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In the S.I. we first present the general Hamiltonian used in describing the electronic 

properties of a molecular dimer including vibronic coupling and charge transfer. The expressions 

for the absorption and PL spectral observables used in obtaining Figures 7, 9 and 10 are also 

included. 

 

Hamiltonian 

The Hamiltonian used to describe a dimer consisting of two coupled chromophores can be 

partitioned as1, 

FE CT CTVH H H H= + +      (S.1) 

where the Frenkel Hamiltonian including vibronic coupling is given by, 
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Here,
1SE  is the energy of the lowest optically excited state S1 in a given monomer.  |n>  is a pure 

electronic state in which the nth (n = 1,2) molecule is excited to the state S1, while the remaining 

molecule is unexcited (in state S0). The second term represents excitonic coupling with  equal 

to the intermolecular through-space Coulombic coupling. The last two terms represents the 

vibrational energy contribution including linear exciton-vibrational coupling. The operator 

creates (annihilates) a vibrational excitation on the nth molecule. Finally, the HR factor is 
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 Charge transfer is accounted for in the Hamiltonian,  
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 is the energy of the charge transfer exciton consisting of a nearest-neighbor displacement of 

charges. The ket 

CTE

, ( 1)n n+ + −   represents the state consisting of a hole on molecule n and an 

electron on molecule n+1. (n+1=1 when n=2) The coupling between a Frenkel exciton and the 

CT state formed by transferring an electron (hole) to a neighboring molecule is represented by 

the dissociation integral De (Dh).  

 Finally, the vibronic coupling with the CT states is governed by, 
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where (2 2λ )λ+ −  is the HR factor for the cation (anion). 

Spectral Observables 

 
For the numerical calculations of the spectral observables the Hamiltonian in Eq.(S.1) 

was expressed in a one- and two-particle basis set as described previously2 and then diagonalized 

numerically to yield all eigenstates and energies. For the absorption spectrum we use the 

expression,  
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where α (=1,2,…) indexes the eigenstates  with associated energies ( )| αψ > αω  in order of 

increasing energy. |G> is the vibrationless ground state and  is the transition dipole moment 

(tdm) operator, obtained by summing over the molecular tdm’s: 
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Here, µn is the molecular tdm of molecule n, |n> is defined after Eq.(S.1) and |g>=|g1g2> is the 

pure electronic aggregate ground state of the dimer. Finally, (LSW )αω ω−  is the lineshape 

function, taken here to be Gaussian. 

In calculating the reduced PL spectrum we use the expression,  
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Eq.(S.7) represents a vibronic progression with the 0-vt peak sourced by emission terminating on 

the ground electronic state with vt vibrational quanta distributed over the two  S0 nuclear 

potentials. As written, the expression assumes the low-temperature limit where emission takes 

place from just the lowest energy exciton (with α=1). To treat higher temperatures a Boltzmann 

distribution of emitting excitons is taken as described in greater detail in Ref. 3. In order to focus 

entirely on the impact of aggregation on the oscillator strengths we have also neglected in 

Eq.(18) the cubic frequency dependence found in the Einstein spontaneous emission expression, 

as well as any influence of a frequency-dependent index of refraction. Hence we refer to the PL 

spectrum in Eq.(18) as a reduced PL spectrum. 

 Eq.(S.7) contains the dimensionless emission line strength for the 0-vt transition given by,  
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where the prime on the summation indicates that the total number of vibrational quanta in the 

terminal state, , satisfies, 1 1 2 2| ,g v g v > 1 2tv v v= + .  
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