Supporting Information

Synthetic Precursors for TCNQF4²⁻ Compounds: Synthesis, Characterization and Electrochemical Studies of (Pr4N)2TCNQF4 and Li2TCNQF4

Jinzhen Lu^a, Thanh Hai Le^a, Daouda A.K. Traore^b, Matthew Wilce^b, Alan M. Bond^{a*} and Lisandra L. Martin^{a*}

^a School of Chemistry, Monash University, Wellington Rd, Clayton, Victoria 3800 Australia

^b Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Victoria 3800 Australia

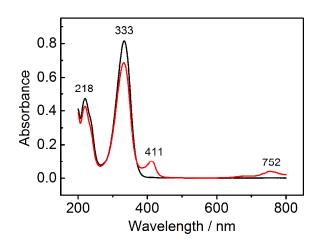

* Corresponding Authors: Lisa.Martin@monash.edu, Alan.Bond@monash.edu

Table of Contents

Stability of Li ₂ TCNQF ₄	S2
UV-vis Study of a Mixture of Li ₂ TCNQF ₄ and LiTCNQF ₄	S2
Electrochemical Study of a Mixture of Li ₂ TCNQF ₄ and LiTCNQF ₄	S3
Electrochemistry of Pr ₄ NTCNQF ₄	S4
Raman spectrum of TCNQF ₄	S 5
X–ray Crystallographic Data	S 5
Reference	S7

Stability of Li2TCNQF4

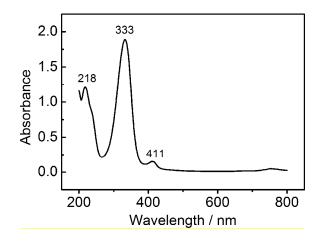

The UV-vis spectrum for freshly synthesized Li₂TCNQF₄ dissolved in acetonitrile has two absorption bands at $\lambda_{max} = 333$ and 218 nm (Figure S1 - black curve), which is characteristic of TCNQF₄^{2-.S1} However, on exposure of the Li₂TCNQF₄ solid to air over 15 days before dissolution in acetonitrile, two new bands appear with $\lambda_{max} = 411$ and 752 nm (Figure S1 - red curve), which indicates that the Li₂TCNQF₄ has been partially converted to TCNQF₄^{•-}-based material.^{S1} This is in contrast to the (Pr₄N)₂TCNQF₄ which is stable over months.

Figure S1. UV-vis spectra for Li_2TCNQF_4 ; black curve is for the freshly prepared solid dissolved in acetonitrile (0.02 mM) and the red curve is after 15 days exposure to the air.

UV-vis Study of a Mixture of Li₂TCNQF₄ and LiTCNQF₄

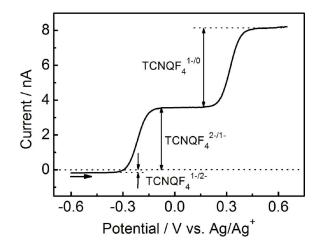
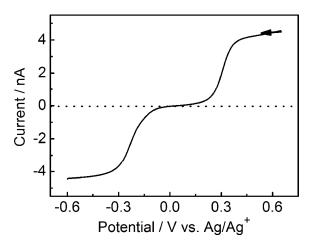

Absorption (UV-vis) spectroscopy was used for the quantitative determination of both $TCNQF_4^{2-}$ and $TCNQF_4^{\bullet-}$ present in a mixture of Li₂TCNQF₄ and LiTCNQF₄. The absorption bands at 333 and 411 nm^{S1} were used to calculate the amount of LiTCNQF₄ or Li₂TCNQF₄ in a mixture. Figure S2 shows a typical experiment in which the crude product, generated via Pathway 1 (Scheme 1) using a 3:1 molar ratio of LiI and TCNQF₄ contained ~95% of TCNQF₄²⁻ and ~5% of TCNQF₄^{•-} (mole percent).

Figure S2. UV-vis spectrum in acetonitrile of the crude LiTCNQF₄ product from the reaction of a 3:1 molar ratio of LiI and TCNQF₄ as shown in Pathway 1 (Scheme 1).


Electrochemical Study of a Mixture of Li2TCNQF4 and LiTCNQF4

Steady-state voltammetry was also used to quantify the proportion of Li₂TCNQF₄ and LiTCNQF₄ present in the mixture generated by Pathway 1 (Scheme 1) and also studied by UV-vis in Figure S2 (above). In the steady-state voltammetry the fact that there is a cathodic (reduction) current in solution at the initially applied potential (-0.6 V) reflects the presence of TCNQ^{•-} in the initial solution, i.e causing the reduction current. The limiting current both TCNQF₄^{2-/•-} and TCNQF₄^{•-/0} waves upon anodic (oxidative) scan reflects the integrity of the TCNQF₄ redox processes in this solution; no competing chemical reactions are occuring. Furthermore the limiting current is proportional to concentration, hence together with the position of zero current can be used to quantify the molar percentage of TCNQF₄^{•-} and TCNQF₄^{•-} in the initial mixture (Figure S3). This method is a sensitive and quantitative confirmation of the data and conclusion from the UV-vis spectroscopy, i.e. that the crude product contained ~95% of Li₂TCNQF₄ and ~5% of LiTCNQF₄.

Figure S3. Near steady-state voltammogram for the product, synthesized via Pathway 1 (Scheme 1) using a 3:1 molar ratio of LiI and TCNQF₄ in acetonitrile (0.1 M Bu₄NPF₆) obtained with a 12.0 μ m diameter carbon fiber microelectrode at a scan rate of 20 mV s⁻¹.

Electrochemistry of Pr₄NTCNQF₄

Figure S4. Near steady-state voltammogram for a 1.0 mM solution of $Pr_4NTCNQF_4$ in acetonitrile (0.1 M Bu₄NPF₆) obtained with a 12.0 µm diameter carbon fiber microelectrode at a scan rate of 20 mV s⁻¹.

Raman Spectrum of TCNQF₄.

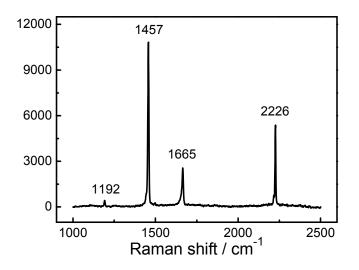


Figure S5. Raman spectrum for the neutral TCNQF₄ solid.

X-ray Crystallographic Data

Table S1. Bond distances (Å) and angles (°) of hydrogen bonds for relevant crystallographic interactions for $(Pr_4N)_2TCNQF_4$. The identity of each atom is shown in Figure 1a. D represents donor atom and A is the acceptor atom.

D-HA	d(D-H)	d(H–A)	d(D-A)	<(DHA)	Symmetry code
	(Å)	(Å)	(Å)	(°)	
C12-H12CF1	0.980	2.620	3.582	166.9	$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$
C15–H15CF1	0.980	2.629	3.584	164.9	2-x, 1-y, -z
C13-H13AN1	0.990	2.707	3.512	138.7	x, y-1, ½-z
C7–H7AN2	0.990	2.559	3.509	161.1	3/2-x, y- ¹ / ₂ , ¹ / ₂ -z
C12–H12AN2	0.980	2.744	3.652	154.4	x, y-1, z
C16–H16BN2	0.990	2.603	3.503	151	3/2-x, y- ¹ / ₂ , ¹ / ₂ -z

Table S2. Bond distances (Å) and angles (°) of hydrogen bonds for relevant crystallographic interactions for $Pr_4NTCNQF_4$. The identity of each atom is shown in Figure 1a. D represents donor atom and A is the acceptor atom.

D-HA	d(D–H)	d(H–A)	d(D-A)	<(DHA)	Symmetry code
	Å	Å	Å	0	
C22–H22AF1	0.990	2.609	3.589	170.5	x, y, z
C21–H21BF3	0.980	2.571	3.308	132.0	1-x, 1-y, -z
C19–H19AN2	0.990	2.574	3.497	160.8	2/3-x, ¹ / ₂ +y, ¹ / ₂ -z
C19-H22BN2	0.990	2.455	3.431	168.8	2/3-x, ¹ / ₂ +y, ¹ / ₂ -z
C15-H15CN3	0.980	2.724	3.611	174.5	1+x, y, z
C!8-H18BN4	0.980	2.731	3.629	152.3	x, y, z
C23–H23AN5	0.990	2.610	3.404	137.2	$\frac{1}{2}+x$, $\frac{3}{2}-y$, $\frac{1}{2}+z$

Crystal data for $(Pr_4N)_2TCNQF_4$ (CCDC: 831469): $C_{18}H_{28}F_2N_3$, M = 324.43, colorless block, 0.22 × 0.19 × 0.15 mm³, monoclinic, space group $P2_1/n$ (No. 14), a = 10.591(2), b = 11.791(2), c = 14.954(3) Å, $\beta = 103.94(3)^\circ$, V = 1812.5(6) Å³, Z = 4, $D_c = 1.189$ g/cm³, $F_{000} = 700$, MoK α radiation, $\lambda = 0.77343$ Å, T = 123(2)K, $2\theta_{max} = 50.0^\circ$, 11403 reflections collected, 2478 unique ($R_{int} = 0.0352$). Final GoF = 1.054, R1 = 0.0445, wR2 = 0.1078, R indices based on 2902 reflections with I > 2sigma(I) (refinement on F^2), 212 parameters, 0 restraints. Lp and absorption corrections applied, $\mu = 0.085$ mm⁻¹.

Crystal data for Pr₄NTCNQF₄ (CCDC: 831468): C₂₄H₂₈F₄N₅, M = 462.51, blue needle, 0.09 × 0.03 × 0.01 mm³, monoclinic, space group $P2_1/n$ (No. 14), a = 14.946(3), b = 7.1680(14), c = 22.136(4) Å, $\beta = 103.01(3)^\circ$, V = 2310.6(8) Å³, Z = 4, $D_c = 1.330$ g/cm³, $F_{000} = 972$, ADSC Quantum 210r Detector, Synchrotron radiation, $\lambda = 0.77343$ Å, T = 123(2)K, $2\theta_{max} = 50.0^\circ$, 14654 reflections collected, 3145 unique ($R_{int} = 0.0478$). Final GoF = 1.048, R1 = 0.0426, wR2 = 0.1087, R indices based on 3582 reflections with I > 2sigma(I) (refinement on F^2), 302 parameters, 0 restraints. Lp and absorption corrections applied, $\mu = 0.103$ mm⁻¹.

Reference

(S1) Le, T. H.; Nafady, A.; Qu, X.; Martin, L. L.; Bond, A. M. Anal. Chem. 2011, 83, 6731-6737.