Asymmetric lodolactonization Utilizing Chiral Squaramides

Jørn E. Tungen, Jens M. J. Nolsøe and Trond V. Hansen*
School of Pharmacy, Department of Pharmaceutical Chemistry,University of Oslo, P.O. Box 1068 Blindern, N-0316, Oslo, Norway.
*Phone: +47 22857450
*Fax: +47 22856067
*E-mail: t.v.hansen@farmasi.uio.no

Table of Contents:

General Information. S1
Preparation of Catalysts. S2
NMR Spectra of Catalysts 5a, 5b, 6a and $\mathbf{6 b}$ (Figures S1-S8) S5
MS Spectra of Catalysts 5a, 5b, 6a and $\mathbf{6 b}$ (Figures S9-S16). S9
Preparation of Starting Materials. S13
NMR Spectra of Starting Materials 1a-1h, 3a and 3b (Figures S17-S36). S16
Enatioselective Iodolactonization utilizing Chiral Squaramides. S26
NMR Spectra of Chiral Iodolactones 2a-2h, 4a and 4b (Figures S37-S56) S31
MS Spectra of Chiral Iodolactones $\mathbf{2 a - 2 h}, \mathbf{4 a}$ and $\mathbf{4 b}$ (Figures S57-S76). S41
HPLC and GLC Chromatograms of Chiral Iodolactones 2a-2h, 4a and $\mathbf{4 b}$ (Figures S77-S98). S51
References. S62

General Information

All commercially available reagents and solvents were used in the form they were supplied without any further purification. The stated yields are based on isolated material. The melting points are uncorrected. Thin layer chromatography was performed on silica gel $60 \mathrm{~F}_{254}$ aluminum-backed plates fabricated by Merck. Flash column chromatography was performed on silica gel $60(40-63 \mu \mathrm{~m})$ fabricated by Merck. NMR spectra were recorded on a Bruker AVII- 400 or a Bruker DPX- 300 spectrometer at 400 MHz or 300 MHz respectively for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz or 75 MHz respectively for ${ }^{13} \mathrm{C}$ NMR. Coupling constants (J) are reported in hertz and chemical shifts are reported in parts per million (δ) relative to the central residual protium solvent resonance in ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ $=\delta 7.27$, DMSO- $d_{6}=\delta 2.50$ and TFA $\left.-d=\delta 11.50\right)$ and the central carbon solvent resonance in ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ $=\delta 77.00 \mathrm{ppm}$ and DMSO- $d_{6}=\delta 39.43$). Mass spectra were recorded at 70 eV on Waters Prospec Q spectrometer using EI as the method of ionization. High resolution mass spectra were recorded on Waters Prospec Q spectrometer using EI as the method of ionization. Optical rotations were measured using a 1 mL cell with a 1.0 dm path length on a Perkin Elmer 341 polarimeter. Determination of enantiomeric excess was performed by HPLC on an Agilent Technologies 1200 Series instrument with diode array detector set at 254 nm and equipped with a chiral stationary phase (Chiralpak AD-H $5 \mu \mathrm{~m} 4.6 \times 250 \mathrm{~mm}$), applying the conditions stated. Alternatively, determination of enantiomeric excess was performed by GLC on a Varian 3380 instrument with split (1:30) injection, FID detector and equipped with a chiral stationary phase (Chiraldex G-TA $0.12 \mu \mathrm{~m} 0.25$ $\mathrm{mm} \times 30 \mathrm{~m}$), applying the conditions stated.

Preparation of Squaramide Catalysts

11a, R =

11b,

Scheme S-1 Synthetic route to chiral squaramides 5a, 5b, 6a and 6b.
General procedure for the preparation of squaramide catalysts (Scheme S-1): Step 1. 3,4-Dimethoxycyclobut-3-ene-1,2-dione (9) (1.0 equiv.) was suspended/dissolved in either MeOH or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.07 \mathrm{M})$ and the amine $\mathbf{1 0 a}, \mathbf{b}$ or 11a, \mathbf{b} (1.1 equiv.) was added. The resulting mixture was stirred at ambient temperature for 48 hours. The mixture was then filtered; the collected solid residue was washed with ice-cold MeOH and dried in vacuo to afford the corresponding squaramate $\mathbf{1 2 a}, \mathbf{b}^{1}$ or 13a, $\mathbf{b}^{2,3}$. Step 2. 3-(Benzylamino)- or 3-(arylamino)-4-methoxycyclobut-3-ene-1,2-dione 12a, b or 13a, b (1.0 equiv.) was suspended in $\mathrm{MeOH}(0.07 \mathrm{M})$ and $(1 R, 2 R)$ N^{1}, N^{1}-dipentylcyclohexane-1,2-diamine (14) (1.0 equiv.) was added. The resulting mixture was stirred at ambient temperature for 24 hours. The mixture was then filtered; the collected solid residue was washed with ice-cold MeOH and dried in vacuo to afford the corresponding squaramide $\mathbf{5 a}, \mathbf{b}$ or $\mathbf{6 a}, \mathbf{b}$.

Notice! ($1 R, 2 R$)- N^{1}, N^{1}-dipentylcyclohexane-1,2-diamine (14) was prepared according to literature procedure ${ }^{4}$ from commercially available ($1 R, 2 R$)-cyclohexane-1,2-diamine (Aldrich; 98%, optical purity $e e$: 99% by GLC). The optical antipode, $(1 S, 2 S)$ - N^{1}, N^{1}-dipentylcyclohexane-1,2-diamine (ent-14), was prepared in the same manner from commercially available ($1 S, 2 S$)-cyclohexane-1,2-diamine D-tartrate (Aldrich; 99\%).

3-(((1R,2R)-2-(Dipentylamino)cyclohexyl)amino)-4-((4-(trifluoromethyl)benzyl)amino)cyclobut-3-ene-1,2dione (5a).

Prepared according to the general procedure by reacting 3-methoxy-4-((4-(trifluoromethyl)benzyl)amino)-cyclobut-3-ene-1,2-dione (12a) ($0.250 \mathrm{~g}, 0.88 \mathrm{mmol}$) with ($1 R, 2 R$)- N^{1}, N^{1}-dipentylcyclohexane-1,2-diamine (14) $(0.223 \mathrm{~g}, 0.88 \mathrm{mmol})$ to afford the title compound $\mathbf{5 a}$ after recrystallization from pentane. Yield: $0.211 \mathrm{~g}(48 \%)$, colourless solid; M.p.: $204-205{ }^{\circ} \mathrm{C}$, decomp.; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.06 ;[\alpha]_{D}^{20}=-634.9(\mathrm{c}=0.04$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.85(\mathrm{bs}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (bs, 1H), $4.80(\mathrm{~s}, 2 \mathrm{H}), 4.00-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.39-0.97(\mathrm{~m}, 16 \mathrm{H}), 0.76(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 182.6,181.9,168.1,166.9,144.0,128.2(2 \mathrm{C}), 124.4-126.4(\mathrm{~m}, 3 \mathrm{C}), 124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.0 \mathrm{~Hz}, 1 \mathrm{C}\right), 63.8$, 54.1, 49.4 (2C), 46.1, 34.6, 29.0 (2C), 28.5 (2C), 25.0, 24.6, 24.0, 22.1 (2C), 13.9 (2C); HRMS (EI): Exact mass calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[M]^{+}: 507.3073$, found 507.3066.

3-((3,5-Bis(trifluoromethyl)benzyl)amino)-4-(((1R,2R)-2-(dipentylamino)cyclohexyl)amino)cyclobut-3-ene-1,2-dione (5b).

Prepared according to the general procedure by reacting 3 -((3,5-bis(trifluoromethyl)benzyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (12b) $(1.050 \mathrm{~g}, 2.97 \mathrm{mmol})$ with ($1 R, 2 R$)- N^{1}, N^{1}-dipentylcyclohexane-1,2diamine (14) ($0.756 \mathrm{~g}, 2.97 \mathrm{mmol})$ to afford the title compound $\mathbf{5 b}$. Yield: $1.045 \mathrm{~g}(85 \%)$, colourless solid; M.p.: $216-218{ }^{\circ} \mathrm{C}$, decomp.; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.06 ;[\alpha]_{D}^{20}=-86.0\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.02(\mathrm{~s}, 3 \mathrm{H}), 7.87(\mathrm{bs}, 1 \mathrm{H}), 7.24(\mathrm{bs}, 1 \mathrm{H}), 5.08-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.41-$ $2.26(\mathrm{~m}, 3 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41-0.87(\mathrm{~m}$, $16 \mathrm{H}), 0.70(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}+\mathrm{DCl}\right) \delta$ 183.0, 182.4, 169.3, 167.9, 142.8, 130.9 $\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.0(2 \mathrm{C}), 123.8\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 121.6,64.1,52.4,52.0,51.3,46.3,34.4,28.8$, 28.7, 24.7, 24.3 (2C), 24.1, 24.0, 22.1, 21.9, 14.2, 14.0; HRMS (EI): Exact mass calculated for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$ $[M]^{+}: 575.2946$, found 575.2937.

3-(((1R,2R)-2-(Dipentylamino)cyclohexyl)amino)-4-((4-(trifluoromethyl)phenyl)amino)cyclobut-3-ene-1,2dione (6a).

Prepared according to the general procedure by reacting 3-methoxy-4-((4-(trifluoromethyl)phenyl)amino)-cyclobut-3-ene-1,2-dione (13a) ($0.763 \mathrm{~g}, 2.81 \mathrm{mmol}$) with ($1 R, 2 R$)- N^{1}, N^{1}-dipentylcyclohexane-1,2-diamine (14) $(0.715 \mathrm{~g}, 2.81 \mathrm{mmol})$ to afford the title compound $\mathbf{6 a}$. Yield: $0.905 \mathrm{~g}(66 \%)$, colourless solid; M.p.: $200-201{ }^{\circ} \mathrm{C}$, decomp.; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.10 ;[\alpha]_{D}^{20}=-141.7\left(\mathrm{c}=0.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, TFA) δ
7.59 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.75-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (td, $J=12.6,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{td}, J=12.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{td}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 1 \mathrm{H})$, $2.04-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.14(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.68(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO$\left.d_{6}\right) \delta 184.5,179.6,169.7,162.0,142.8,126.6(2 \mathrm{C}), 124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.0 \mathrm{~Hz}\right), 122.1\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.1 \mathrm{~Hz}\right), 117.6$ (2C), 64.1 (2C), 54.6, 49.2, 34.2, 29.2 (2C), 28.5 (2C), 24.9, 24.6, 23.6, 22.2 (2C), 14.0 (2C); HRMS (EI): Exact mass calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[M]^{+}: 493.2916$, found 493.2921.

3-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-(((1R,2R)-2-(dipentylamino)cyclohexyl)amino)cyclobut-3-ene-1,2-dione (6b).

Prepared according to the general procedure by reacting 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (13b) ($1.000 \mathrm{~g}, 2.94 \mathrm{mmol}$) with ($1 R, 2 R$)- N^{1}, N^{1}-dipentylcyclohexane-1,2diamine (14) ($0.748 \mathrm{~g}, 2.94 \mathrm{mmol})$ to afford the title compound $\mathbf{6 b}$. Yield: $1.050 \mathrm{~g}(64 \%)$, colourless solid; M.p.: $195-196{ }^{\circ} \mathrm{C}$, decomp.; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.12 ;[\alpha]_{D}^{20}=-107.6\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{TFA}) \delta 7.87(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{td}, J=11.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{td}, J=12.5$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{td}, J=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{td}, J=12.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.16-1.46(\mathrm{~m}, 10 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 8 \mathrm{H}), 1.02-0.81(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 184.5$, $179.7,170.0,161.4,141.3,131.4\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.9,31.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 123.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, 2 \mathrm{C}\right), 117.5(2 \mathrm{C}), 114.3$, 64.2 (2C), 54.7, 49.2, 34.1, 29.2 (2C), 28.5 (2C), 24.8, 24.6, 23.7, 22.2 (2C), 13.9 (2C); HRMS (EI): Exact mass calculated for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}[M]^{+}: 561.2790$, found 561.2799.

3-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-(((1S,2S)-2-(dipentylamino)cyclohexyl)amino)cyclobut-3-ene-1,2-dione (ent-6b).

Prepared according to the general procedure by reacting 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (13b) ($0.240 \mathrm{~g}, 0.71 \mathrm{mmol}$) with ($1 R, 2 R$)- N^{1}, N^{1}-dipentylcyclohexane-1,2diamine (ent-14) $(0.180 \mathrm{~g}, 0.71 \mathrm{mmol})$ to afford the title compound ent-6b. Yield: $0.164 \mathrm{~g}(41 \%)$, colourless solid; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.12 ;[\alpha]_{D}^{20}=110.6\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$.

Figure S-1 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{5 a}$.

Parameter	Value
1 Data File Name	```M:/ Jørn/ NMR/ AVI400/ JET-176-017-35/ 11/ fid```
2 Title	JET-176-017-35
3 Comment	C13CPD DMSO \{D: \backslash uio \backslash AVII $400-05\}$ jornet 12
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	DMSO
10 Temperature	295.7
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	2048
14 Receiver Gain	1620
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-05-05T18:45:00
19 Modification Date	2012-05-05T18:45:59
$20 \begin{aligned} & \text { Spectrometer } \\ & \text { Frequency }\end{aligned}$	100.64
21 Spectral	25252.5
22 Lowest Frequency	-1102.0
23 Nucleus	13C
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-2 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{5 a}$.

Figure $\mathbf{S}-\mathbf{3}^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{5 b}$.

Figure $\mathbf{S}-4{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{5 b}$.

Figure $\mathbf{S - 5}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{6 a}$.

Figure S-6 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{6 a}$.

Figure $S-7{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{6 b}$.

Parameter	Value
1 Data File Name	```M:/ Jørn/ NMR/ AVI400/ JET-176-091-183/ 11/ fid```
2 Title	JET-176-091-183
3 Comment	C13CPD DMSO \{D: \backslash uio \backslash AVII400-05\} jornet 14
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	DMSO
10 Temperature	295.7
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	2048
14 Receiver Gain	2050
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-05-05T22:51:00
19 Modification Date	2012-05-05T22:51:49
20 Spectrometer Frequency	100.64
21 Spectral Width	25252.5
22 Lowest Frequency	-1101.2
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-8 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{6 b}$.

Figure $\mathbf{S - 9}$ MS spectrum of compound $\mathbf{5 a}$.

Figure S-10 HRMS spectrum of compound 5a.

Figure S-11 MS spectrum of compound $\mathbf{5 b}$.

Figure S-12 HRMS spectrum of compound $\mathbf{5 b}$.

Figure S-13 MS spectrum of compound 6a.

Figure S-14 HRMS spectrum of compound $\mathbf{6 a}$.

Figure S-15 MS spectrum of compound $\mathbf{6 b}$.

Figure S-16 HRMS spectrum of compound $\mathbf{6 b}$.

Preparation of Starting Materials

General procedure for the preparation of γ - and δ-unsaturated acids: Step 1. 4-Aryl-4-oxobutanoic acid (1.0 equiv.) or 5-aryl-5-oxopentanoic acid (1.0 equiv.) was suspended in MeOH (0.25 M), the suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and acetyl chloride (1.2 equiv.) was added. Cooling was discontinued and the resulting homogeneous mixture was stirred overnight at ambient temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed in succession with satd. aq. NaHCO_{3}, brine and water. The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated in vacuo to afford the corresponding 4-aryl-4-oxobutanoic acid methyl ester or 5-aryl-5oxopentanoic acid methyl ester. Step 2. Triphenylphosphonium bromide (1.3 equiv.) was suspended in THF (0.75 M) and cooled to $0{ }^{\circ} \mathrm{C}$, whereupon KHMDS (0.5 M in toluene, 1.3 equiv.) was added in one go. The resulting mixture was stirred for 1 hour then cooled to $-78^{\circ} \mathrm{C}$ and a solution of the 4 -aryl-4-oxobutanoic acid methyl ester or 5-aryl-5-oxopentanoic acid methyl ester (1.0 equiv.) in THF ($\sim 0.25 \mathrm{M}$) was added in a dropwise manner. Cooling was discontinued and the resulting mixture was stirred at ambient temperature until TLC indicated full conversion of the starting material. The mixture was treated with satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic extracts were dried over MgSO_{4}, filtered and the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica (hexanes, followed by hexanes/EtOAc in various proportions) to afford the corresponding 4-aryl-4-oxobutanoic acid methyl ester or 5-arylhex-5-enoic acid methyl ester. Step 3. 4-Arylpent-4-enoic methyl ester or 5-arylhex-5-enoic acid methyl ester (1.0 equiv.) was dissolved in THF and water was added ($8: 1 \mathrm{THF} /$ water, $\sim 0.10 \mathrm{M}$), followed by $\mathrm{LiOH}_{2} \mathrm{O}$ (1.5 equiv.). The resulting biphasic mixture was stirred vigorously overnight at ambient temperature, whereupon the solvent was evaporated in vacuo. The residue was dissolved in 1 M aq. NaOH and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pH was adjusted to approx. 2 and the aq. phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over MgSO_{4}, filtered and evaporated in vacuo to afford the corresponding 4-arylpent-4-enoic acid or 5-arylhex-5-enoic acid, respectively.

Alternatively, some of the γ - and δ-unsaturated acids were prepared directly from the corresponding 4-aryl-4oxobutanoic acids or 5-aryl-5-oxopentanoic acids according to the procedure of Takemiya et al. ${ }^{5}$

5-Phenylhex-5-enoic acid (1a). ${ }^{4}$

Prepared from commercially available 5-oxo-5-phenylpentanoic acid (15a) by a Wittig reaction according to the procedure of Takemiya et al. ${ }^{5}$ All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.63(\mathrm{~m}, 5 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.2,147.3,140.7,128.3$ (2C), 127.5, 126.1 (2C), 113.1, 34.4, 33.3, 23.0.

5-(Naphthalen-2-yl)hex-5-enoic acid (1b). ${ }^{4}$

Prepared according to the general procedure using 5-(naphthalen-2-yl)-5-oxopentanoic acid (15b). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.23(\mathrm{bs}, 1 \mathrm{H}), 7.77-$ $7.96(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.56(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{p}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,147.1,137.9,133.4$, $132.8,128.1,127.9,127.5,126.1,125.8,124.7,124.5,113.6,34.4,33.3,23.1$.

Prepared according to the general procedure using 5-oxo-5-(p-tolyl)pentanoic acid (15c). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.3,147.0,137.2,136.8$, 129.0 (2C), 125.7 (2C), 111.8, 33.8, 33.0, 23.2, 20.7.

5-(4-Methoxyphenyl)hex-5-enoic acid (1d). ${ }^{4}$

Prepared according to the general procedure using 5-(4-methoxyphenyl)-5-oxopentanoic acid (15d). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.41(\mathrm{~m}, 2 \mathrm{H})$, $6.84-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.81(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5,159.1,146.5,133.1,127.2$ (2C), 113.7 (2C), 111.5, 55.3, 34.5, 33.2, 23.1.

5-(4-Fluorophenyl)hex-5-enoic acid (1e). ${ }^{4}$

Prepared according to the general procedure using 5-(4-fluorophenyl)-5-oxopentanoic acid (15e). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.35(\mathrm{bs}, 1 \mathrm{H})$, $7.32-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.11(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{p}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.0,162.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246 \mathrm{~Hz}\right), 146.3$, $136.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.9 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.3 \mathrm{~Hz}, 2 \mathrm{C}\right), 113.0,34.5,33.2,22.9$.

5-(4-Chlorophenyl)hex-5-enoic acid (1f). ${ }^{4}$

Prepared from 5-(4-chlorophenyl)-5-oxopentanoic acid (15f) by a Wittig reaction according to the procedure of Takemiya et al. ${ }^{5}$ All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{bs}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 4 \mathrm{H}), 5.31(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,146.2$, 139.1, 133.3, 128.5 (2C), 127.4 (2C), 113.6, 34.3, 33.2, 22.9.

5-(4-Bromophenyl)hex-5-enoic acid (1g). ${ }^{4}$

Prepared according to the general procedure using 5-(4-bromophenyl)-5-oxopentanoic acid (15g). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.44(\mathrm{bs}, 1 \mathrm{H})$, $7.42-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2 H), 1.80 (p, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$); 13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 180.0,146.2,139.5,131.4$ (2C), 127.7 (2C), 121.4, 113.6, 34.2, 33.2, 22.9.

6-Methyl-5-methyleneheptanoic acid (1h).4,5

Prepared from commercially available 6-methyl-5-methyleneheptanoic acid (15h) by a Wittig reaction according to the procedure of Takemiya et al. ${ }^{5}$ All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.09(\mathrm{bs}, 1 \mathrm{H}), 4.76-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.24 (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,154.6,107.1,33.6$ (3C), 23.0, 21.8 (2C).

4-Phenylpent-4-enoic acid (3a). ${ }^{4}$

Prepared according to the general procedure using 4-oxo-4-phenylbutanoic acid (16a). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.56(\mathrm{bs}, 1 \mathrm{H}), 7.23-7.48$ (m, $5 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $179.5,146.5,140.4,128.4$ (2C), 127.7, 126.1 (2C), 112.9, 33.0, 30.1.

4-(4-Chlorophenyl)pent-4-enoic acid (3b). ${ }^{6}$

Prepared according to the general procedure using 4-(4-chlorophenyl)-4-oxobutanoic acid (16b). All physical data were in full agreement with those reported in the literature. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.60(\mathrm{bs}, 1 \mathrm{H})$, $7.28-7.38(\mathrm{~m}, 4 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3,145.4,138.8,133.5,128.6$ (2C), 127.4 (2C), 113.5, 32.8, 30.0.

Figure $\mathbf{S - 1 7}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 a}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-176-016-33/ 11/ fid
2 Title	JET-176-016-33
3 Comment	C13CPD CDC13 \{D: \backslash uio \backslash AVII400-05\} jornet 15
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDC13
10 Temperature	295.8
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	812
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-05-05T23:58:00
19 Modification Date	2012-05-05T23:58:21
20 Spectrometer Frequency	100.64
21 Spectral	25252.5
22 Lowest Frequency	-1060.9
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-18 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 a}$.

Figure S-19 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{1 b}$.

Parameter	Value
1 Data File Name	M:/ NMR/ JNPD-142/ 11/fid
2 Title	JNPD-142/ 11
3 Comment	```5-(Napht-2-yl)hex-5- enoic acid C13CPD CDCI3 {D:\ uio\ DPX300-09} jmnolsoe 43```
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDCI3
10 Temperature	298.2
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	10321
15 Relaxation Delay	2.0000
16 Pulse Width	5.8000
17 Acquisition Time	1.8219
18 Acquisition Date	2012-05-13T21:53:49
19 Modification Date	2012-05-13T21:53:53
20 Spectrometer Frequency	75.48
21 Spectral Width	17985.6
22 Lowest Frequency	-1452.0
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S - 2 0}{ }^{13} \mathbf{C}$-NMR spectrum of compound $\mathbf{1 b}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-107-25/ 10/ fid
2 Title	JET-222-107-25
3 Comment	PROTON CDCI3 \{D: \backslash uio \(
) AVII400-05\} jornet 18	
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDCI3
10 Temperature	294.8
11 Pulse Sequence	zg30
12 Experiment	1D
13 Number of Scans	16
14 Receiver Gain	81
15 Relaxation Delay	1.0000
16 Pulse Width	12.1500
17 Acquisition Time	3.9846
18 Acquisition Date	2012-05-06T04:11:00
19 Modification Date	2012-05-06T04:11:39
20 Spectrometer Frequency	400.18
21 Spectral Width	8223.7
22 Lowest Frequency	-3541.8
23 Nucleus	1H
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-21 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{1 c}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-107-25/ 11/ fid
2 Title	JET-222-107-25
3 Comment	C13CPD CDC13 \{D: \backslash uio AVII400-05\} jornet 18
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDC13
10 Temperature	295.7
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	2048
14 Receiver Gain	724
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-05-06T06:08:00
19 Modification Date	2012-05-06T06:08:29
20 Spectrometer Frequency	100.64
21 Spectral Width	25252.5
22 Lowest Frequency	-1576.6
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S}-\mathbf{2 2}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 c}$.

Figure S-23 ${ }^{1} \mathrm{H}$-NMR spectrum of compound 1 d .

Parameter	Value
1 Data File Name	M:/ NMR/ JNPD-185/ 21/fid
2 Title	JNPD-185/ 21
3 Comment	Hydrolysis of p MeOPh d-unsaturated ester. 2 h C13CPD CDCI3 \{D: \backslash uio DPX300-09\} jmnolsoe 57
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDCI3
10 Temperature	298.2
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	13004
15 Relaxation Delay	2.0000
16 Pulse Width	5.8000
17 Acquisition Time	1.8219
18 Acquisition Date	2012-09-01T21:38:30
19 Modification Date	2012-09-01T21:38:33
20 Spectrometer Frequency	75.48
21 Spectral Width	17985.6
22 Lowest Frequency	-1448.2
23 Nucleus	13C
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S}-\mathbf{2 4}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 d}$.

Figure S-25 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{1 e}$.

Figure S-26 ${ }^{13}$ C-NMR spectrum of compound $\mathbf{1 e}$.

Parameter	Value
1 Data File Name	M:/ NMR/ JNPD-140/ 10 fid
2 Title	JNPD-140/ 10
3 Comment	F-Ketoacid PROTON CDCI3 \{D: \backslash uio DPX300-09\} jmnolsoe 53
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDC13
10 Temperature	298.2
11 Pulse Sequence	zg30
12 Experiment	1D
13 Number of Scans	16
14 Receiver Gain	181
15 Relaxation Delay	1.0000
16 Pulse Width	10.0000
17 Acquisition Time	5.3084
18 Acquisition Date	2012-05-10T11:33:59
19 Modification Date	2012-05-10T11:34:03
20 Spectrometer Frequency	300.13
21 Spectral Width	6172.8
22 Lowest Frequency	-1236.0
23 Nucleus	1 H
24 Acquired Size	32768
25 Spectral Size	65536

Parameter	Value
$\begin{array}{ll} 1 & \begin{array}{l} \text { Data File } \\ \text { Name } \end{array} \end{array}$	M:/ NMR/ JNPD-140/ 11/fid
2 Title	JNPD-140/ 11
3 Comment	F-Ketoacid C13CPD CDCl3 \{D: \backslash uio \backslash DPX300-09\} jmnolsoe 53
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDCl3
10 Temperature	298.2
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	11585
15 Relaxation Delay	2.0000
16 Pulse Width	5.8000
17 Acquisition Time	1.8219
18 Acquisition Date	2012-05-10T12:41:22
19 Modification Date	2012-05-10T12:41:25
20 Spectrometer Frequency	75.48
21 Spectral	17985.6
22 Lowest Frequency	-1448.2
23 Nucleus	13C
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-27 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{1 f}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-104-19/ 11/ fid
2 Title	JET-222-104-19
3 Comment	C13CPD CDCI3 \{D: \backslash uio \(
) AVII400-05\} jornet 16	
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDC13
10 Temperature	295.7
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	2048
14 Receiver Gain	1620
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-05-06T02:02:00
19 Modification Date	2012-05-06T02:02:12
20 Spectrometer Frequency	100.64
21 Spectral	25252.5
22 Lowest Frequency	-1057.2
23 Nucleus	13C
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-28 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 f}$.

Figure S-29 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 g}$.

Figure $\mathbf{S}-\mathbf{3 0}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 g}$.

Figure S-31 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 h}$.

Parameter	Value
1 Data File Name	M:/ NMR/ JNPD-154/ 11/fid
2 Title	JNPD-154/ 11
3 Comment	i-Pr d-lactone pre. Acid C13CPD CDCI3 \{D: \backslash uio $\mathrm{DPX} 300-09\}$ jmnolsoe 38
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDC13
10 Temperature	298.2
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	10321
15 Relaxation Delay	2.0000
16 Pulse Width	5.8000
17 Acquisition Time	1.8219
18 Acquisition Date	2012-06-06T15:50:10
19 Modification Date	2012-06-06T15:50:14
20 Spectrometer Frequency	75.48
21 Spectral Width	17985.6
22 Lowest Frequency	-1446.8
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S - 3 2}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{1 h}$.

Figure S-33 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{3 a}$.

Figure $\mathbf{S - 3 4}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{3 a}$.

Figure S-35 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{3 b}$.

Figure $\mathbf{S}-\mathbf{3 6}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{3 b}$.

Enantioselective Iodolactonization Utilizing Chiral Squaramides

General procedure for asymmetric iodolactonization with chiral squaramides: Iodine (0.15 equiv.) and N iodosuccinimide (1.0 equiv.) was dissolved in a combination of acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,0.20 \mathrm{M})$. Subsequently, the squaramide 5-8 (0.15 equiv.) was added and the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of unsaturated acid 1 or $\mathbf{3}$ (1.0 equiv.) in a combination of acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,0.20 \mathrm{M})$ was added and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was treated with satd. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{ml})$ while still in the cold, allowed to equilibrate to ambient temperature and then $\mathrm{EtOAc}(30 \mathrm{ml})$ was added. The phases were separated and the organic phase was washed with aq. $\mathrm{NaOH}(2 \times 20 \mathrm{ml}, 1.0 \mathrm{M})$ and brine (20 ml). The organic phase was dried over MgSO_{4}, filtered and evaporated in vacuo. The residue was purified by column chromatography on silica (hexanes/EtOAc 4:1) to afford the corresponding iodolactone 2 or 4.

Notice! The iodolactones were observed to be very labile in the condensed state under vacuum. Thus, to avoid decomposition, great care had to be taken when evaporating the solvent in vacuo after isolation by flash chromatography. Once all visible traces of solvent had been removed it was of paramount importance to equilibrate back to ambient pressure immediately. Without this precaution, the isolated iodolactone would turn black spontaneously. Due to the instability of the iodolactones they were stored under argon and refrigerated.

(S)-6-(Iodomethyl)-6-phenyltetrahydro-2H-pyran-2-one (2a). ${ }^{4}$

Prepared according to the general procedure using 5-phenylhex-5-enoic acid (1a) ($40 \mathrm{mg}, 210 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(17 \mathrm{mg}, 31 \mu \mathrm{~mol})$, iodine ($8 \mathrm{mg}, 31 \mu \mathrm{~mol}$) and N-iodosuccinimide ($47 \mathrm{mg}, 210 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $/$ i $\operatorname{PrOH} 98: 2,1 \mathrm{~mL} / \mathrm{min}): t_{r}\left(e_{1}\right.$, major) $=24.04 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=27.20$ min. Yield: 55 mg (83%) of colourless oil; ee: 87%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.48$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=27.2\left(\mathrm{c}=0.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.54(\mathrm{~m}, 5 \mathrm{H}), 3.57(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.28-2.59(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4$, 140.1, 128.9 (2C), 128.3, 125.1 (2C), 84.3, 32.0, 28.9, 17.7, 16.5; HRMS (EI): Exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{2}[M]^{+}: 315.9960$, found 315.9972.

(R)-6-(Iodomethyl)-6-phenyltetrahydro-2H-pyran-2-one (ent-2a). ${ }^{4}$

Prepared according to the general procedure using 5-phenylhex-5-enoic acid (1a) ($40 \mathrm{mg}, 210 \mu \mathrm{~mol}$), squaramide ent- $\mathbf{6 b}(17 \mathrm{mg}, 31 \mu \mathrm{~mol}$), iodine ($8 \mathrm{mg}, 31 \mu \mathrm{~mol}$) and N-iodosuccinimide ($47 \mathrm{mg}, 210 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc $4: 1$). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $/$ PrOH 98:2, $1 \mathrm{~mL} / \mathrm{min}$): $t_{r}\left(e_{1}\right.$, minor $)=27.00 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, major) $=31.00$ min . Yield: 52 mg (79%) of colourless oil; ee: 82%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.48$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=-26.0\left(\mathrm{c}=0.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.54(\mathrm{~m}, 5 \mathrm{H}), 3.57(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.59(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4$, 140.1, 128.9 (2C), 128.3, 125.1 (2C), 84.3, 32.0, 28.9, 17.7, 16.5.
(S)-6-(Iodomethyl)-6-(naphthalen-2-yl)tetrahydro-2H-pyran-2-one (2b). ${ }^{4}$

Prepared according to the general procedure using 5-(naphthalen-2-yl)hex-5-enoic acid (1b) ($40 \mathrm{mg}, 166 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(14 \mathrm{mg}, 25 \mu \mathrm{~mol})$, iodine ($7 \mathrm{mg}, 25 \mu \mathrm{~mol}$) and N-iodosuccinimide ($37 \mathrm{mg}, 166 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $\left./{ }^{i} \operatorname{PrOH} 99: 1,1 \mathrm{~mL} / \mathrm{min}\right): t_{r}\left(e_{1}\right.$, major $)=66.14 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=82.74$ \min. Yield: $55 \mathrm{mg}(91 \%)$ of colourless oil; ee: 92%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.56$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=22.0\left(\mathrm{c}=0.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.62(\mathrm{~m}$, $2 \mathrm{H}), 7.41$ (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.29-2.77$ (m, 4H), 1.78-1.93 (m, 1H), $1.52-1.69$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,137.4,133.0,132.8,129.0,128.3,127.5,126.8$ (2C), 125.0, 122.3, 84.6, 32.1, 29.0, 17.4, 16.6; HRMS (EI): Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{2}[M]^{+}: 366.0117$, found 366.0109.

(S)-6-(Iodomethyl)-6-(p-tolyl)tetrahydro-2H-pyran-2-one (2c). ${ }^{4}$

Prepared according to the general procedure using 5 -(p-tolyl)hex-5-enoic acid (1c) ($40 \mathrm{mg}, 196 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(17 \mathrm{mg}, 29 \mu \mathrm{~mol})$, iodine ($7 \mathrm{mg}, 29 \mu \mathrm{~mol}$) and N-iodosuccinimide ($44 \mathrm{mg}, 196 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $/ i \operatorname{PrOH} 98: 2,1 \mathrm{~mL} / \mathrm{min}): t_{r}\left(e_{1}\right.$, major $)=25.32 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=34.16$ min . Yield: 51 mg (80%) of colourless oil; ee: 86%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.56$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=24.6\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.40-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.49$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,138.2,137.1,129.6$ (2C), 125.1 (2C), 84.3, 31.9, 28.9, 21.0, 17.9, 16.5; HRMS (EI): Exact mass calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{2}[M]^{+}: 330.0117$, found 330.0108 .

(S)-6-(Iodomethyl)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (2d). ${ }^{4}$

Prepared according to the general procedure using 5-(4-methoxyphenyl)hex-5-enoic acid (1d) ($48 \mathrm{mg}, 218 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(18 \mathrm{mg}, 33 \mu \mathrm{~mol})$, iodine ($8 \mathrm{mg}, 33 \mu \mathrm{~mol}$) and N-iodosuccinimide ($49 \mathrm{mg}, 218 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $/$ PrOH 90:10, $1 \mathrm{~mL} / \mathrm{min}$): $t_{r}\left(e_{1}\right.$, major) $=12.91$ min and $t_{r}\left(e_{2}\right.$, minor) $=15.56$ min . Yield: 65 mg (87%) of colourless oil; ee: 12%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.53$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=1.6\left(\mathrm{c}=0.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.95(\mathrm{~m}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.70$
(m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,159.4,132.0,126.5$ (2C), 114.2 (2C), 84.2, 55.3, 31.8, 28.9, 18.1, 16.5; HRMS (EI): Exact mass calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}_{3}[M]^{+}: 346.0066$, found 346.0064 .
(S)-6-(4-Fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (2e). ${ }^{4}$

Prepared according to the general procedure using 5-(4-fluorophenyl)hex-5-enoic acid (1e) ($42 \mathrm{mg}, 200 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}$ ($17 \mathrm{mg}, 30 \mu \mathrm{~mol}$), iodine ($8 \mathrm{mg}, 30 \mu \mathrm{~mol}$) and N-iodosuccinimide ($45 \mathrm{mg}, 200 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $/ 2 \operatorname{PrOH} 90: 10,1 \mathrm{~mL} / \mathrm{min}): t_{r}\left(e_{1}\right.$, major $)=10.70 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=12.17$ min . Yield: $55 \mathrm{mg}(83 \%)$ of colourless oil; ee: 90%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.49$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=26.0\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.17(\mathrm{~m}$, $2 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.71(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,162.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.2 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.3 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.9$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CF}}=21.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 84.1,31.9,28.9,17.5,16.5$; HRMS (EI): Exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FIO} \mathrm{O}_{2}[M]^{+}$: 333.9866, found 333.9867 .
(S)-6-(4-Chlorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (2f). ${ }^{4}$

Prepared according to the general procedure using 5-(4-chlorophenyl)hex-5-enoic acid (1f) ($40 \mathrm{mg}, 178 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(15 \mathrm{mg}, 27 \mu \mathrm{~mol})$, iodine ($7 \mathrm{mg}, 27 \mu \mathrm{~mol}$) and N-iodosuccinimide ($40 \mathrm{mg}, 178 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $\left./{ }^{i} \operatorname{PrOH} 98: 2,1 \mathrm{~mL} / \mathrm{min}\right): t_{r}\left(e_{1}\right.$, major $)=31.58 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=46.09$ \min. Yield: $49 \mathrm{mg}(78 \%)$ of colourless oil; ee: 96%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.46$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=27.2\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,138.8,134.5,129.1$ (2C), 126.7 (2C), 84.1, 32.0, 29.0, 17.1, 16.5; HRMS (EI): Exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClIO}_{2}[M]^{+}: 349.9571$, found 349.9577.

(S)-6-(4-Bromophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (2g). ${ }^{4}$

Prepared according to the general procedure using 5-(4-bromophenyl)hex-5-enoic acid ($\mathbf{1 g}$) ($22 \mathrm{mg}, 80 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(7 \mathrm{mg}, 12 \mu \mathrm{~mol})$, iodine ($3 \mathrm{mg}, 27 \mu \mathrm{~mol}$) and N-iodosuccinimide ($18 \mathrm{mg}, 178 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $/ \operatorname{PrOH} 90: 10,1 \mathrm{~mL} / \mathrm{min}): t_{r}\left(e_{1}\right.$, major $)=11.83 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=15.15$
min. Yield: 23 mg (73\%) of colourless oil; ee: 91\%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.50$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=23.3\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.42-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,139.4,132.1$ (2C), 127.0 (2C), 122.6, 84.1, 31.9, 29.0, 16.9, 16.5; HRMS (EI): Exact mass calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrIO}_{2}[M]^{+}: 393.9065$, found 393.9070 .

(S)-6-(Iodomethyl)-6-isopropyltetrahydro-2H-pyran-2-one (2h). ${ }^{4,}$

Prepared according to the general procedure using 6-methyl-5-methyleneheptanoic acid (1h) ($29 \mathrm{mg}, 186 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(16 \mathrm{mg}, 28 \mu \mathrm{~mol})$, iodine ($7 \mathrm{mg}, 28 \mu \mathrm{~mol}$) and N-iodosuccinimide ($42 \mathrm{mg}, 186 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral GLC analysis (Chiraldex G-TA, $170{ }^{\circ} \mathrm{C}$ isothermal): $t_{r}\left(e_{1}\right.$, major) $=22.56 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=22.91 \mathrm{~min}$. Yield: 40 $\mathrm{mg}(77 \%)$ of colourless oil; $e e$: 16%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.57$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=$ $1.50\left(\mathrm{c}=0.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.45-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.09$ $-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.95(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 170.4,84.8,35.2,29.5,26.7,16.7,16.6,16.4,13.0$; HRMS (EI): Exact mass calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{IO}{ }_{2}[M]^{+}$: 282.0119, found 282.0124.

(R)-5-(Iodomethyl)-5-phenyldihydrofuran-2(3H)-one (4a). ${ }^{4,6}$

Prepared according to the general procedure using 4-phenylpent-4-enoic acid (3a) ($40 \mathrm{mg}, 227 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}(19 \mathrm{mg}, 34 \mu \mathrm{~mol})$, iodine ($9 \mathrm{mg}, 34 \mu \mathrm{~mol}$) and N-iodosuccinimide ($51 \mathrm{mg}, 227 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC analysis (Chiralpak AD-H, hexanes $\left./{ }^{i} \operatorname{PrOH} 98: 2,1 \mathrm{~mL} / \mathrm{min}\right): t_{r}\left(e_{1}\right.$, minor $)=20.69 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, major $)=23.69$ min . Yield: $59 \mathrm{mg}(86 \%)$ of colourless oil; ee: 7\%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.55$, visualized with anisaldehyde; $[\alpha]_{D}^{20}=5.70\left(\mathrm{c}=0.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.49(\mathrm{~m}, 5 \mathrm{H}), 3.64(\mathrm{~d}, J=0.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.41-2.88(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,140.5,128.8$ (2C), 128.5, 124.8 (2C), 86.0, 33.9, 29.2, 16.3; HRMS (EI): Exact mass calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{IO}_{2}[M]^{+}: 301.9804$, found 301.9793.
(S)-5-(4-Chlorophenyl)-5-(iodomethyl)dihydrofuran-2(3H)-one (4b). ${ }^{7}$

Prepared according to the general procedure using 4-(4-chlorophenyl)pent-4-enoic acid ($\mathbf{3 b}$) ($42 \mathrm{mg}, 200 \mu \mathrm{~mol}$), squaramide $\mathbf{6 b}$ ($17 \mathrm{mg}, 30 \mu \mathrm{~mol}$), iodine ($8 \mathrm{mg}, 30 \mu \mathrm{~mol}$) and N-iodosuccinimide ($45 \mathrm{mg}, 200 \mu \mathrm{~mol}$). Purified by column chromatography on silica (hexanes/EtOAc 4:1). The enantiomeric excess was determined by chiral HPLC
analysis (Chiralpak AD-H, hexanes $\left./{ }^{i} \operatorname{PrOH} 98: 2,1 \mathrm{~mL} / \mathrm{min}\right): t_{r}\left(e_{1}\right.$, major $)=25.97 \mathrm{~min}$ and $t_{r}\left(e_{2}\right.$, minor $)=27.98$ min . Yield: 57 mg (85%) of colourless oil; ee: 14%; TLC (hexanes/EtOAc 1:1): $R_{\mathrm{f}}=0.52$, visualized with anisaldehyde; $[\alpha]_{D}=0.0\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.43(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.65$ $-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,139.1,134.6,129.0$ (2C), 126.3 (2C), 85.6, 33.8, 29.1, 15.7; HRMS (EI): Exact mass calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClIO}_{2}[M]^{+}: 335.9414$, found 335.9407.

Figure S-37 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 a}$.

Figure S-38 ${ }^{13} \mathrm{C}$-NMR spectrum of compound 2a.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-118-47/ 10/ fid
2 Title	JET-222-118-47
3 Comment	PROTON CDCI3 \{D: $\}$ uio \backslash AVII400-05\} jornet 28
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDC13
10 Temperature	295.2
11 Pulse Sequence	zg30
12 Experiment	1D
13 Number of Scans	16
14 Receiver Gain	36
15 Relaxation Delay	1.0000
16 Pulse Width	12.1500
17 Acquisition Time	3.9846
18 Acquisition Date	2012-06-12T10:27:00
19 Modification Date	2012-06-12T10:28:05
20 Spectrometer Frequency	400.18
21 Spectral Width	8223.7
22 Lowest Frequency	-1645.0
23 Nucleus	1 H
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S - 3 9}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 b}$.

Figure S-40 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 b}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-109-29/ 10/ fid
2 Title	JET-222-109-29
3 Comment	PROTON CDCI3 \{D: \backslash uio AVII400-05\} jornet 82
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDC13
10 Temperature	294.6
11 Pulse Sequence	zg30
12 Experiment	1 D
13 Number of Scans	16
14 Receiver Gain	90
15 Relaxation Delay	1.0000
16 Pulse Width	12.1500
17 Acquisition Time	3.9846
18 Acquisition	2012-05-10T01:04:00
19 Modification Date	2012-05-10T01:04:58
20 Spectrometer Frequency	400.18
21 Spectral Width	8223.7
22 Lowest Frequency	-1644.6
23 Nucleus	1 H
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathrm{S}-\mathbf{4 1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 c}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-109-29/ 11/ fid
2 Title	JET-222-109-29
3 Comment	C13CPD CDCl3 \{D: 1 uio AVII400-05\} jornet 82
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDCI3
10 Temperature	295.6
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	2050
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-05-10T02:04:00
19 Modification Date	2012-05-10T02:04:23
20 Spectrometer Frequency	100.64
21 Spectral Width	25252.5
22 Lowest Frequency	-1061.8
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S}-\mathbf{4 2}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 c}$.

Figure $\mathbf{S}-\mathbf{4 3}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 d}$.

Figure $\mathbf{S}-\mathbf{4 4}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 d}$.

Parameter	Value
Data File	M:/ Jørn/ NMR/
Name	JEt-222-112-35/ 10/ fid
Title	JEt-222-112-35/ 10
Comment	PROTON CDCI3 \{D: uio \DPX300-09\} jornet 2
4 Origin	Bruker BioSpin GmbH
Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
Solvent	CDC13
10 Temperature	298.2
11 Pulse Sequence	zg30
12 Experiment	1D
13 Number of Scans	16
14 Receiver Gain	228
15 Relaxation Delay	1.0000
16 Pulse Width	10.0000
17 Acquisition	5.3084
18 Acquisition Date	2012-05-16T18:11:38
19 Modification Date	2012-05-16T18:11:43
20 Spectrometer Frequency	300.13
21 Spectral	6172.8
22 Lowest Frequency	-1236.3
23 Nucleus	1H
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S}-\mathbf{4 5}{ }^{1} \mathrm{H}$-NMR spectrum of compound 2e.

Figure S-46 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 e}$.

Figure $\mathrm{S}-\mathbf{4 7}{ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 f}$.

Figure $\mathbf{S}-48{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 f}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-123-56/ 10/ fid
2 Title	JET-222-123-56
3 Comment	PROTON CDCI3 \{D: \backslash uio AVII400-05\} jornet 10
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDCI3
10 Temperature	295.1
11 Pulse Sequence	zg30
12 Experiment	1 D
13 Number of Scans	16
14 Receiver Gain	40
15 Relaxation Delay	1.0000
16 Pulse Width	12.1500
17 Acquisition	3.9846
18 Acquisition Date	2012-06-25T20:19:00
19 Modification Date	2012-06-25T20:19:14
20 Spectrometer Frequency	400.18
21 Spectral	8223.7
22 Lowest Frequency	-1644.2
23 Nucleus	1 H
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S}-\mathbf{4 9}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 g}$.

Figure S-50 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 g}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-121-53/ 10/ fid
2 Title	JET-222-121-53
3 Comment	PROTON CDCI3 \{D: \backslash uio \backslash AVII400-05\} jornet 26
4 Origin	Bruker BioSpin GmbH
Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
Solvent	CDC13
10 Temperature	295.2
11 Pulse Sequence	zg30
12 Experiment	1D
13 Number of Scans	16
14 Receiver Gain	25
$\begin{aligned} & 15 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1.0000
16 Pulse Width	12.1500
17 Acquisition Time	3.9846
18 Acquisition Date	2012-06-12T09:14:00
19 Modification Date	2012-06-12T09:14:34
20 Spectrometer Frequency	400.18
21 Spectral	8223.7
22 Lowest Frequency	-1645.0
23 Nucleus	1H
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S - 5 1}{ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 h}$.

Figure S-52 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 h}$.

Figure S-53 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{4 a}$.

Figure S-54 ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 a}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ JET-222-122-55/ 10/ fid
2 Title	JET-222-122-55/ 10
3 Comment	PROTON CDCI3 \{D: \backslash uio DPX300-09\} jornet 2
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDC13
10 Temperature	298.2
11 Pulse Sequence	zg30
12 Experiment	1D
13 Number of Scans	16
14 Receiver Gain	287
15 Relaxation Delay	1.0000
16 Pulse Width	10.0000
17 Acquisition Time	5.3084
18 Acquisition Date	2012-06-14T17:08:16
19 Modification Date	2012-06-14T17:08:21
20 Spectrometer Frequency	300.13
21 Spectral Width	6172.8
22 Lowest Frequency	-1236.3
23 Nucleus	1H
24 Acquired Size	32768
25 Spectral Size	65536

Parameter	Value
1 Data File Name	$\begin{aligned} & \text { M:/ Jørn/ NMR/ } \\ & \text { AVI400/ } \\ & \text { JET-222-122-55/ 10/ } \\ & \text { fid } \end{aligned}$
2 Title	JET-222-122-55
3 Comment	C13CPD CDCI3 \{D: \backslash uio \backslash AVII $400-05\}$ jornet 5
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDCI3
10 Temperature	296.1
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	1620
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-06-18T15:25:00
19 Modification Date	2012-06-18T15:25:58
20 Spectrometer Frequency	100.64
21 Spectral	25252.5
22 Lowest Frequency	-1062.3
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure S-55 ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{4 b}$.

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ JET-222-120-51/ 30/ fid
2 Title	JET-222-120-51/ 30
3 Comment	PROTON CDCI3 \{D: 1 uio \ DPX300-09\} jornet 40
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	DPX300
8 Author	
9 Solvent	CDC13
10 Temperature	298.2
11 Pulse Sequence	zg30
12 Experiment	1 D
13 Number of Scans	16
14 Receiver Gain	256
$\begin{aligned} & 15 \text { Relaxation } \\ & \text { Delay } \end{aligned}$	1.0000
16 Pulse Width	10.0000
17 Acquisition Time	5.3084
18 Acquisition Date	2012-06-14T12:37:40
19 Modification Date	2012-06-14T12:37:45
20 Spectrometer Frequency	300.13
21 Spectral Width	6172.8
22 Lowest Frequency	-1236.3
23 Nucleus	1 H
24 Acquired Size	32768
25 Spectral Size	65536

Parameter	Value
1 Data File Name	M:/ Jørn/ NMR/ AVI400/ JET-222-120-51/ 10/ fid
2 Title	JET-222-120-51
3 Comment	C13CPD CDC13 \{D: \backslash uio AVII400-05\} jornet 98
4 Origin	Bruker BioSpin GmbH
5 Owner	tnmr
6 Site	
7 Spectrometer	spect
8 Author	
9 Solvent	CDCI3
10 Temperature	296.2
11 Pulse Sequence	zgpg30
12 Experiment	1D
13 Number of Scans	1024
14 Receiver Gain	1820
15 Relaxation Delay	2.0000
16 Pulse Width	7.0000
17 Acquisition Time	1.2977
18 Acquisition Date	2012-06-14T16:24:00
19 Modification Date	2012-06-14T16:24:17
20 Spectrometer Frequency	100.64
21 Spectral Width	25252.5
22 Lowest Frequency	-1059.9
23 Nucleus	13 C
24 Acquired Size	32768
25 Spectral Size	65536

Figure $\mathbf{S - 5 6}{ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{4 b}$.

Figure S-57 MS spectrum of compound 2a.

Figure S-58 HRMS spectrum of compound 2a.

Figure S-59 MS spectrum of compound $\mathbf{2 b}$.

Figure S-60 HRMS spectrum of compound $\mathbf{2 b}$.

Figure S-61 MS spectrum of compound 2c.

Figure S-62 HRMS spectrum of compound 2c.

Figure S-63 MS spectrum of compound 2d.

Figure S-64 HRMS spectrum of compound 2d.

Figure S-65 MS spectrum of compound $\mathbf{2 e}$.

Figure S-66 HRMS spectrum of compound $\mathbf{2 e}$.

Figure S-67 MS spectrum of compound 2 f .

Figure S-68 HRMS spectrum of compound $\mathbf{2 f}$.

Figure S-69 MS spectrum of compound $\mathbf{2 g}$.

Figure S-70 HRMS spectrum of compound 2g.

Figure S-71 MS spectrum of compound $\mathbf{2 h}$.

Figure S-72 HRMS spectrum of compound $\mathbf{2 h}$.

Figure S-73 MS spectrum of compound 4a.

Figure S-74 HRMS spectrum of compound 4a.

Figure S-75 MS spectrum of compound $\mathbf{4 b}$.

Figure S-76 HRMS spectrum of compound $\mathbf{4 b}$.

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	Area		Heicht		Area
				mAU	* 3	[mAU]	
1	5.356	VB	0.1622		4.70993	4.318	$34 \mathrm{e}-1$	0.4359
2	7.875	BV	0.1490		2.14533		28923	2.9749
3	24.044	BB	0.4905	974	4.59747	30.	. 63984	90.1937
4	27.196	B	0.4987		10795		2539	6.3956

Figure S-77 HPLC chromatogram of chiral compound 2a.

Figure S-78 HPLC chromatogram of racemic compound 2a.

Figure S-79 HPLC chromatogram of chiral compound ent-2a.

Sorted By	:	Siqnal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[$\mathrm{ng} / \mathrm{ul}$]	(not used
Use Multiplier \&	lution	Factor with	ISTDs	
Signal 1: VWD1 A, Wavelength=254 nm				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \text { [min] } \end{aligned}$	Width	Area	Height	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
	[min]	mAU *s	[mAU]	
13.739 VB	0.2032	14.80722	1.04493	1.2256
$2 \quad 7.720 \mathrm{VB}$	0.1454	15.28908	1. 61476	1.2655
322.810 VB	0.4551	587.88745	19.91185	48.6604
425.865 BB	0.5126	590.16034	17.77557	48.8485

Figure S-80 HPLC chromatogram of racemic compound $\mathbf{2 a}$.

Figure S-81 HPLC chromatogram of chiral compound $\mathbf{2 b}$.

Figure S-82 HPLC chromatogram of racemic compound $\mathbf{2 b}$.

Figure S-83 HPLC chromatogram of chiral compound $\mathbf{2 c}$.

Figure S-84 HPLC chromatogram of racemic compound $2 \mathbf{2 c}$.

Figure S-85 HPLC chromatogram of chiral compound 2d.

Figure S-86 HPLC chromatogram of racemic compound $\mathbf{2 d}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\operatorname{mAU}^{\text {Area }}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	3.068	BV	0.0941	6.46438	1.08766	0.7673
2	4.236	V	0.1514	5.44301	$5.25429 \mathrm{e}-1$	0.6461
3	5.368	VB	0.1207	15.27190	1.85640	1.8128
4	10.696	VB	0.2249	772.95050	52.73806	91.7508
5	12.170	BB	0.2499	42.31588	2.57544	5.0230

Figure S-87 HPLC chromatogram of chiral compound 2e.

Figure S-88 HPLC chromatogram of racemic compound $\mathbf{2 e}$.

Area Percent Report				
Sorted By	:	Siqnal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[$\mathrm{ng} / \mathrm{ul}$]	(not

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Figure S-89 HPLC chromatogram of chiral compound $\mathbf{2 f}$.

Sorted By	$:$	Siqnal	
Multiplier	$:$	1.0000	
Dilution	$:$	1.0000	
Sample Amount	$:$	1.00000	[ng/ul] (not used in calc.)
Use Multiplier \&	Dilution Factor with		

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	${ }_{\mathrm{mAU}}{ }^{2}$	$\begin{aligned} & \text { Area } \\ & { }^{\prime}{ }^{2} \end{aligned}$	$\begin{array}{r} \mathrm{He} \\ {[\mathrm{~m} \mathbf{A U}} \end{array}$	$\begin{aligned} & \text { eight } \\ & \text { Uir } \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	7.165	BV	0.1352		9.76059		2.23410	0.6601
2	8.083	VB	0.1659		5.50255		3.23448	1.1859
3	31.346	BB	0.6430	1468	8.44702		5.05751	49.0527
4	45.712	BB	1.0581	1469	9.89929		1.38708	49.1012

Figure S-90 HPLC chromatogram of racemic compound $\mathbf{2 f}$.

Sorted By	$:$	Siqnal	
Multiplier	\vdots	1.0000	
Dilution	\vdots	1.0000	
Sample Amount	\vdots	1.00000	[nq/ul] (not used in calc.)
Use Multiplier \& Dilution Factor with ISTDs			

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	mAX^{2}	$\begin{gathered} \text { Area } \\ { }^{*} \text { s } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU} \quad]} \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	3.141	VV	0.1089		4.83858	1.83550	1.0290
2	5.453	VV	0.1161		9.32522	5.10360	2.7271
3	11.826	VV	0.2480	1324	4.15820	82.04984	91.8253
4	15.151	VV	0.3620		3.71920	2.65011	4.4187
Totals :				1442	2.04120	91.63906	

Figure S-91 HPLC chromatogram of chiral compound $\mathbf{2 g}$.

Figure S-92 HPLC chromatogram of racemic compound $\mathbf{2 g}$.

Figure S-93 GLC chromatogram of chiral compound $\mathbf{2 h}$.

Figure S-94 GLC chromatogram of racemic compound $\mathbf{2 h}$.

Figure S-95 HPLC chromatogram of chiral compound 4a.

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: VWD1 A, wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	Area		Height		rea
				maU	*s	[mAU]	
1	19.757	BB	0.3764	445	2344	18.	735	49.9590
2	22.817	BB	0.4345	445	75348		7343	50.041

Figure S-96 HPLC chromatogram of racemic compound 4a.

Figure S-97 HPLC chromatogram of chiral compound 4b.

Figure S-98 HPLC chromatogram of racemic compound $\mathbf{4 b}$.

References

(1) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.
(2) Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. Org. Lett. 2010, 12, 2028.
(3) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem. Int. Ed. 2010, 49, 153.
(4) Veitch, G. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49, 7332.
(5) A. Takemiya, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 6042.
(6) Haas, J.; Piguel, S.; Wirth, T. Org. Lett. 2002, 4, 297.
(7) For the antipodal (R)-enantiomer, see ref. 6.

