Supporting Information

A Bisferrocenylphenanthroline Iridium(III) Complex as a Lab-on-a-Molecule for Cyanide and Fluoride in Aqueous Solution

Qinghai Shu,[‡] Lars Birlenbach,^ζ Michael Schmittel^{*,‡}

[‡] Center for Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse, D-57068 Siegen, Germany, and ^{ζ} Physikalische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse, D-57068 Siegen, Germany

Email : <u>Schmittel@chemie.uni-siegen.de</u>

TABLE OF CONTENTS

Synthesis	p 2-3
NMR characterization of complex ${f 1}$ and ${f 4}$	p 4-5
Photophysical measurements and NMR study	p 6-12
References	p 12

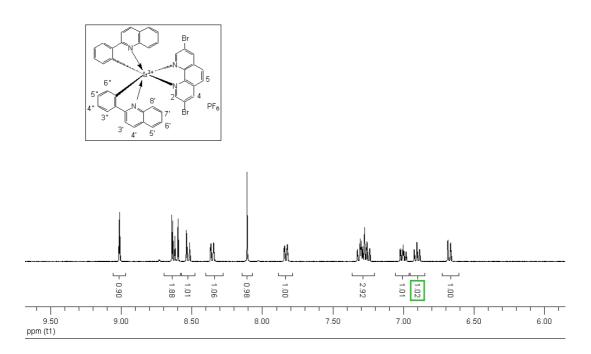
Abbreviations:

MeCN: Acetonitrile DCM: Dichloromethane DMFc: Decamethylferrocene

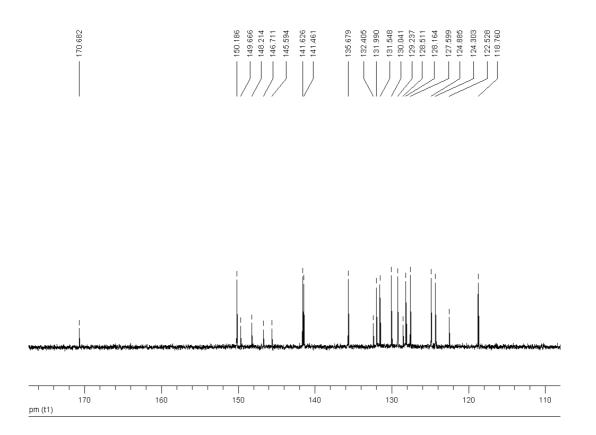
Synthesis of known precursors following literature procedures

3,8-Bis(2-(trimethylsilyl)ethynyl)-1,10-phenanthroline.¹

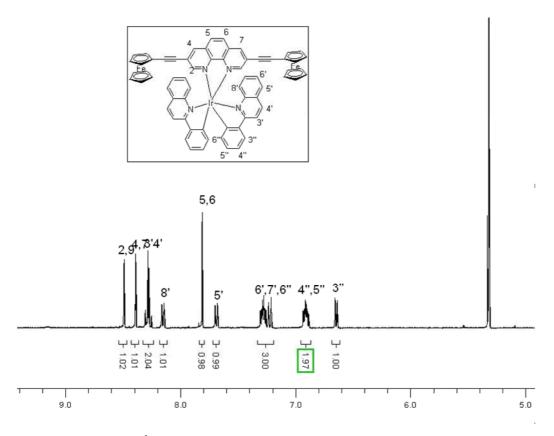
3,8-Dibromo-1,10-phenanthroline (1.59 g, 4.70 mmol), trimethylsilanyl-ethyne (3.72 g, 37.6 mmol), PdCl₂(PPh₃)₂ (165 mg, 0.24 mmol), CuI (137 mg, 0.470 mmol), DMF (40 mL) and dry triethylamine (10 mL) were placed in a Schlenk tube under an atmosphere of dry nitrogen. In a tightly closed tube the mixture was heated to reflux for three days. After removal of the solvent, the black residue was dissolved in dichloromethane (200 mL), washed with aqueous potassium cyanide (2%, 150 mL) and with water (150 mL). The organic layer was dried over MgSO₄ and then purified by column chromatography (SiO₂, 1. hexane, 2. 10% CH₂Cl₂ in hexane) to furnish the title compound as colorless solid. Yield: 1.49 g (4.00 mmol, 85%). ¹H NMR (400 MHz, CD₂Cl₂): δ = 0.31 (s, 18H, Si-H), 7.78 (s, 2H, 5-H, 6-H), 8.32 (d, *J* = 2.0 Hz, 2H, 4-H, 7-H), 9.12 (d, *J* = 2.0 Hz, 2H, 2-H, 9-H). ¹³C NMR (100 MHz, CD₂Cl₂): δ = -0.14, 100.0, 101.9, 119.9, 127.3, 128.5, 138.9, 145.0, 152.8. ESI-MS (C₂₂H₂₄N₂Si₂)⁺: Calcd.: *m/z* = 373.6, Found: *m/z* = 373.5.

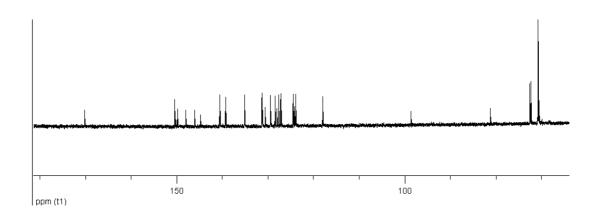

*3,8-Diethynyl-1,10-phenanthroline.*¹ 3,8-Bis(2-trimethyl-silylethynyl)-1,10-phenanthroline (1.49 g, 4.00 mmol) was dissolved in a mixture of methanol (20 mL) and THF (20 mL) in a 100 mL round-bottomed flask, and KOH (1 N, 20 mL) was added slowly. After stirring for 14 h at room temperature, the solution was filtered and the precipitate was washed with water and diethylether to furnish a white solid as product. Yield: 0.82 g (3.60 mmol, 90%) of a white solid. ¹H NMR (400 MHz, CD₂Cl₂): δ = 3.31 (s, 2H, ethynyl-H), 7.91 (s, 2H, 5-H, 6-H), 8.52 (d, *J* = 2.0 Hz, 2H, 4-H, 7-H), 9.06 (d, *J* = 2.0 Hz, 2H, 2-H, 9-H). ¹³C NMR (100 MHz, CD₂Cl₂): δ = 84.1, 111.1, 120.7, 128.3, 129.7, 140.7, 145.1, 153.2. ESI-MS (C₁₆H₉N₂)⁺: Calcd.: *m/z* = 230.3, Found: *m/z* = 231.2.

Iodoferrocene.² To a solution of ferroceneboronic acid (1.15 g, 5.00 mmol) in dry acetonitrile (75 mL) was added *N*-iodosuccinimide (1.35 g, 6.00 mmol). After stirring for 20 h at room temperature, the mixture was extracted with hexane (3×100 mL). The combined extract was washed with aqueous Na₂S₂O₅ (3×30 mL) and water (2×50 mL)

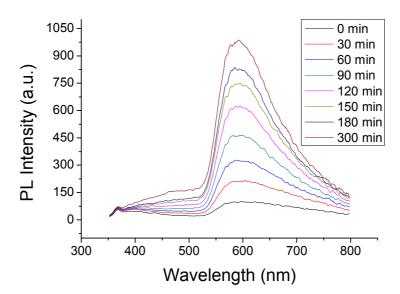

and finally dried over MgSO₄. Concentration *in vacuo* furnished an orange-brown oil that was purified by flash-chromatography on silica gel 60 (0.040-0.063 mm) with hexane to afford pure iodoferrocene (0.97 g, 62% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.40$ (m, 2 H), 4.18 (s, 5 H) and 4.14 (m, 2 H). ESI-MS (C₁₀H₉FeI)⁺: Calcd.: m/z = 311.9, Found: m/z = 311.9.

 $Bis(2-phenylquinoline-C^2; N^1)(3, 8-dibromo-1, 10-phenanthroline)$ iridium hexafluorophosphate 3 (4). [Ir(pq)₂Cl]₂ 4 (60.2 mg, 47.2 µmol) and 3,8-dibromophenanthroline⁵ (40.1 mg, 120 µmol) were dissolved in DCM (10 mL) and the solution was refluxed for 6 h. NH₄PF₆ (100 mg, excess) was added and the resulting solution was stirred for 1 h. The precipitate was filtered off and washed with excess of DCM. The filtrate was purified by chromatography on a silica column using DCM and methanol for elution. The solvent was removed on a rotary evaporator to yield an orange-red powder (yield: 82%). ¹H NMR (400 MHz, acetone-d₆): $\delta = 6.69$ $(dd, J_1 = 1.0, J_2 = 7.5 \text{ Hz}, 1\text{H}, 3"-\text{H}), 6.92 (ddd, J_1 = 1.3, J_2 = 7.0 \text{ Hz}, J_3 = 7.5 \text{ Hz}, 1\text{H},$ 4"-H), 7.01 (ddd, $J_1 = 1.0$, $J_2 = 7.0$, $J_3 = 8.8$ Hz, 1H, 5"-H), 7.30 (m, 3H, 6"-, 6'-, 7'-H), 7.84 (dd, $J_1 = 1.0$, $J_2 = 8.0$ Hz, 1H, 5'-H), 8.12 (s, 1H, 5-H), 8.37 (dd, $J_1 = 1.0$, J_2 = 8.0 Hz, 1H, 8'-H), 8.54 (d, J = 8.8 Hz, 1H, 3'-H), 8.62 (d, J = 8.8 Hz, 1H, 4'-H), 8.65 (d, J = 2.0 Hz, 1H, 2-H), 9.02 (d, J = 2.0 Hz, 1H, 4-H). ¹³C NMR (100 MHz, acetone-d₆): $\delta = 118.8, 122.5, 124.3, 124.9, 127.6, 128.2, 128.5, 129.2, 130.0, 131.5,$ 132.0, 132.4, 135.7, 141.5, 141.6, 145.6, 146.7, 148.2 149.7, 150.2, 170.7. Elemental analysis: (C₄₂H₂₆Br₂F₆IrN₄P), Calcd.: C, 46.55; H, 2.42; N, 5.17, Found: C, 46.47; H, 2.15; N, 5.30. ESI-MS $(C_{42}H_{26}Br_2IrN_4)^+$: Calcd.: m/z = 939.0, Found: m/z = 939.2.

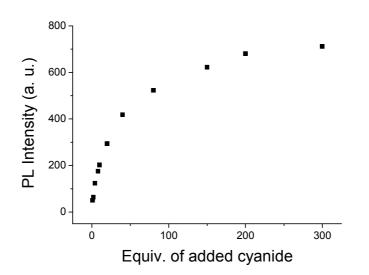

NMR


¹H NMR spectrum of 4 in (CD₃)₂CO.

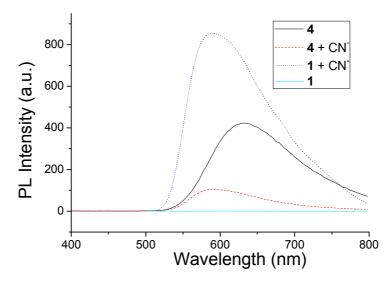
 13 C NMR spectrum of 4 in (CD₃)₂CO.

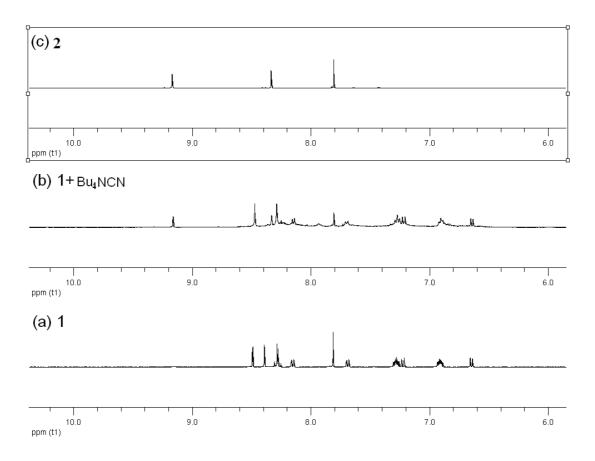


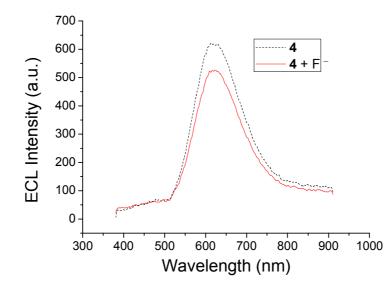
Aromatic region of ¹H NMR spectrum of 1 in CD₂Cl₂.

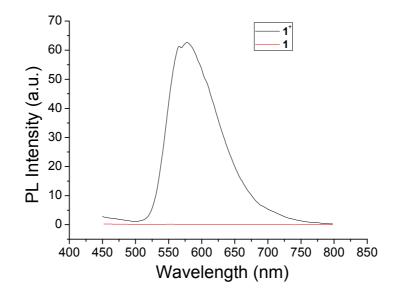


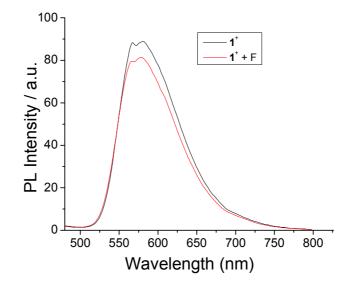
¹³C NMR spectrum of **1** in CD₂Cl_{2.}

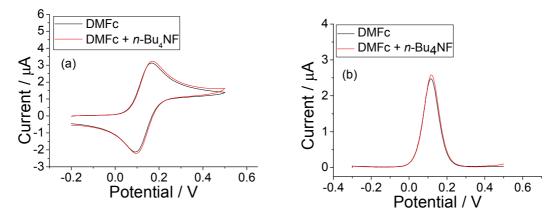

Photophysical measurements and NMR study

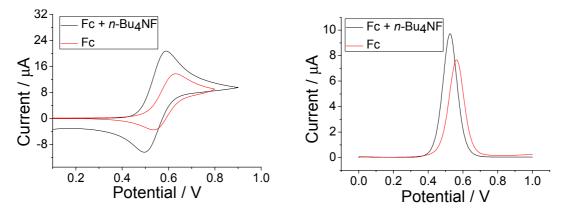

Figure S1. PL spectra of **1** (10 μ M) in the presence of 200 equiv CN⁻ as function of time in 0.1 M Tris-ClO₄ buffer solution (MeCN / buffer = 90 / 10, v / v, pH 7.24), λ_{exc} = 330 nm.

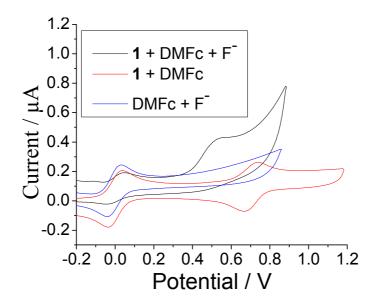

Figure S2. PL titration of **1** (10 μ M) with CN⁻ in 0.1 M Tris-ClO₄ buffer solution (MeCN / buffer = 90 / 10, v / v, pH 7.24) at λ_{em} = 580 nm (λ_{exc} = 330 nm, all samples were measured after 180±1 min of reaction).


Figure S3. PL spectra of 1 (10 μ M), 1 (10 μ M) + CN⁻ and 4 (conc. unknown), 4 (conc. unknown) + CN⁻ in MeCN for comparison ($\lambda_{exc} = 330$ nm, all samples were measured after 180±1 min reaction).


Figure S4. ¹H NMR spectra of (a) **1**, (b) **1** + Bu₄NCN and (c) **2** in CD₂Cl₂ **3** is not visible in spectrum (b) as it is highly insoluble at NMR concentrations.


Figure S5. ECL spectra of 4 (10 μ M) in the presence of 200 equiv. of *n*-Bu₄NF•3H₂O in 0.1 M *n*-Bu₄NPF₆ Tris-ClO₄ buffer (MeCN / water = 90 / 10, v / v, pH 7.24) using the sweep range of 0.5-1.8 V at a scan rate $v = 100 \text{ mV s}^1$, 50 mM TPrA as co-reactant. Samples were measured within 2 min after mixing.


Figure S6. PL spectra of **1** and of **1**⁺ in MeCN ($\lambda_{exc} = 430$ nm). **1**⁺ was obtained from electrolysis of **1** (working electrode: Pt wire; reference electrode: silver wire; working potential = 0.8 V *vs.* silver wire), keep stirring during electrolysis for 2 h.


Figure S7. PL response of 1^+ in the absence and presence of *n*-Bu₄NF•3H₂O (5 min after mixing) in MeCN after ($\lambda_{exc} = 330$ nm).

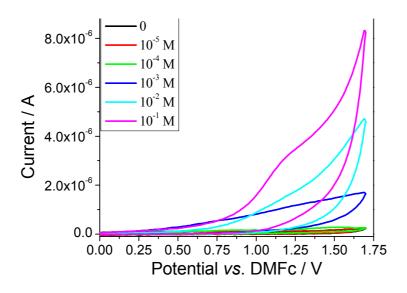

Figure S8. (a) CV and (b) DPV responses of DMFc (decamethylferrocene) upon addition of n-Bu₄NF•3H₂O in MeCN, Pt working electrode (2 mm in diameter) and Ag wire as reference electrode, scan rate: 100 mV s⁻¹. This measurement establishes that DMFc may be used as internal reference probe even in presence of fluoride.

Figure S9. CV (left) and DPV (right) responses of ferrocene upon addition of n-Bu₄NF•3H₂O in MeCN, Pt as working electrode (2 mm in diameter) and Ag wire as reference electrode, scan rate: 100 mV s⁻¹. The Ag wire is a reliable reference electrode even in presence of fluoride, see Figure S8.

Figure S10. CV of **1** in the presence of 200 equiv. of n-Bu₄NF•3H₂O in MeCN vs. DMFc at a scan rate 100 mV s⁻¹.

Figure S11. CV of various concentrations of *n*-Bu₄NF•3H₂O in MeCN containing Bu₄NPF₆ (0.1 M) as electrolyte at a scan rate 100 mV s⁻¹ (silver wire is used as the only internal reference, while after all measurements a calibration against DMFc was done).

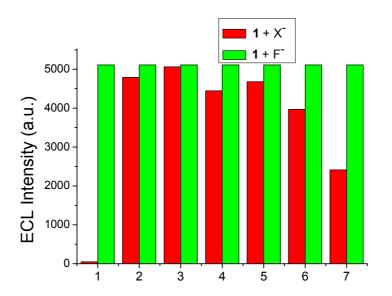
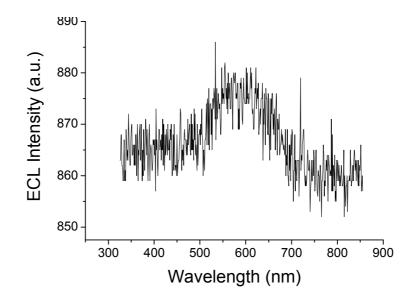



Figure S12. ECL intensity of 1 (10 μ M) at $\lambda_{em} = 605$ nm in the presence of 200 equiv of F⁻ (green bars) and 200 equiv of X⁻ each (red bars) [X⁻ = None (1), Cl⁻ + F⁻(2), AcO⁻ + F⁻(3), Br⁻ + F⁻(4), ClO₄⁻ + F⁻(5), CN⁻ + F⁻(6), I⁻ + F⁻(7)] in MeCN / aq. buffer (0.1 M Tris-ClO₄, pH 7.24) = 90 : 10 (v/v), using 0.1 M *n*-Bu₄NPF₆ as electro-

lyte and 50 mM TPrA as co-reactant. The sweep range was 0.5 - 1.8 V, scan rate v = 100 mV s⁻¹, all samples were measured within 2 minutes after mixing.

Figure S13. ECL intensity of **3** (10 μ M) in MeCN / aq. buffer (0.1 M Tris-ClO₄, pH 7.24) = 90 : 10 (v/v), using 0.1 M *n*-Bu₄NPF₆ as electrolyte and 30 mM TPrA as co-reactant. The sweep range was 0.5 - 1.8 V, scan rate v = 100 mV s⁻¹.

References

⁽¹⁾ Schmittel, M.; Michel, C.; Wiegrefe, A. Synthesis 2005, 367 - 373.

⁽²⁾ Kamounah, F. S.; Christensen, J. B. J. Chem. Res. (S) 1997, 150.

⁽³⁾ Lamansky, S.; Djurovich P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. *Inorg. Chem.* **2001**, *40*, 1704-1711.

⁽⁴⁾ Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647.

⁽⁵⁾ Schmittel, M.; Michel, C.; Wiegrefe, A.; Kalsani, V. Synthesis 2001, 1561-1567.