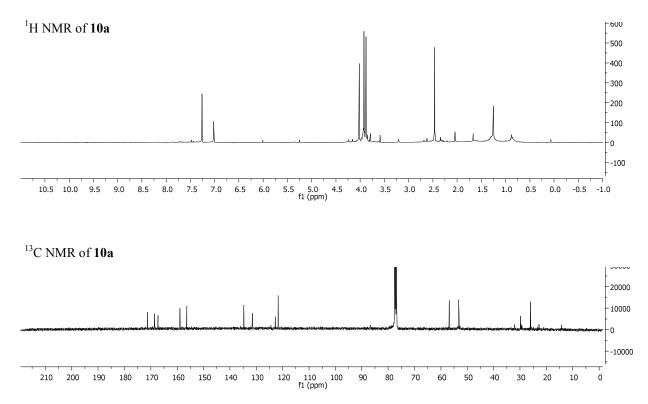
(s), 125.97 (s), 123.00 (s), 119.13 (s), 86.39 (s), 85.81 (s), 54.71 (s), 22.08 (s). **HRMS** (ESI+) m/z calc'd for C₁₅H₁₄O₃Na+: 265.0835. Found: 265.0836.

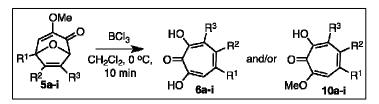
3-Methoxy-5-methyl-6-(4-nitrophenyl)-8-oxabicyclo[3.2.1]octa-3,6-dien-2-one (5i). Following procedure B: To a solution of 3a (100 mg, 0.355 mmol) and 1-ethynyl-4-nitrobenzene (1.05 g, 7.10 mmol) in CHCl₃ (2.80 mL)⁷ was added N,N-diisopropylaniline (83.5 μ L, 0.426 mmol). After microwave irradiation at 100 °C for 30 min, reaction was purified by chromatography (silica gel, 26 cm x


⁷ Added solvent needed due to poor solubility.

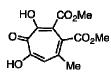
2.6 cm solvent gradient, dry loaded,⁸ hexanes (50 mL); 10% EtOAc in hexanes (100 mL); 15% EtOAc in hexanes (100 mL); 20% EtOAc in hexanes (100 mL); 25% EtOAc in hexanes (200 mL)). Product fractions were concentrated to yield **5i** as a yellow solid (65 mg, 64% yield). MP= 145-148°C. Rf=0.27 in 16% EtOAc in hexanes. **IR (thin film, KBr)** 3075 (w), 2935 (w), 1712 (s), 1604 (m), 1516 (s), 1453 (w), 1341 (s), 1129 (m), 1108 (w), 987 (w), 865 (w), 851 (m), 750 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J=8.7 Hz, 2H), 7.44 (d, J=8.7, 2H), 6.51 (d, *J* = 2.5 Hz, 1H), 6.18 (s, 1H), 5.03 (d, *J* = 2.5 Hz, 1H), 3.61 (s, 3H), 1.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.08 (s), 156.93 (s), 147.67 (s), 146.13 (s), 139.53 (s), 127.42 (s), 126.77 (s), 124.07 (s), 118.26 (s), 86.33 (s), 86.00 (s), 54.84 (s), 21.95 (s). HRMS (ESI+) *m/z* calc'd for C₁₅H₁₃NO₅H+: 288.0866. Found: 288.0866.

V. Synthesis and characterization of methoxytropolone 10a via BBr₃

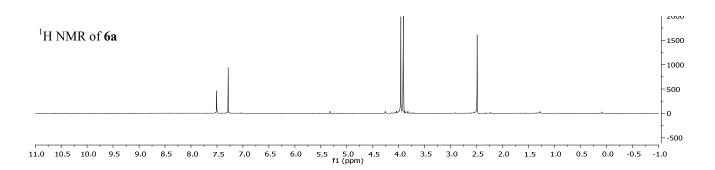

Dimethyl 7-hydroxy-5-methoxy-3-methyl-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (10a). To a solution


of **5a** (50 mg, 0.17 mmol) in CH_2Cl_2 (1.5 mL) at 0 °C was added BBr₃ in CH_2Cl_2 (102 µL of 1.0 M solution, 0.1 mmol). The reaction ran for 10 min, and a second portion of the BBr₃ solution was added (102 µL, 0.1 mmol). The reaction ran for

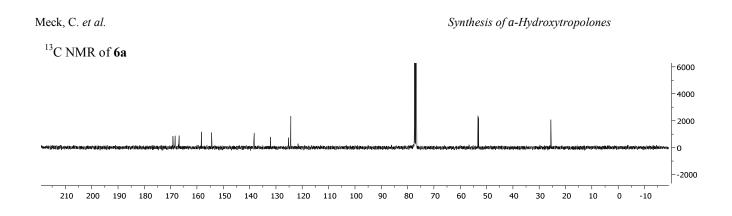
 $^{^{8}}$ Reaction mixture absorbed onto silica gel (500mg) in a round bottom flask directly after microwave irradiation. Evaporated off any excess solvent and dried under vacuum for ~ 30 min. Dried silica with mixture absorbed was loaded directly onto column.


an additional 10 min, at which time the reaction mixture was quenched with NaHCO_{3aq} (5 mL). The aqeuous layer was extracted with CH₂Cl₂ (3 x 5 mL), and then acidified to a pH of 7 by dropwise addition of a 2M HCl solution. The acidified solution was then extracted with CH₂Cl₂ (5 x 5 mL), dried over Na₂SO₄, filtered and concentrated to yield **10a** as a yellow oil (16 mg, 0.56 mmol, 33% yield). MP=129-134. **IR (thin film, KBr)** 3225 (br), 2953 (w), 2852 (w), 1738 (s), 1571 (m), 1437 (m), 1320 (w), 1263 (s), 1156 (m), 1068 (m), 939 (w), 763 (w) cm⁻¹. ¹H NMR (**400 MHz, CDCl₃**) δ 7.02 (s, 1H), 4.02 (s, 3H), 3.92 (s, 3H), 3.88 (s, 3H), 2.46 (s, 3H). ¹³C NMR (**100 MHz, CDCl₃**) δ 171.22 (s), 168.52 (s), 167.26 (s), 158.96 (s), 156.35 (s), 134.72 (s), 131.45 (s), 122.78 (s), 121.71 (s), 56.81 (s), 53.27 (s), 53.12 (s), 26.08 (s). **HRMS (ESI+)** *m*/z calc'd for C₁₃H₁₄O₇Na+: 305.06317. Found: 305.06278.

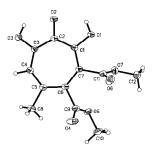
VI. Synthesis and characterization of α-hydroxy and α-methoxytropolones via BCl₃

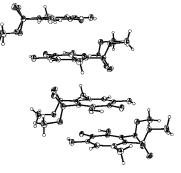


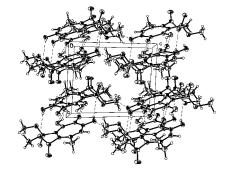
Dimethyl 5,7-dihydroxy-3-methyl-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (6a). A solution of BCl₃ (1.0

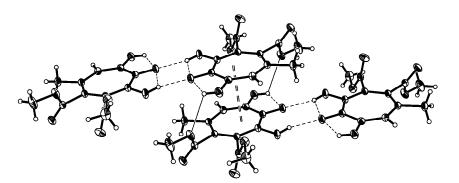


M in CH₂Cl₂) (588 μ L, 0.588 mmol) was diluted with CH₂Cl₂ (6.0 mL) and cooled to 0 °C. In a separate roundbottom flask, **5a** (23.7 mg, 0.084 mmol) was dissolved in CH₂Cl₂ (6.0 mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 min of stirring at 0 °C, the reaction mixture was quenched with H₂O (12.0 mL), stirred for 2 min at 0 °C, and then

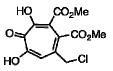

warmed to rt where it continued to stir for 60 min. The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **6a** as a yellow solid (17.4 mg, 77%).⁹ MP= 159-161°C. **IR (thin film, KBr)** 3260 (br), 2957 (w), 1738 (s), 1543 (m), 1436 (w), 1256 (br/s), 1154 (m), 1065 (w), 1029 (w), 962 (w), 754 (w) cm⁻¹. ¹H **NMR (400 MHz, CDCl₃)** δ 7.48 (s, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 2.46 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 169.27 (s), 168.41 (s), 166.90 (s), 158.40 (s), 154.56 (s), 138.42 (s), 132.18 (s), 125.28 (s), 124.48 (s), 53.40 (s), 53.20 (s), 25.74 (s). **HRMS (ESI+**) *m/z* calc'd for C₁₂H₁₂O₇Na+: 291.04752. Found: 291.04831.

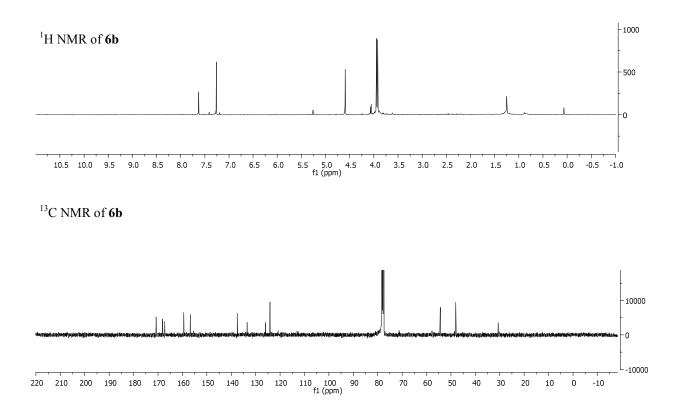



⁹ If desired, compound can be further purified via reverse phase column chromatography (C-18) with a gradient of 20-27% over 16 column volumes (CV).



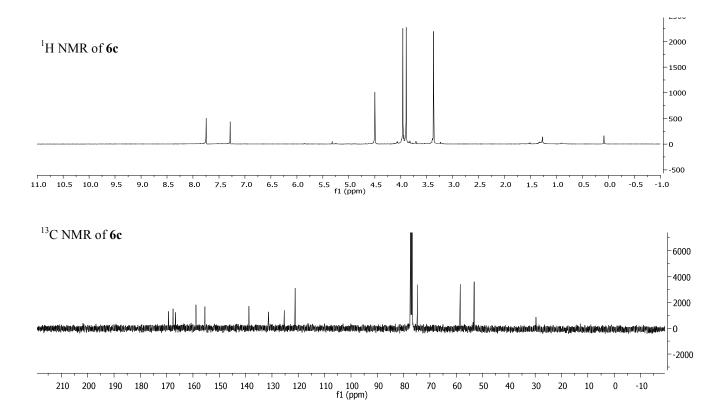
Select Crystal Structure images of 6a (Images courtesy of William W. Brennesel, University of Rochester Chemistry Department)



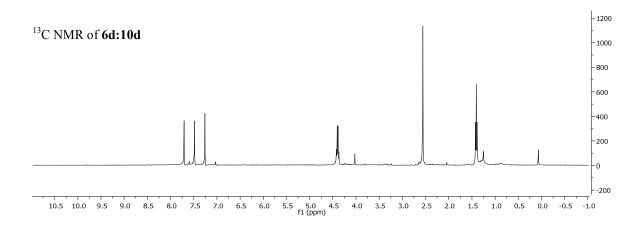


Dimethyl 3-(chloromethyl)-5,7-dihydroxy-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (6b). A solution of

BCl₃ (1.0 M in CH₂Cl₂) (1.26 mL, 1.26 mmol) was diluted with CH₂Cl₂ (6.0 mL) and cooled to 0 °C. In a separate roundbottom flask, **5b** (26.5 mg, 0.084 mmol) was dissolved in CH₂Cl₂ (6.0 mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 min of stirring at 0 °C, the reaction mixture was quenched with H₂O (12.0 mL), stirred for 2 min at 0 °C, and

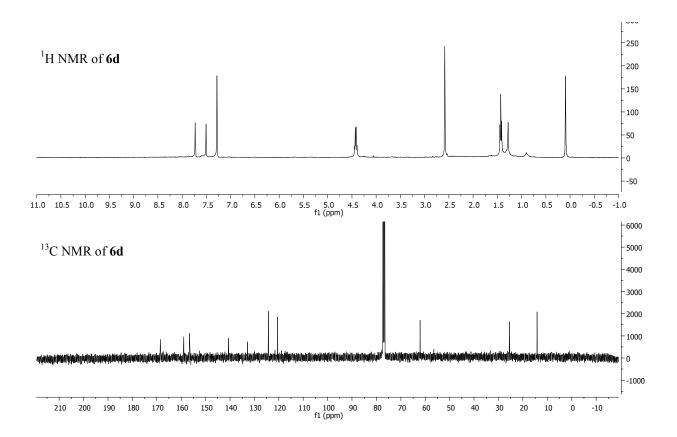

then warmed to rt where it continued to stir for 30 min. The organic layer was isolated and the aqueous layer was extracted with CH_2Cl_2 , (5 x 10 mL). Combined organics were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure to yield **6b** as a yellow solid (22 mg, 87%). Compound can be further purified via reverse phase column chromatography (C-18) with a gradient of 20-27% over 16 CV (7.7 mg after purification). Decomposes at temperatures 171-180°C. **IR (thin film, KBr)** 3261 (br), 2956 (w), 1737 (s), 1557 (m), 1436 (m), 1260 (br/s), 1153 (m), 989 (w), 668 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 4.59 (s, 2H), 3.94 (s, 3H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.79 (s), 168.17 (s), 167.28 (s), 159.48 (s), 156.78 (s), 137.55 (s), 133.51 (s), 125.94 (s), 124.11 (s), 54.40 (s), 54.27 (s), 48.03 (s). **HRMS (ESI+)** *m/z* calc'd for C₁₂H₁₁O₇+¹⁰: 267.0499. Found: 267.0502.

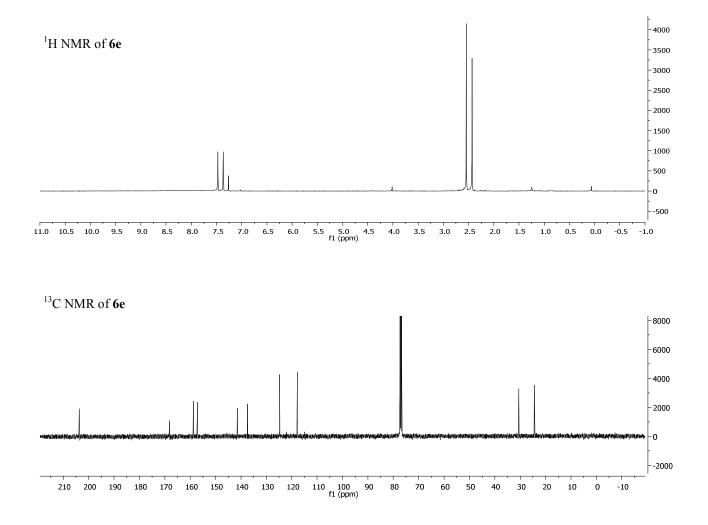
¹⁰ Chlorine fragmentation, or mass minus Cl. Confirmation of chlorine was done qualitatively through a halogen flame test (Beilstein Test), with chlorokojic acid **2b** and hydroxytropolone **6a** as positive and negative controls respectively.


Dimethyl 5,7-dihydroxy-3-(methoxymethyl)-6-oxocyclohepta-2,4,7-triene-1,2-dicarboxylate (6c). A solution of

BCl₃ (1.0 M in CH₂Cl₂) (459 µL, 459 mmoll) was diluted with CH₂Cl₂ (4.7 mL) and cooled to HO 0 °C. In a separate roundbottom flask, 5c (20.5 mg, 0.066 mmol) was dissolved in CH_2Cl_2 CO₂Me (4.7 mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 min of stirring at 0 O: CO₂Me °C, the reaction mixture was quenched with H₂O (9.4 mL), stirred for 2 min at 0 °C, and then OMe HO warmed to rt where it continued to stir for 1 h. The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield 6c as a yellow oil (16.6 mg, 85%). IR (thin film, KBr) 3261 (br), 2953 (w), 1738 (s), 1548 (m), 1436 (m), 1343 (m), 1259 (s), 1148 (m), 1100 (m), 1061 (m), 890 (w), 734 (w), 668 (w) cm¹. ¹H NMR (400 MHz, **CDCl**₁₃) δ 7.73 (s, 1H), 4.48 (s, 2H), 3.94 (s, 3H), 3.88 (s, 3H), 3.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.26 (s), 167.57 (s), 166.58 (s), 158.84 (s), 155.45 (s), 138.76 (s), 131.26 (s), 125.32 (s), 121.17 (s), 74.79 (s), 58.47 (s), 53.25 (s), 53.13 (s). **HRMS (ESI+)** m/z calc'd for C₁₃H₁₄O₈H+: 299.0761. Found: 299.0757.

Ethyl 4,6-dihydroxy-2-methyl-5-oxocyclohepta-1,3,6-trienecarboxylate (6d) and Ethyl 6-hydroxy-4-methoxy-HO 2-methyl-5-oxocyclohepta-1,3,6-trienecarboxylate (10d). A solution of BCl₃ (1.0 M in CH_2Cl_2) (627 µL, 0.627 mmol) was diluted with CH_2Cl_2 (6.4 mL) and cooled to 0 °C. In a separate roundbottom flask, 5d (21.3 mg, 0.089 mmol) was dissolved in CH_2Cl_2 (6.4 mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 min of stirring at 0 °C, the reaction mixture was quenched with H_2O (12.8 mL), stirred for 2 min at 0 °C, and then warmed to rt where it continued to stir for 30

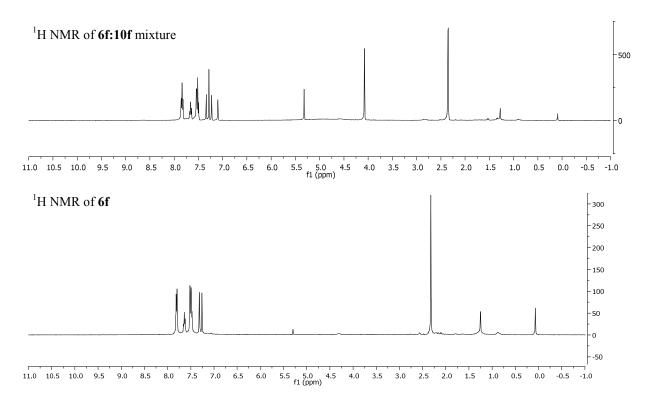

mintues. The organic layer was isolated and the aqueous layer was extracted with CH_2Cl_2 , (3 x 10 mL) and EtOAc (2 x 10 mL). Combined organics were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. To the resulting solid was added $CHCl_3$ where a white solid precipitated out. The organic layer was decanted off and concentrated under reduced pressure to yield a mixture of **6d:10d¹¹** as a brownish green solid (7.9 mg, 39%).

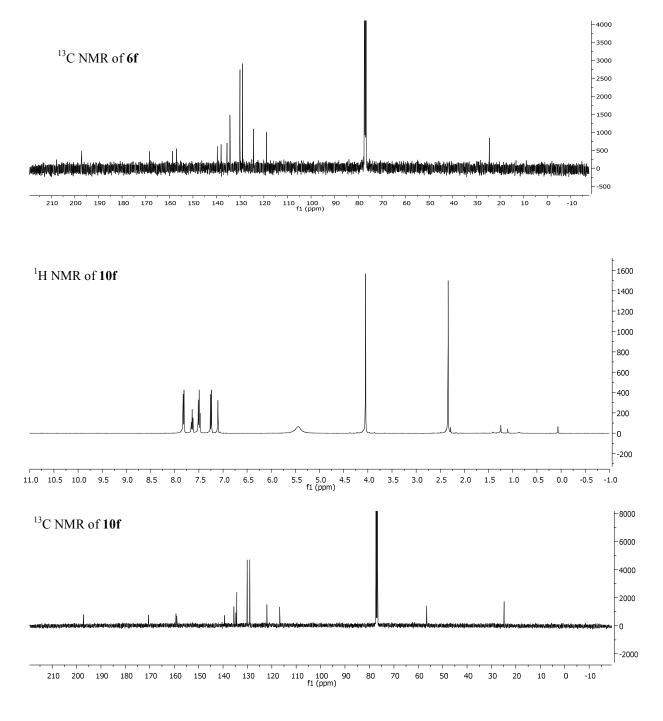

Homogenization of 6d/10d solution with HBr/AcOH

To the mixture of **6d:10d** (7.9 mg, 0.033 mmol) was added acetic acid (192 µl) and 33% HBr in acetic acid (224 µl), and reaction was left to stir at 90 °C for 3 h. After 3 h, reaction mixture was let to cool to rt. The reaction was quenched with 7 pH phosphate buffer, and diluted with CH₂Cl₂. The organic layer was washed several times with the phosphate buffer. The organic layer was dried over Na₂SO₄, and evaporated under reduced pressure to yield a brown solid **6d** (3.1 mg, 42% yield). Decomposes at temperatures above 80 °C. **IR (thin film, KBr)** 3260 (br), 2917 (w), 2849 (w), 1718 (s), 1500 (w), 1462 (w), 1217 (br/s), 1094 (m), 922 (w), 785 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) ¹ δ 7.68 (s, 1H), 7.45 (s, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.53 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.72 (s), 168.65 (s), 159.04 (s), 156.74 (s), 140.73 (s), 132.94 (s), 124.35 (s), 120.54 (s), 62.28 (s), 25.67 (s), 14.33 (s). **HRMS (ESI+)** *m/z* calc'd for C₁₁H₁₂O₅H+: 225.07575. Found: 225.07611

¹¹ Compound can be purified via reverse phase column chromatography (C-18) with a gradient of 20-27% for 1.9 CV, 27-30% for 5 CV, 30-45% for 7 CV.

4-Acetyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trienone (6e). A solution of BCl₃ (1.0 M in CH₂Cl₂) (673 μL, 0.673 mmol) was diluted with CH₂Cl₂ (6.9 mL) and cooled to 0°C. In a separate roundbottom HO flask, 5e (20.0 mg, 0.096 mmol) was dissolved in CH₂Cl₂ (6.9 mL), was cooled to 0°C and was COMe O≈ added to the BCl₃ solution. After 10 min of stirring at 0°C, the reaction mixture was quenched HO Me with H₂O (13.7 mL), stirred for 2 min at 0 °C, and then warmed to rt where it continued to stir for 1 h. The organic layer was isolated and the aqueous layer was extracted with CH2Cl2, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield 6e as an orange solid (19.6 mg, >95% yield). MP= 106-110°C. IR (thin film, KBr) 3240 (br), 2918 (w), 2852 (w), 1700 (s), 1536 (s), 1446 (w), 1283 (m), 1203 (s), 1134 (m), 1031 (w), 893 (w), 785 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃ δ 7.44 (s, 1H), 7.36 (s, 1H), 2.55 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃ & 204.08 (s), 168.56 (s), 159.03 (s), 157.48 (s), 141.72 (s), 137.77 (s), 125.04 (s), 118.06 (s), 30.92 (s), 24.80 (s). HRMS (ESI+) m/z calc'd for $C_{10}H_{10}O_4H$ +: 195.06519. Found: 195.06531.

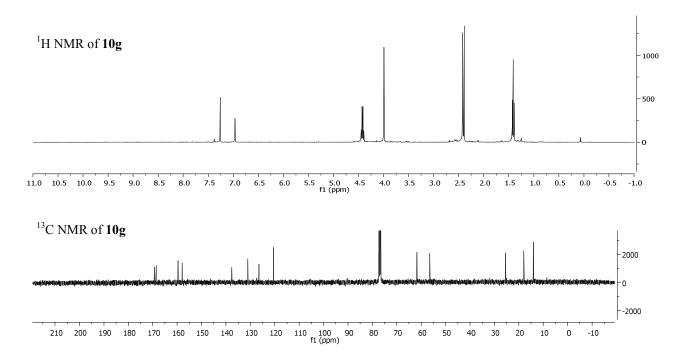

4-benzoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trienone (6f) and 4-benzoyl-2-hydroxy-7-methoxy-5-


methylcyclohepta-2,4,6-trienone (10f). A solution of BCl₃ (1.0 M in CH₂Cl₂) (503 μL, 0.503 mmol) was diluted with CH₂Cl₂ (5.2 mL) and cooled to 0°C. In a separate roundbottom flask, 5f (19.4 mg, 0.072 mmol) was dissolved in CH₂Cl₂ (5.2 mL), was cooled to 0 °C and was added to the BCl₃ solution. After 10 min of

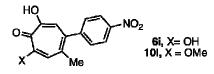
stirring at 0 °C, the reaction mixture was quenched with H_2O (10.3 mL), stirred for 2 min at 0°C, and then warmed to rt where it continued to stir for 1 h. The organic layer was isolated and the aqueous layer was extracted with CH_2Cl_2 , (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield **6f:10f** as a yellow solid (19.6 mg, >95% yielded) in a 1:1 ratio. The mixture of compounds **6i: 10i** can be purified for characterization via reverse phase column chromatography (C-18) with a gradient of 27-35% for 5 column volumes, and 35-65% for 8 column volumes, **10i** collected on fractions 2-7; **6i** was collected on fractions 10-13. **4-Benzoyl-2,7-dihydroxy-5-methylcyclohepta-2,4,6-trienone (6f)** decomposed at temperature of 45-50°C. IR (thin film, KBr) 3279 (br), 2918 (w), 2849 (w), 1674 (s), 1595 (w), 1536 (m), 1448 (m), 1284 (m), 1231 (s), 1084 (m), 829 (w), 725 (w), 688 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.3 Hz, 1H), 7.52 (s, 1H), 7.49 (dd, J = 7.7, 7.7 Hz, 2H), 7.32 (s, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.09 (s), 168.38 (s), 158.69 (s), 156.94 (s), 139.71 (s), 138.08 (s), 135.58 (s), 134.36 (s), 130.10 (s), 129.03 (s), 124.31 (s), 118.83 (s), 24.48 (s). HRMS (ESI+) m/z calc'd for C₁₅H₁₂O₄H+: 257.0808. Found: 257.0806.

4-Benzoyl-2-hydroxy-7-methoxy-5-methylcyclohepta-2,4,6-trienone (10f) melted at 143-145°C. **IR (thin film, HO COPh KBr)** 3209 (br), 2918 (w), 2847 (w), 1673 (s), 1560 (s), 1448 (w), 1262 (s), 1241 (s), 1145 (m), 1087 (m), 828 (w), 725 (w), 688 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J =8.1 Hz, 2H), 7.64 (t, J = 7.3 Hz, 1H), 7.49 (dd, J = 7.7, 7.7 Hz, 2H), 7.24 (s, 1H), 7.11 (s, 1H), 4.05 (s, 3H), 2.34 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 197.18 (s), 170.53 (s), 159.26 (s),

158.90 (s), 139.39 (s), 135.52 (s), 134.75 (s), 134.37 (s), 130.09 (s), 129.03 (s), 122.00 (s), 116.76 (s), 56.54 (s), 24.83 (s). **HRMS (ESI+)** *m/z* calc'd for C₁₆H₁₄O₄: 271.0965. Found: 271.0957.

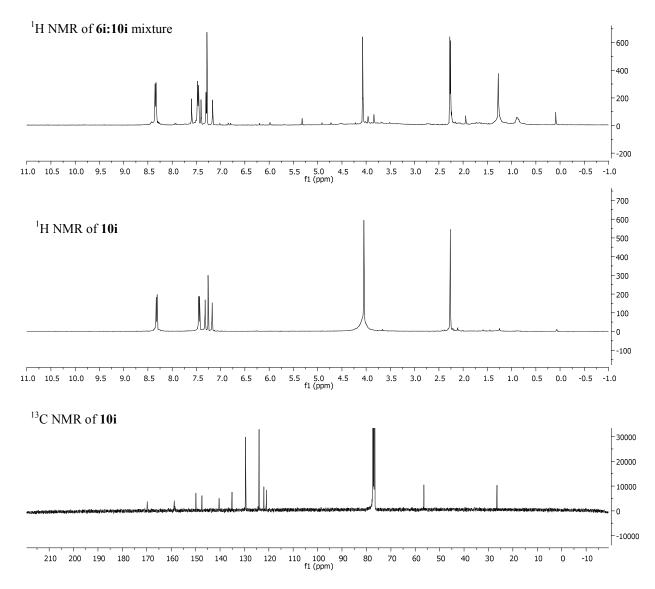


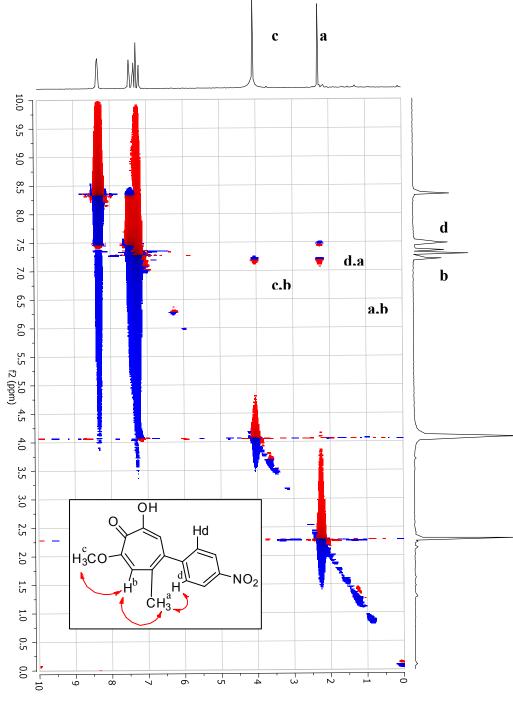
Homogenization of 6f/10f solution with HBr/AcOH


To the mixture of **6f:10f** (16.9 mg, 0.062 mmol) was added acetic acid (364 μ l) and 33% HBr in acetic acid (425 μ l), and reaction was left to stir at 90 °C for 3 h. After 3 h, reaction mixture was let to cool to rt. The reaction was quenched with 7 pH phosphate buffer, and diluted with CH₂CL₂. The organic layer was washed several times with the phosphate buffer. The organic layer was dried over Na₂SO₄, and evaporated under reduced pressure to yield a brown solid **6f** (9.5 mg, 60% yield).

Ethyl 6-hydroxy-4-methoxy-2,7-dimethyl-5-oxocyclohepta-1,3,6-trienecarboxylate (10g). A solution of BCl₃

(1.0 M in CH₂Cl₂) (486 µL, 0.486 mmol) was diluted with CH₂Cl₂ (5 mL) and cooled to 0 °C. HC In a separate roundbottom flask, 5g (17.5 mg, 0.069 mmol) was dissolved in CH₂Cl₂ (5 mL), O: CO₂Et was cooled to 0 °C and was added to the BCl₃ solution. After 10 min of stirring at 0 °C, the reaction mixture was quenched with H₂O (10 mL), stirred for 2 min at 0 °C, and then warmed MeO Me to rt where it continued to stir for 1 h. The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to yield 10g as a yellow solid (13.4 mg, 77% yield). MP= 64-70°C. IR (thin film, KBr) 3381 (w), 2917 (w), 2848 (w), 1727 (s), 1551 (w), 1454 (w), 1317 (m), 1223 (s), 1146 (m), 1037 (m), 876 (w), 791 (w) cm^{-1.1}H **NMR (400 MHz, CDCl₁₃)** δ 6.95 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H), 3.97 (s, 3H), 2.40 (s, 3H), 2.37 (s, 3H), 1.39 (t, J= 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 169.70 (s), 168.91 (s), 160.01 (s), 158.30 (s), 137.98 (s), 131.45 (s), 126.86 (s), 120.88 (s), 62.14 (s), 56.87 (s), 25.79 (s), 18.32 (s), 14.41 (s). HRMS (ESI+) m/z calc'd for C₁₃H₁₆O₅Na+: 275.08899. Found: 275.08788.

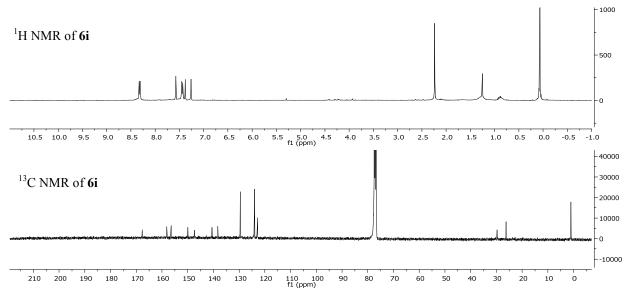

2,7-dihydroxy-4-methyl-5-(4-nitrophenyl)cyclohepta-2,4,6-trienone (6i) and 2-hydroxy-7-methoxy-5-methyl-


4-(4- nitrophenyl)cyclohepta-2,4,6-trienone (10i). A solution of BCl₃ (1.0 M in CH₂Cl₂) (728 μ L, 0.728 mmol) was diluted with CH₂Cl₂ (7.4 mL) and cooled to 0 °C. In a separate roundbottom flask, **5i** (29.8 mg, 0.104 mmol) was dissolved in CH₂Cl₂ (7.4 mL), was cooled to 0 °C and was added to the

 BCl_3 solution. After 10 min of stirring at 0 °C, the reaction mixture was quenched with H₂O (15 mL), stirred for 2 min at 0 °C, and then warmed to rt where it continued to stir for 1 h. The organic layer was isolated and the aqueous layer was extracted with CH₂Cl₂, (5 x 10 mL). Combined organics were dried over Na₂SO₄, filtered, and

concentrated under reduced pressure to yield 6i:10i as a yellow solid (23.3 mg, 81%) in a 1:1 mixture. Compound mixture 10i¹² was purified for characterization via reverse phase column chromatography (C-18) with a gradient of 35-55% Fractions 2-4were concentrated to generate 2-hydroxy-7-methoxy-5-methyl-4-(4nitrophenyl)cyclohepta-2,4,6-trienone (10i) as a yellow solid with a melting point range of 210-214°C. IR (thin film, KBr) 3229 (br), 2917 (w), 2848 (w), 1558 (s), 1514 (s), 1480 (m), 1344 (s), 1265 (s), 1229 (s), 1133 (s), 855 (w), 725 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₁₃) δ 8.32 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.32 (s, 1H), 7.18 (s, 1H), 4.05 (s, 3H), 2.26 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 169.81 (s), 158.72 (s), 158.57 (s), 149.86 (s), 147.38 (s), 140.37 (s), 135.05 (s), 129.51 (s), 124.00 (s), 122.04 (s), 121.03 (s), 56.48 (s), 26.53 (s).HRMS (ESI+) *m/z* calc'd for C₁₅H₁₃NO₅H+: 288.0866. Found: 288.0872

¹² Compound **6i** decomposes on reverse phase column and could not be isolated cleanly. To isolate **10i**, the mixture of **6i:10i** was dissolved in chloroform, applied to a dry loaded samplet, and allowed to dry under vacuum for an h prior to running column.



NOESY of 2-hydroxy-7-methoxy-5-methyl-4-(4-nitrophenyl)cyclohepta-2,4,6-trienone (10i)

Homogenization of 6f/10f mixture with HBr/AcOH

To the mixture of **6i:10i** (23.3 mg, 0.081 mmol) was added acetic acid (473 µl) and 33% HBr in acetic acid (552 µl), and reaction was left to stir at 90 °C for 3 h. After 3 h, reaction mixture was let to cool to rt. The reaction was quenched with 7 pH phosphate buffer, and diluted with CH_2Cl_2 . The organic layer was washed several times with the phosphate buffer. The organic layer was dried over Na₂SO₄, and evaporated under reduced pressure to yield 2,7-dihydroxy-4-methyl-5-(4-nitrophenyl)cyclohepta-2,4,6-trienone **(6i)** as a brown solid (17.8 mg, 80% yield) that decomposes at 200 °C. **IR (thin film, KBr)** 3229 (br), 2917 (w), 1595 (m), 1518 (s), 1344 (s), 1279 (m), 1260 (m), 1194 (m), 1092 (m), 855 (w), 702 (w) cm^{-1.1}H NMR (400 MHz, CDCl₁₃) δ 8.32 (d, *J* = 8.3 Hz, 2H), 7.57 (s, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.38 (s, 1H), 2.24 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 167.65 (s), 158.14 (s), 156.43 (s), 149.96 (s), 147.38 (s), 140.57 (s), 138.29 (s), 129.53 (s), 124.08 (s), 123.99 (s), 122.79 (s), 26.25 (s). HRMS (ESI+) *m/z* calc'd for $C_{14}H_{11}NO_5H$ +: 274.0710. Found: 274.0705.

