# The Reduced and Oxidized Forms of the Pt-Organometallic Version of Polyaniline.

Tommy Kenny, Simon Lamare, Shawkat M. Aly, Daniel Fortin, Gessie Brisard, and Pierre D. Harvey

## Supporting Information

### Table of contents

| Experimental section                                                                                                                               |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Materials                                                                                                                                          | <b>S</b> 2  |
| Synthesis                                                                                                                                          | <b>S</b> 2  |
| Instruments                                                                                                                                        | S15         |
| Computations                                                                                                                                       | S15         |
| Electrochemistry                                                                                                                                   | S16         |
| Crystallography                                                                                                                                    | <b>S</b> 16 |
| Tables of crystal data                                                                                                                             | <b>S</b> 17 |
| Figures of absorption spectra at 298 and 77 K                                                                                                      | S36         |
| Figures of frontier MO representations, tables of calculated transitions<br>and figures of calculated spectra.                                     | S38         |
| Figures of CV traces of the compounds and polymers<br>in the presence and absence of acid                                                          | S64         |
| Figures showing the comparison of the transient decay curves of <b>4a</b> , <b>4b</b> , <b>5b</b> , <b>8b</b> , <b>10b</b> and <b>11b</b> at 298 K | <b>S</b> 81 |
| References                                                                                                                                         | S82         |

#### **Experimental Section.**

*Materials*. All starting materials were obtained from Aldrich and were used as received. All solvents, unless otherwise stated, were obtained from Fisher and dried prior use. Compound **5b** was prepared as previously reported.<sup>S1</sup>

#### Synthesis.

**N,N'-bis**(*para*-iodophenyl)benzoquinone diimine (2a) 4-iodoaniline (1.75 g, 8.0 mmol) and 2.69 g (24.0 mmol) of DABCO (1,4-diazabicyclo[2.2.2]octane) were dissolved in 25 mL of chlorobenzene while heating to 90°C. Titanium tetrachloride (0.88 mL, 8.0 mmol) was added dropwise followed by the addition of benzoquinone (0.43 g, 4.0 mmol). Quantitative transfer of benzoquinone was achieved by rinsing with 20 mL of chlorobenzene. The solution was stirred at 120°C for 12 hours. The precipitate was isolated by filtration and washed with hot chlorobenzene (2 x 20 mL). The solution was evaporated. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated to dryness. The product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub> as the solvent to give compound **2a**. Yield: 0.71 g (35%); <sup>1</sup>H NMR ( $\delta$  300 MHz, CDCl<sub>3</sub>): 7.70 (4 H, dd appearing as a pseudo triplet, *J*=8.5), 7.09-6.62 (8 H, m); m/z (EI): 510 (M<sup>+</sup>).

**N,N'-bis**(*para*-Iodophenyl)tetrafluorobenzoquinone diimine (2b) 4-iodoaniline (4.87 g, 22.2 mmol) and 3.73 g (33.3 mmol) of DABCO were dissolved in (25 mL) of chlorobenzene while heating to 60°C. Titanium tetrachloride (2.41 mL, 22.2 mmol) was added dropwise, followed by the addition of p-fluoranil (2.00 g, 11.1 mmol). Quantitative transfer of benzoquinone was achieved by rinsing with 20 mL of chlorobenzene. The solution was stirred at 60°C for 5 hours. The product was isolated by filtration, washed with hot chlorobenzene (2 x 40 mL). The solution was evaporated. The filtrate was dissolved in CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CHCl<sub>3</sub> as the eluent to give compound **2b**. Yield: 2.45 g (38%). IR (KBr)/cm<sup>-1</sup> v : 1630 (C=N). <sup>1</sup>H NMR δ(400 MHz CDCl<sub>3</sub>): 7.68 (4 H, m, C-H aro), 6.67 (4 H, m, CH aro.), ppm;  $\lambda_{max}$ (2-MeTHF)/nm 260 nm (ε/dm<sup>3</sup>.mol<sup>-1</sup>.cm<sup>-1</sup> 27992), 295 (48860), 515 (13694)); m/z (EI): 582 (M<sup>+</sup>).

**N,N'-bis**(*para*-iodophenyl)tetrachlorobenzoquinone diimine (2c) 4-iodoaniline (1.75 g, 8.0 mmol) and 2.69 g (24.0 mmol) of DABCO were dissolved in 50 mL of chlorobenzene while heating to 90°C. Titanium tetrachloride (0.88 mL, 8.0 mmol) was added dropwise, followed by the addition of tetrachlorobenzoquinone (0.98 g, 4.0 mmol). Quantitative transfer of benzoquinone was achieved by rinsing with 20 mL of chlorobenzene. The solution was stirred at 60°C for 10 hours. The precipitate was isolated by filtration and washed with hot chlorobenzene (2 x 20 mL). The solution was evaporated. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, 2.0 g (8.0 mmol) 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was added while stirring for 30 min. The solution was washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The crude product was purified on a silica column with 7:3 hexane/CHCl<sub>3</sub> as the solvent to give compound **2c**. Yield: 1.43 (55.2 %) <sup>1</sup>H NMR ( $\delta$  400MHz CDCl<sub>3</sub>): 7.61 (4H, m, CH aro), 6.56 (4H, m, CH aro); m/z (EI): 648 (M<sup>+</sup>).

**N,N'-bis**(*para*-bromophenyl)benzoquinone diimine (2'a) 4-bromoaniline (1.38 g, 8.0 mmol) and 2.69 g (24.0 mmol) of DABCO were dissolved in 25 mL of chlorobenzene while heating to 90°C. Titanium tetrachloride (0.88 mL, 8.0 mmol) was added dropwise, followed by the addition of benzoquinone (0.43 g, 4.0 mmol). Quantitative transfer of benzoquinone was achieved by rinsing with 20 mL of chlorobenzene. The solution was stirred at 120°C for 12 hours. The precipitate was isolated by filtration and washed with hot chlorobenzene (2 x 20 mL). The solution was evaporated. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The crude product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub> as the solvent to give dibromide compound **2'a**. Yield: 1.33 (40%) IR (KBr)/cm<sup>-1</sup> v : 1583 (C=N); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.50(4 H, m), 6.92 (4 H, m), 6.76 (4 H, m); m/z (EI): 416 (M<sup>+</sup>).

**N,N'-bis**(*para*-bromophenyl)tetrachlorobenzoquinone diimine (2'c) 4-bromoaniline (1.38 g, 8.0 mmol) and 2.69 g (24.0 mmol) of DABCO were dissolved in 25 mL of chlorobenzene while heating at 90°C. Titanium tetrachloride (0.88 mL, 8.0 mmol) was added dropwise, followed by the addition of tetrachlorobenzoquinone (0.98 g, 4.0 mmol). Quantitative transfer of benzoquinone was achieved by rinsing with 20 mL of chlorobenzene. The solution was stirred at  $60^{\circ}$ C for 10 hours. The precipitate was

isolated by filtration and washed with hot chlorobenzene (2 x 20 mL). The solution was evaporated. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, 2.0 g (8 mmol) of DDQ was added with stirring for 10 min. The solution was washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The crude product was purified on a silica column with CHCl<sub>3</sub> as eluent to give compound **2'c**. Yield: 1.11 g (50.3 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.51 (4H, m, CH aro), 6.69 (4 H, m, CH aro); m/z (EI): 554 (M<sup>+</sup>).

**N,N'-bis**(*para*-iodophenyl)benzoquinone diamine (3a) 0.38 g (0.75 mmol) of 2a was dissolved in 20 ml CH<sub>2</sub>Cl<sub>2</sub>. 0.143 g (3.75 mmol) sodium borohydride was dissolved in 20 ml anhydrous ethanol and added to the CH<sub>2</sub>Cl<sub>2</sub> solution. The solution was stirred for 60 min, the solvent was evaporated. The product was dissolved in CHCl<sub>3</sub> and washed with water (3 x 30 ml) and dried over anhydrous MgSO<sub>4</sub>. The solution was evaporated and the solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (30:70) as the solvent. Product **3a** was recovered as a light orange powder. Yield: 0.36 g (95%). IR (KBr)/cm<sup>-1</sup> v: 3402 (H-N); <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): 7.46 (4 H, m), 7.03 (4 H, s), 6.74 (4 H, m), 5.58 (2 H, s).

**N,N'-bis**(*para*-iodophenyl)tetrafluorobenzoquinone diamine (3b) 3b was formed *in situ* in the reaction forming 2b and was separated by alumina column chromatography using CHCl<sub>3</sub> as the eluent leading to the white product 3b (0.77 g, 12%); IR (KBr)/cm<sup>-1</sup> v : 3416 (N-H). <sup>1</sup>H NMR (CDCl<sub>3</sub>) 7.55 (d, *J*=8.8 Hz, 4H, C-H aro), 6.61 (d, *J*=8.6 Hz, 4H, C-H aro), 5.46 (s, 2H, N-H); m/z (EI): 584 (M<sup>+</sup>).

N,N'-bis(*para*-iodophenyl)tetrachlorobenzoquinone diamine (3c) 0.39 g (0.60 mmol) of 2c was dissolved in 20 ml CH<sub>2</sub>Cl<sub>2</sub>. 0.095g sodium borohydride was dissolved in 20 ml anhydrous ethanol and added to the CH<sub>2</sub>Cl<sub>2</sub> solution. The solution was stirred for 60 min, the solvent was evaporated, the product dissolved in chloroform and washed with water (3 x 30 ml) and dried over anhydrous MgSO<sub>4</sub>. The solution was evaporated and the crude solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (50:50) as the solvent. Product 3c was recovered as a light grey powder. Yield: 0.36 g (94 %). IR (KBr)/cm<sup>-1</sup> v: 1620 (H-N). <sup>1</sup>H NMR δ(400 MHz CDCl<sub>3</sub>): 5.85 (2 H, s, N-H), 6.59 (4 H, m, CH aro.), 7.36 (4 H, m, CH aro); m/z (EI): 650 (M<sup>+</sup>).

N,N'-bis(para-bromophenyl)benzoquinone diamine (3'a). Two methods were used. a) 1.0 g (2.4 mmol) of **2'a** was dissolved in 100 ml CH<sub>2</sub>Cl<sub>2</sub>. 10 ml of water was added to the solution. 1.5 ml (30%) NH<sub>3</sub> was added dropwise and the solution was allowed to stir for 30 min. The product was extracted with  $CH_2Cl_2$  and washed with water (3 x 75 ml) and dried over anhydrous MgSO<sub>4</sub>. The solution was evaporated and the solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (30:70) as the solvent. Product 3'a was recovered as a light orange powder. Yield: 0.82 g (82%). b) 0.235 g (0.57 mmol) of 2'a was dissolved in 20 ml CH<sub>2</sub>Cl<sub>2</sub>. 0.095g sodium borohydride was dissolved in 20 ml anhydrous ethanol and added to the CH<sub>2</sub>Cl<sub>2</sub> solution. The solution was stirred for 60 min, the solvent was evaporated, the product was dissolved in CHCl<sub>3</sub> and washed with water (3 x 30 ml) and dried over anhydrous MgSO<sub>4</sub>. The solution was evaporated and the solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (30:70) as the solvent. Product 3'a was recovered as a light orange powder. Yield: 0.22 g (94%) IR (KBr)/cm<sup>-1</sup> v: 3402 (H-N), 1587 (C=N); <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): 7.30 (4 H, m), 7.05 (4 H, m), 6.86 (4 H, m), 5.71 (2 H, s);  $\lambda_{max}$  (2-MeTHF)/nm 243 ( $\epsilon$ /dm<sup>3</sup>.mol<sup>-1</sup>.cm<sup>-1</sup> 13000), 313 (27000); m/z (EI): 418 (M<sup>+</sup>).

N,N'-bis(*para*-bromophenyl)tetrachlorobenzoquinone diamine (3'c) 0.33 g (0.60 mmol) of 2'c was dissolved in 20 ml CH<sub>2</sub>Cl<sub>2</sub>. 0.095g sodium borohydride was dissolved in 20 ml anhydrous ethanol and added to the CH<sub>2</sub>Cl<sub>2</sub> solution. The solution was stirred for 60 min, the solvent was evaporated, the product dissolved in CHCl<sub>3</sub> and washed with water (3 x 30 ml) and dried over anhydrous MgSO<sub>4</sub>. The solution was evaporated and the solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (50:50) as eluent. Product **3'c** was recovered as a light grey powder. Yield: 0.32 g (96 %).<sup>1</sup>H NMR δ(400 MHz CDCl<sub>3</sub>): 5.85 (2 H, s, N-H), 6.59 (4 H, m, CH aro.), 7.36 (4 H, m, CH aro); m/z (EI): 556 (M<sup>+</sup>).

**N,N'-bis**(*para*-trimethylsilylethynylphenyl)benzoquinone diamine (4a) 0.42 (1.0 mmol) of N,N'-bis(*para*-bromophenyl)benzoquinone diimine, **2a**, was dissolved in 40 ml toluene, 0.052 g (0.2 mmol) PPh<sub>3</sub>, 0.070 g (0.1 mmol) PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and 0.19 g (0.1 mmol) CuI were added and stirred under Ar for 30 min. 15 ml of diisopropylamine was added. Using a syringe, ethynyltrimethylsilane (0.55 ml, 4 mmol) was added dropwise.

The solution was heated at 60°C for 12 hours. The solvent was evaporated and the product was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, washed with water (3 x 30 ml) and dried over anhydrous MgSO<sub>4</sub>. The crude solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (30:70) as eluent. The product was isolated as a light orange powder. Yield: 0.37 g (82%). IR (KBr)/cm<sup>-1</sup> v : 3410 (H-N), 2139 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.34 (4 H, d, *J*=8.6 Hz CH aro), 7.07 (4 H, s, CH aro), 6.86 (4 H, d, *J*=8.6 Hz CH aro), 5.70 (2 H, s, N-H), 0.24 (18 H, s, Si(CH<sub>3</sub>)<sub>3</sub>); m/z (EI): 452 (M<sup>+</sup>).

**N,N'-bis**(*para*-ethynyltrimethylsilylphenyl)tetrafluorobenzoquinone diamine (4b) Compound 2b (0.50 g, 0.86 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (5% eq., 0.0215 mmol), PPh<sub>3</sub> (10% eq., 0.043 mmol) CuI (10% eq., 0,043 mmol) were dissolved in 60 mL of toluene and 30 mL of diisopropylamine while bubbling with Ar and heating at 60°C. Trimethylsilylacetylene (0.356 mL, 2.60 mmol) was added using a syringe. The resulting mixture was stirred at 60°C overnight. The solution was evaporated to dryness. The solid was dissolved in CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CHCl<sub>3</sub> was evaporated. The crude product was purified on an alumina column with CHCl<sub>3</sub>/Hexanes (1/1) as eluent to give a white product, compound 4b. Yield: (0.351 g, 78%). Found: C, 64.09; H, 5.24; N, 5.31 C<sub>28</sub>H<sub>28</sub>F<sub>4</sub>N<sub>2</sub>Si<sub>2</sub> requires C, 64.09; H, 5.38; N, 5.34; IR (KBr)/cm<sup>-1</sup> v : 3414 (N-H), 2151 (C≡C). <sup>1</sup>H NMR δ(400 MHz CDCl<sub>3</sub>): 7.38 (4 H, d, J= 8.6Hz, CH aro), 6.73 (4 H, d, J= 8.6Hz, CH aro.), 5.55 (2 H, s, N-H), 0.24 (18 H, s, Si(CH<sub>3</sub>)<sub>3</sub>), ppm; <sup>13</sup>C{<sup>1</sup>H} NMR δ(75 MHz CDCl<sub>3</sub>): δ 143.4, 142.6, 140.3, 133.1, 115.7, 115.5, 105.1, 92.8, 0.0;  $\lambda_{max}$ (2-MeTHF)/nm 323 nm (ε/dm<sup>3</sup>.mol<sup>-1</sup>.cm<sup>-1</sup> 61889); m/z (EI): 524 (M<sup>+</sup>).

**N,N'-bis**(*para*-trimethylsilylethynylphenyl)tetrachlorobenzoquinone diamine (4c) 0.56 g (1.0 mmol) of 2c', was dissolved in 40 ml toluene. 15 ml of 0.052 g (0.20 mmol) of PPh<sub>3</sub>, 0.070 g (0.1 mmol) of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and 0.19 g (0.1 mmol) CuI was added and stirred under Ar for 30 min. 15 ml of diisopropylamine was added. Using a syringe, ethynyltrimethylsilane (0.55 ml, 4 mmol) was added dropwise. The solution was heated at 60°C for 12 hours. The solvent was evaporated and the product was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, washed with water (3 x 30 ml) and dried over anhydrous MgSO<sub>4</sub>. The crude solid was purified using silica chromatography with CH<sub>2</sub>Cl<sub>2</sub>/Hexane (30:70) as eluent.

The product was isolated as a white powder. Yield: 0.42 g (72%). IR (KBr)/cm<sup>-1</sup> v : 2153 (C=C), 3390 (H-N); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.37 (4 H, d, J = 8.7 CH aro.); 6.61 (4 H, d, J = 8.7 CH aro.); 5.93 (2 H, s, N-H), 0.23 (18H, s, Si(CH<sub>3</sub>)<sub>3</sub>); m/z (EI): 590 (M<sup>+</sup>).

N,N'-bis(para-trimethylsilylethynylphenyl)benzoquinone diimine (5a). Two methods were used. a) Thirty milliliters of chlorobenzene was placed in a three-necked round bottomed flask. A 0.757 g quantity (4.0 mmol) of 4-[(trimethylsilyl)ethynyl]aniline, 1.35 g (12.0 mmol) of DABCO, and 0.44 ml (4.0 mmol) of TiCl<sub>4</sub> were added to the flask using a syringe. A 0.216 g quantity (2.0 mmol) of 1,4-benzoquinone was dissolved in a minimum amount of chlorobenzene and added dropwise to the solution and was stirred at  $60^{\circ}$ C for 4 h. The mixture was filtered while hot, and washed with hot chlorobenzene (2 x 20 ml). The solution was evaporated. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, 0.90 g (4.0 mmol) 2,3-dichloro-5,6-dicyanobenzoquinone was added and stirred for 10 min. The resulting solution was washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The crude product was purified on a silica column with  $CH_2Cl_2$ /hexane (70:30) as eluent to give the compound **5a**. Yield: 0.26g (28.9%). b) 0.20 g (0.4 mmol) 4a was dissolved in 30 ml CH<sub>2</sub>Cl<sub>2</sub>. 0.90 g (4.0 mmol) 2,3-dichloro-5,6dicyanobenzoquinone was added and stirred for 10 min. The resulting solution was washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub>/hexane (70:30) as the solvent to give compound **5a**. Yield: 0.19 g (96 %). IR (KBr)/cm<sup>-1</sup> v : 2155 (C=C), 1581 (N=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.49 (4 H, m), 7.10 (1 H, m), 6.97 (1 H, m), 6.84 (5 H, m), 6.70 (1 H, m), 0.28 (18 H, m); m/z (EI): 450 (M<sup>+</sup>).

**N,N'-bis**(*para*-trimethylsilylethynylphenyl)tetrachloro-1,4-benzoquinone diimine (5c). Two methods were used. a) Thirty milliliters of chlorobenzene was placed in a three-necked round bottomed flask. A 0.757 g quantity (4.0 mmol) of 4-[(trimethylsilyl)-ethynyl]aniline, 1.35 g (12.0 mmol) of DABCO, and 0.44 ml (4.0 mmol) of TiCl<sub>4</sub> were added to the flask using a syringe. A 0.492 g quantity (2.0 mmol) of tetrachloro-1,4-benzoquinone was dissolved in a minimum amount of chlorobenzene and added dropwise to the solution. The solution was stirred at  $60^{\circ}$ C for 4 hours. The mixture was filtered while hot, and washed with hot chlorobenzene (2 x 20 ml). The solution was evaporated.

The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, 0.90 g (4.0 mmol) 2,3-dichloro-5,6-dicyano-benzoquinone was added and stirred for 10 min. The resulting solution was washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub>/hexane (50:50) as eluent to give compound **5c**. Yield: 0.80g (68.0%). **b**) 0.20 g (0.34 mmol) **4c** was dissolved in 30 ml CH<sub>2</sub>Cl<sub>2</sub>. 0.90 g (4.0 mmol), DDQ was added and stirred for 10 min. The resulting solution was washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated. The product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub>/hexane (50:50) as eluent to give compound **5c**. Yield: 0.19 g (94 %). IR (KBr)/cm<sup>-1</sup> v : 2157(C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.49 (4 H, d, *J*=8.5 Hz), 6.74 (4 H, d, *J*=8.5 Hz), 0.26 (18 H, s); m/z (EI): 588 (M<sup>+</sup>).

**N,N'-bis**(*para*-ethynylphenyl)phenylene diamine (6a). 0.222 g (0.50 mmol) of 4a was placed in a 250 mL round-bottomed flask, and 1.4 g (10 mmol) of K<sub>2</sub>CO<sub>3</sub> was added to the flask and 100 mL of CH<sub>3</sub>OH. The reaction was stirred under Ar for 6 hours. The excess K<sub>2</sub>CO<sub>3</sub> was filtered, and the remaining solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The CH<sub>2</sub>Cl<sub>2</sub> solution was dried with K<sub>2</sub>CO<sub>3</sub> and filtered through a sintered glass funnel. The product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub>/Hexanes (50:50) as eluent to give **6a** recovered as a white powder. Yield: 0.14g (90%) IR (KBr)/cm<sup>-1</sup> v : 3390 (H-N), 3280 (CC-H); 2093 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.34 (4 H, d, *J*=8.7 Hz, CH-aro), 7.11 (4 H, s, CH-bz), 6.90 (4 H, d, *J*=8.6 Hz, CH-aro), 5.89 (2H, s, NH) 3.04 (2 H, s); m/z (EI): 308 (M<sup>+</sup>).

N,N'-bis(*para*-ethynylphenyl)tetrafluorobenzoquinone diamine (6b). Compound 4b (0.20 g, 0.38 mmol) was dissolved in 60 mL of THF and 20 mL of NaOH 0.1M in water (2 mmol) and stirred overnight at room temperature. The THF was evaporated, the white solid was dissolved in CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CHCl<sub>3</sub> was evaporated to give compound **6b** as a white solid. Yield: (0.139 g, 96%). IR (KBr)/cm<sup>-1</sup> v: 3402 (N-H), 3276 (C=C-H), 2099 (C=C). <sup>1</sup>H NMR  $\delta$ (300 MHz CDCl<sub>3</sub>): 7.42 (4 H, d, J= 8.6Hz, CH aro), 6.76 (4 H, d, J= 8.4Hz, CH aro.), 5.57 (2 H, s, N-H), 3.02 (2 H, s, C=C-H); m/z (EI): 380 (M<sup>+</sup>).

N,N'-bis(*para*-ethynylphenyl)tetrachlorophenylene diamine (6c). 0.3 g (0.5 mmol) of compound 4c was placed in a 250 mL round-bottomed flask, and 1.4 g (10 mmol) of K<sub>2</sub>CO<sub>3</sub> was added with 100 mL of CH<sub>3</sub>OH. The reaction was stirred under Ar for 6 hours. The excess K<sub>2</sub>CO<sub>3</sub> was filtered, and the solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The CH<sub>2</sub>Cl<sub>2</sub> solution was dried with K<sub>2</sub>CO<sub>3</sub> and filtered through a sintered glass funnel. The product was purified on a silica column with CH<sub>2</sub>Cl<sub>2</sub>/hexanes (50:50) as eluent to give **6c** as a white powder. Yield: 0.2 g (88%) IR (KBr)/cm<sup>-1</sup> v: 3410 (H-N), 2139 (C=C); <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>): 7.39 (4 H, m, CH-aro), 6.63 (4 H, m, CH-aro), 5.89 (2H, m, NH) 3.02 (2 H, s); m/z (EI): 446 (M<sup>+</sup>).

**N,N'-bis**(*para*-ethynylphenyl)benzoquinone diimine (7a). 0.222 g (0.5 mmol) of *N,N'*bis(*para*-(trimethylsilyl)ethynylbenzene)-1,4-benzoquinone diimine (5a) was placed in a 50 mL CH<sub>2</sub>Cl<sub>2</sub> in a 100 mL round-bottomed flask. 0.4 g (1.5 mmol) of TBAF, tetrabutylammonium fluoride, was added to the flask and the reaction was stirred under Ar for 4 hours. The solution was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The CH<sub>2</sub>Cl<sub>2</sub> solution was dried with MgSO<sub>4</sub> and filtered through a sintered glass funnel. The product was purified on a silica column with CHCl<sub>3</sub> as eluent to give 7a recovered as an orange powder. Yield: 0.14 g (92%); IR (KBr)/cm<sup>-1</sup> v: 3290 (CC-H), 2100 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.51 (4 H, dd, *J*=12.1, 8.5 Hz), 7.13-6.67 (8 H, m), 3.10 (2 H, s); m/z (EI): 306 (M<sup>+</sup>).

N,N'-bis(*para*-ethynylphenyl)tetrafluorobenzoquinone diimine (7b) 0.090 g (0.23 mmol) of **6b** was dissolved in 20 mL of CHCl<sub>3</sub>, DDQ (0.208 g, 4 eqs., 0.92 mmol) was added and stirred 20 min at room temperature. The mixture was separated by a pad of alumina with CHCl<sub>3</sub> as eluent. Yield: Not calculated. IR (KBr)/cm<sup>-1</sup> v: 1633 (C=N), absent (C=C), 3280 (C=C-H). <sup>1</sup>H NMR  $\delta$ (400 MHz CDCl<sub>3</sub>): 7.50 (4 H, t, J= 6.6 Hz CH aro.), 3.12 (2 H, d, C=C-H); m/z (EI): 378 (M<sup>+</sup>).

**N,N'-bis**(*para*-ethynylphenyl)tetrachloroquinone diimine (7c). 0.3 g (0.5 mmol) of 5c was placed in a 50 mL  $CH_2Cl_2$  in a 100 mL round-bottomed flask. 0.4 g (1.5 mmol) of TBAF was added to the flask and the reaction was stirred under Ar for 4 hours. The

solution was evaporated. The residue was dissolved in  $CH_2Cl_2$  and washed three times with water. The  $CH_2Cl_2$  solution was dried with MgSO<sub>4</sub> and filtered through a sintered glass funnel. The product was purified on a silica column with  $CHCl_3$  as eluent to give **7c** recovered as a dark purple blue solid. Yield: 0.19 g (85%); IR (KBr)/cm<sup>-1</sup> v: 3290 (CC-H), 2104 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.49 (4 H, m), 6.81 (4 H, m), 3.09 (2 H, m); m/z (EI): 444 (M<sup>+</sup>).

**Polymer poly(bis**(*para*-ethynylphenyl)tetrafluorobenzoquinonediamine)-*trans*-bis-(tri-n-butylphosphine)platinum(II) (8b) 6b (0.057 g, 0.150 mmol), *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (1 eq, 0.150 mmol, 0.100 g), CuI (10% eq, 0.015 mmol), 120 ml of CH<sub>2</sub>Cl<sub>2</sub> and 40 mL of (iPr)<sub>2</sub>NH were added under Ar. The mixture was stirred overnight at room temperature under Ar. The crude solid was evaporated to dryness, dissolved by CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CHCl<sub>3</sub> was completely evaporated. White polymer **8b** was obtained. The compound changed to blue due to facile oxidation in air. Yield: 0.132 g (88%). Found: C, 56.09; H, 6.57; N, 2.85. HCl[C<sub>46</sub>H<sub>64</sub>F<sub>4</sub>N<sub>2</sub>P<sub>2</sub>Pt]<sub>n</sub> requires C, 55.97; H, 6.56; N, 2.84; IR (KBr)/cm<sup>-1</sup> v: 3420 (N-H), 2101 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  = 3.96 (s, <sup>1</sup>J<sub>Pt-P</sub> = 2365). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.19 (d, *J*=8.2, 4H), 6.71 (d, *J*=8.2, 4H), 5.41 (s, 2H), 2.27–2.00 (m, 12H), 1.73–1.52 (m, 12H), 1.52–1.35 (m, 12H), 0.92 (t, *J*=7.3, 18H) ppm;  $\lambda_{max}$ (2-MeTHF)/nm 260 nm ( $\varepsilon$ /dm<sup>3</sup>.mol<sup>-1</sup>.cm<sup>-1</sup> 48966), 290 (27970), 350(70245)); GPC: *M*<sub>n</sub>(14572), *M*<sub>w</sub>(38042), PD 2.61.

**Polymer poly(bis(***para***-ethynylphenyl)tetrachlorobenzoquinonediamine)***-trans***-bis-**(**tributylphosphine)platinum(II) (8c)** A 0.116 g quantity (0.26 mmol) of **6c**, and 0.015 g of CuI were dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> in a 25 mL round bottomed flask. Ten milliliters of iPr<sub>2</sub>NH were added. 0.17 g (0.26 mmol) of *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> was dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub> in 10 mL round bottomed flask. The Pt solution was added dropwise using a syringe to the 25 mL round-bottomed flask containing the mixture and the reaction was stirred under Ar overnight. The solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The solution of CH<sub>2</sub>Cl<sub>2</sub> was dried with K<sub>2</sub>CO<sub>3</sub> and filtered. The solvent was evaporated in CH<sub>2</sub>Cl<sub>2</sub> and hexane. (0.25 g, 92 %); IR (KBr)/cm<sup>-1</sup> v: 3390 (N-H), 2102 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (162)

MHz CDCl<sub>3</sub>): 4.51 (2 P, s,  ${}^{1}J_{Pt-P}$  = 2261.9 Hz), 1.19 (2 P, s,  ${}^{1}J_{Pt-P}$  = 2309.3 Hz). <sup>1</sup>H NMR (400 MHZ CDCl<sub>3</sub>): 7.17 (4H, s, br, CH aro), 6.59 (4H, d, *J*=7.7 Hz, CH aro); 5.84 (2H, s, N-H), 2.12 (12 H, t, nBu), 1.44 (24H, m, nBu), 0.92 (18 H, t, *J*=7.2 Hz, nBu).

#### Trans-bis[chlorobis(n-butylphosphine)platinum(II)]N,N'-bis(para-ethynylphenyl)-

tetrafluorobenzenediamine (9b) Trans-dichlorobis(tri-n-butylphosphine)platinum(II), trans-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (8 eq, 0.740 mmol, 0.494g), CuI (10% 0,01 mmol), 40 ml of CH<sub>2</sub>Cl<sub>2</sub> and 40 mL of (iPr)<sub>2</sub>NH were added under argon flux. **6b** (0.035 g, 0.09 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and placed in an addition funnel. The solution of diethynyl was added dropwise at room temperature for 6 hours. The mixture was stirred overnight at room temperature under Ar. The crude product was evaporated to dryness, dissolved in CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CHCl<sub>3</sub> was evaporated and the product was purified on an alumina column with CH<sub>2</sub>Cl<sub>2</sub>/Hexanes (1/1) as the eluent to remove oligomers and excess of platinum. White product 9b was isolated but changed to blue color due to oxidation in air, and was stored under N2 at all time. Yield: 0.053 g (36%). Found: C, 58.19; H, 7.22; N, 1.65. C<sub>70</sub>H<sub>118</sub>Cl<sub>2</sub>F<sub>4</sub>N<sub>2</sub>P<sub>4</sub>Pt<sub>2</sub> requires C, 58.03; H, 7.25; N, 1.57; IR (KBr)/cm<sup>-1</sup> v: 3311 (N-H), 2120 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta = 7.87$  (s,  ${}^{1}J_{Pt-P} = 2378$ ). <sup>1</sup>H NMR  $\delta(400 \text{ MHz CDCl}_3)$ : 7.15(4 H, d, J=8.4, CH aro), 6.70 (4 H, d, J=8.4, CH aro.), 5.40 (2 H, s, N-H), 2.01(24 H, m, CH<sub>2</sub>) 1.50-1.38 (48 H, m, CH<sub>2</sub>) 0.92 (36 H, t, J=7.2, CH<sub>3</sub>);  $\lambda_{max}$ (2-MeTHF)/nm 244 nm  $(\varepsilon/dm^3.mol^{-1}.cm^{-1}52951), 340 (101424)).$ 

*Trans*-bis[chlorobis(n-butylphosphine)platinum(II)]N,N'-bis(*para*-ethynylphenyl)tetrachlorobenzenediamine (9c). 1.40 g (2.0 mmol) of *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> and 0.015 g of CuI were dissolved in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> in a 250 mL round bottomed flask. 20 ml of iPr<sub>2</sub>NH were added. 0.089 g (0.2 mmol) of **6c** was dissolved in a 100 ml amount of 1:1 solution of CH<sub>2</sub>Cl<sub>2</sub>/iPr<sub>2</sub>NH in an addition funnel. The **6c** solution was added dropwise for 12 hours using an addition funnel to the 250 mL round-bottomed flask containing the reacting mixture. The reaction was stirred overnight under Ar. The solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The solution of CH<sub>2</sub>Cl<sub>2</sub> was dried with K<sub>2</sub>CO<sub>3</sub> and filtered. The solvent was evaporated. The product was purified on a silica gel column using (50/50) CH<sub>2</sub>Cl<sub>2</sub>/Hexane. Compound **9c**  was isolated as a blue material. Yield: (0.18 g, 53 %); Found: C, 48.49; H, 6.65; N, 1.81.  $C_{70}H_{118}Cl_6N_2P_4Pt_2$  requires C, 49.10; H, 6.83; N, 1.64.–IR (KBr)/cm<sup>-1</sup> v: 1620 (C=N), 2098 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz, CDCl<sub>3</sub>): 7.8 (2 P, s, <sup>1</sup>*J*<sub>Pt-P</sub> = 2378.3 Hz) ppm. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 7.18-7.08 (m, 4H, Ph), 6.63-6.50 (m, 4H, Ph), 5.58-5.80 (m, 2H, NH), 2.00 (td, *J*=7.8, 3.7 Hz, 24H, nBu), 1.60-1.39 (m, 48H, nBu), 0.98-0.86 (m, 36H, nBu).

poly(bis(para-ethynylphenyl)benzoquinonediimine)-trans-bis(tri-n-butyl-Polvmer phosphine)platinum(II) (10a) 0.077 g (0.3 mmol) of 7a and 0.017 g of CuI were dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> in a 25 mL round bottomed flask. Ten milliliters of iPr<sub>2</sub>NH were added. 0.17 g (0.3 mmol) of trans-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> was dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub> in 10 mL round bottomed flask. The Pt solution was added dropwise using a syringe to the 25 mL round-bottomed flask containing the mixture and the reaction was stirred overnight under Ar. The solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The solution of CH<sub>2</sub>Cl<sub>2</sub> was dried with  $K_2CO_3$  and filtered. The solvent was then evaporated. The polymer was isolated as a purple bright film. The polymer was reprecipitated in CH<sub>2</sub>Cl<sub>2</sub> and hexane. (0.22 g, 81 %); Found: C, 60.95; H, 7.48; N, 3.19. C<sub>46</sub>H<sub>66</sub>N<sub>2</sub>P<sub>2</sub>Pt requires C, 61.11; H, 7.36; N, 3.10. IR (KBr)/cm<sup>-1</sup> v: 1591 (C=N), 2114 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz CDCl<sub>3</sub>): 4.15 (2 P, s,  ${}^{1}J_{Pt-P} = 2360.1$  Hz), 0.65 (2 P, s,  ${}^{1}J_{Pt-P} = 2513.7$  Hz). <sup>1</sup>H NMR (400 MHz,  $CDCl_3$ ): 7.40-7.20 (m, 4H, Ph), 7.16-6.69 (m, 8H, Ph +  $C_6H_4$ ), 2.17 (m, 12H, CH<sub>2</sub>), 1.63-1.42 (m, 24 H, CH<sub>2</sub>), 0.93 (m, 18 H, P(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>).

Polymer poly(((*para*-ethynylphenyl)tetrafluorobenzoquinone diimine)-*trans*-bis(trin-butylphosphine)platinum(II)) (10b). *Trans*-dichlorobis(tri-n-butylphosphine)platinum(II) *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (1 eq, 0.180 mmol, 0.120 g), CuI (10% eq, 0,02 mmol), 7b (0.068 g, 0.180 mmol) in solution in CH<sub>2</sub>Cl<sub>2</sub>, 90 ml of CH<sub>2</sub>Cl<sub>2</sub> and 40 mL of (iPr)<sub>2</sub>NH were added under Ar. The mixture was stirred overnight at room temperature under Ar. The crude solid was evaporated to dryness, dissolved by CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The solvent was evaporated and 10b was isolated as a blue solid. Yield: 0.12 g (67%). Found: C, 54.39; H, 6.29; N, 2.76. HCl[C<sub>46</sub>H<sub>62</sub>F<sub>4</sub>N<sub>2</sub>P<sub>2</sub>Pt]<sub>n</sub> requires C, 54.57; H, 6.27; N, 2.77; IR (KBr)/cm<sup>-1</sup> v: 1604 (C=N), 2095 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  = 4.15 (m, <sup>1</sup>J<sub>Pt-P</sub> = 2360), 7.95 (m, <sup>1</sup>J<sub>Pt-P</sub> = 2370). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.23 (m, 4H), 6.87 (m, 4H), 2.17-2.06 (m, 12H), 1.59 (m, 12H), 1.50-1.36 (m, 12H), 0.92 (t, *J*=7.3, 18H).  $\lambda_{max}$ (2-MeTHF)/nm 247 nm ( $\varepsilon$ /dm<sup>3</sup>.mol<sup>-1</sup>.cm<sup>-1</sup> 20296), 265 (22199), 350 (22241), 630 (5638.9)); GPC  $M_n$ (14317),  $M_w$ (23393), PD 1.63.

**Polymer poly**(((*para*-ethynylphenyl)tetrachlorobenzoquinone diimine)-*trans*-bis(trin-butylphosphine)platinum(II)) (10c) 0.133 g (0.3 mmol) of 7c and 0.017 g of CuI were dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> in a 25 mL round bottomed flask. Ten milliliters of iPr<sub>2</sub>NH were added. 0.17 g (0.30 mmol) of *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> was dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub> in 10 mL round bottomed flask. The Pt solution was added dropwise using a syringe to the 25 mL round-bottomed flask containing the mixture. The reaction was stirred overnight under Ar. The solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The solution of CH<sub>2</sub>Cl<sub>2</sub> was dried with K<sub>2</sub>CO<sub>3</sub> and filtered. The solvent was evaporated. The polymer was isolated as a bright blue film. The polymer was reprecipitated in CH<sub>2</sub>Cl<sub>2</sub> and hexane. (0.29 g, 92 %); IR (KBr)/cm<sup>-1</sup> v: 1604 (C=N), 2099 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): 5.32 (2 P, s, <sup>1</sup>J<sub>Pt-P</sub> = 2215.1 Hz) 1.91 (2 P, s, <sup>1</sup>J<sub>Pt-P</sub> = 2312.5 Hz). <sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>)  $\delta$  7.25 (s, br., 4H Ph), 6.7 (m, 4H Ph), 2.12 (s, 12H, CH<sub>2</sub>); 1.52 (m, 24H CH<sub>2</sub>), 0.91 (s, 18 H, P(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>).

**Bis-**(*Para*-ethynylphenyl)(benzoquinone diimine)bis[*trans*-chlorobis(tributylphosphine)platinum(II)] (11a) 1.34 g (2.00 mmol) of *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> and 0.013 g of CuI were dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> in a 25 mL round bottomed flask. Ten milliliters of iPr<sub>2</sub>NH were added. 0.057 g (0.2 mmol) of **7a** was dissolved in a 100 mL amount of 1:1 solution of CH<sub>2</sub>Cl<sub>2</sub>/iPr<sub>2</sub>NH in an addition funnel. The **7a** solution was added dropwise for 12 hours using an addition funnel to the 250 mL L round-bottomed flask containing the mixture. The reaction was stirred overnight under Ar. The solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with water. The CH<sub>2</sub>Cl<sub>2</sub> solution was dried with K<sub>2</sub>CO<sub>3</sub> and filtered. The solvent was evaporated. The product was purified on a silica gel column using CHCl<sub>3</sub> and was isolated as a bright purple glassy material. Yield: 0.15 g (47 %); Found: C, 52.96; H, 7.73; N, 1.86. C<sub>70</sub>H<sub>120</sub>Cl<sub>2</sub>N<sub>2</sub>P<sub>4</sub>Pt<sub>2</sub>: requires C, 53.39; H, 7.68, N, 1.78. IR (KBr)/cm<sup>-1</sup> v: 1590 (C=N), 2113 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (162 MHz CDCl<sub>3</sub>): 8.0 (2 P, s, <sup>1</sup>J<sub>Pt-P</sub> = 2366.9 Hz) ppm.<sup>1</sup>H NMR (400 MHz CDCl<sub>3</sub>) δ 7.35-7.12 (m, 4 H, Ph), 7.11-6.70 (m, 8H, Ph + C<sub>6</sub>H<sub>4</sub>), 2.38-1.71 (m, 24H, CH<sub>2</sub>), 1.66-1.34 (m, 48H, CH<sub>2</sub>), 1.34-0.54 (m. 36H, P(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>); m/z (maldi tof): 1574.8 requires 1574.7.

**Bis**-(*Para*-ethynylphenyl)(tetrafluorobenzoquinone diimine)bis[*trans*-chlorobis(tributylphosphine)platinum(II)] (11b) *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, (8 eqs, 0.740 mmol, 0.494g), CuI (10% eq, 0,01 mmol), 40 ml of CH<sub>2</sub>Cl<sub>2</sub> and 40 mL of (iPr)<sub>2</sub>NH were added under Ar. A solution of **7b** (0.034 g 0.09 mmol) in CH<sub>2</sub>Cl<sub>2</sub> was placed in an addition funnel. The solution of diethynyl was added dropwise at room temperature for 6 h. The mixture was stirred overnight at room temperature under Ar. The crude was evaporated to dryness, dissolved in CHCl<sub>3</sub>, washed three times with water, dried with MgSO<sub>4</sub>, and filtered. The CHCl<sub>3</sub> was evaporated and the product was purified on an alumina column with CH<sub>2</sub>Cl<sub>2</sub>/Hexanes (1/1) as the eluent to remove oligomers the excess of *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> A blue product, **11b**, was obtained. Yield: 0.035 g (24%). IR (KBr)/cm<sup>-1</sup> v: 1597 (C=N), 2111 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta = 8.07$  (s, <sup>1</sup>*J*<sub>Pt-P</sub> = 2361). <sup>1</sup>H NMR  $\delta$  (400 MHz CDCl<sub>3</sub>): 7.22(4 H, dd, J=8.1, 4.1Hz, CH aro), 6.86 (4 H, d, 8.1Hz, CH aro.), 2.01(24 H, m, CH<sub>2</sub>) 1.50-1.38 (48 H, m, CH<sub>2</sub>) 0.92 (36 H, t, J=7.0 Hz, CH<sub>3</sub>); m/z (maldi tof): 1647.5 requires 1646.6.

**Bis**-(*Para*-ethynylphenyl)(tetrachlorobenzoquinone diimine)bis[*trans*-chlorobis(tributylphosphine)platinum(II)] (11c) 1.34 g (2.0 mmol) of *trans*-Pt(PBu<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> and 0.013 g of CuI were dissolved in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> in a 25 mL round bottomed flask. Ten milliliters of iPr<sub>2</sub>NH were added. 0.088 g (0.20 mmol) of **7c** was dissolved in 100 mL of a 1:1 solution of CH<sub>2</sub>Cl<sub>2</sub>/iPr<sub>2</sub>NH in an addition funnel. The **7c** solution was added dropwise for 12 hours using an addition funnel to the 250 mL round-bottomed flask containing the mixture. The reaction was stirred overnight under Ar. The solvent was evaporated. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and mashed three times with water. The solution of CH<sub>2</sub>Cl<sub>2</sub> was dried with K<sub>2</sub>CO<sub>3</sub> and filtered. The solvent was evaporated. The product was purified on a silica gel column using (50/50) CH<sub>2</sub>Cl<sub>2</sub>/Hexane. Compound **11c** was isolated as a bright blue glassy materiel. Yield: (0.19 g, 55 %); IR (KBr)/cm<sup>-1</sup> v: 1597 (C=N), 2112 (C=C). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): 7.84 (2 P, s, <sup>1</sup>*J*<sub>Pt-P</sub> = 2379.0 Hz) ppm. <sup>1</sup>H NMR (300 MHz CDCl<sub>3</sub>) δ 7.32 (d, *J*=8.3Hz, 4H, Ph), 6.79 (d, *J*=8.4Hz, 4H, Ph),

2,12-1.90 (m, 24H, CH<sub>2</sub>), 1.55 (m, 24H, CH<sub>2</sub>), 1.44 (m, 24H, CH<sub>2</sub>), 0.93 (t, 36 H,  $P(CH_2)_3CH_3$ ,  ${}^3J_{H-H} = 7.2$  Hz).

Instruments. All NMR spectra were acquired on a Bruker AC-300 spectrometer (<sup>1</sup>H 300.15 MHz, <sup>13</sup>C 75.48 MHz, <sup>31</sup>P 121.50 MHz) or a Varian AS-400 (<sup>1</sup>H 400.15 MHz, <sup>31</sup>P 162.0 MHz) using the solvent as chemical shift standard, except in <sup>31</sup>P NMR, where the chemical shifts are relative to  $D_3PO_4$  85% in  $D_2O$ . All chemical shifts ( $\delta$ ) and coupling constants (J) are given in ppm and Hertz, respectively. MALDI-TOF mass spectrometry was carried out with a Waters MALDI SYNAPT HDMS using dithranol as a matrix. The IR spectra were acquired on a Bomem FT-IR MB series spectrometer equipped with a baseline-diffused reflectance. Molecular weights and molecular weight distributions of all polymers were determined by using gel permeation chromatography (GPC). The GPC set-up consisted of a Waters 515 HPLC pump, a Waters 996 Photodiode Array Detector and a Waters 410 Differential Refractometer, with a Styragel HR4E column (7.8\*300 mm). The GPC eluent was HPLC grade THF, at a flow rate of 0.5ml.min<sup>-1</sup>. Calibration curve was obtained using seven PS standards (Aldrich), with  $M_n$  ranging from 3400 to 382 000 g.mol<sup>-1</sup>. TGA were acquired on a Perkin-Elmer TGA 7 between 50 and 950 °C at 3°C/ min under a nitrogen atmosphere. The UV-visible spectra were recorded on a Hewlett-Packard diode array model 8452A. The mass spectra were collected on a VG ZAB-1F spectrometer in EI mode at 70eV.

*Computations*. Calculations were performed with Gaussian  $09^{S2}$  at the Université de Sherbrooke with Mammouth super computer supported by le Réseau Québécois de Calculs de Haute Performances. The DFT<sup>S3-S6</sup> and TD-DFT<sup>S7-S9</sup> were calculated with the B3LYP <sup>S10-S12</sup> method. 3-21G\* <sup>S13-S18</sup> basis sets were used for C, H, N, F and Cl, polarized basis sets for P<sup>S19-S21</sup>, and VDZ (valence double  $\zeta$ ) with SBKJC effective core potentials <sup>S22-S24</sup> for platinum. The predicted phosphorescence wavelengths were obtained by energy differences between the triplet and singlet optimized states. <sup>S25</sup> The calculated absorption spectra and related MO contributions were obtained from the TD-DFT/singlets output file and gaussum2.1. <sup>S26</sup> A THF polarizable continuum solvation model was used. <sup>S27</sup>

*Electrochemistry*. Electrochemical measurements were carried out at room temperature under a flow of argon gas. DMF (Fischer) was distilled under vacuum but otherwise used as received. Trifluoroacetic acid (Aldrich, 99%), TFA, was used as received. Solutions were made 0.1 M in NBu<sub>4</sub>PF<sub>6</sub>, which had been purchased from Aldrich, recrystallized from ethanol, and vacuum-dried. Electrochemical experiments were carried out using a standard three-electrode cell configuration, where the counter electrode was a Pt mesh and the reference electrode saturated calomel. A PARC 273A potentiostat was interfaced to a personal computer. Cyclic voltammetry (CV) scans were carried out at a Pt disk of 5 mm diameter (Pine Chem) which had been polished with Buehler alumina paste of 0.5 micron and place in an ultrasonic bath for few minutes before each series of experiments. All the potentials are reported versus the saturated calomel electrode (SCE).

*Crystallography*. Experimental: For all crystals, data were collected on an Enraf-Nonius CAD-4 automatic diffractometer at the Université de Sherbrooke using  $\omega$  scans. The DIFRAC<sup>S28</sup> program was used for centering, indexing, and data collection. Data were corrected for absorption by empirical methods based on psi scans and reduced with the NRCVAX<sup>S29</sup> programs. They were solved using SHELXS-97<sup>S30</sup> and refined by full-matrix least squares on F<sup>2</sup> with SHELXL-97<sup>S31</sup>. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed at idealized calculated geometric position and refined isotropically using a riding model.

**2a**: The crystals were grown in by slow vapor diffusion of EtOH on a  $CHCl_3$  solution at room temperature. One single crystal of 0.10 X 0.30 X 0.30 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, 12% intensity decay was observed during data collection.

| •                                       |                                    |                                             |  |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|--|
| Empirical formula                       | c18 h12 i2 n2                      |                                             |  |  |
| Formula weight                          | 510.10                             |                                             |  |  |
| Temperature                             | 293(2) K                           |                                             |  |  |
| Wavelength                              | 0.71073 Å                          |                                             |  |  |
| Crystal system                          | Orthorhombic                       |                                             |  |  |
| Space group                             | pnaa                               |                                             |  |  |
| Unit cell dimensions                    | a = 5.926(3)  Å                    | α= 90°.                                     |  |  |
|                                         | b = 7.516(7)  Å                    | $\beta = 90^{\circ}$ .                      |  |  |
|                                         | c = 37.051(16)  Å                  | $\gamma = 90^{\circ}$ .                     |  |  |
| Volume                                  | 1650.3(19) Å <sup>3</sup>          |                                             |  |  |
| Z                                       | 4                                  |                                             |  |  |
| Density (calculated)                    | 2.053 Mg/m <sup>3</sup>            |                                             |  |  |
| Absorption coefficient                  | 3.809 mm <sup>-1</sup>             |                                             |  |  |
| F(000)                                  | 960                                |                                             |  |  |
| Crystal size                            | 0.30 x 0.30 x 0.10 mm <sup>3</sup> | 0.30 x 0.30 x 0.10 mm <sup>3</sup>          |  |  |
| Theta range for data collection         | 2.20 to 25.55°.                    | 2.20 to 25.55°.                             |  |  |
| Index ranges                            | 0<=h<=7, 0<=k<=9, 0<=              | 0<=h<=7, 0<=k<=9, 0<=l<=44                  |  |  |
| Reflections collected                   | 1393                               | 1393                                        |  |  |
| Independent reflections                 | 1393 [R(int) = 0.0000]             |                                             |  |  |
| Completeness to theta = $25.50^{\circ}$ | 90.5 %                             |                                             |  |  |
| Absorption correction                   | Psi-scan                           |                                             |  |  |
| Max. and min. transmission              | 0.7019 and 0.3945                  |                                             |  |  |
| Refinement method                       | Full-matrix least-squares          | Full-matrix least-squares on F <sup>2</sup> |  |  |
| Data / restraints / parameters          | 1393 / 0 / 59                      | 1393 / 0 / 59                               |  |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.979                              | 0.979                                       |  |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0834, wR2 = 0.21            | R1 = 0.0834, w $R2 = 0.2195$                |  |  |
| R indices (all data)                    | R1 = 0.1826, wR2 = 0.26            | R1 = 0.1826, $wR2 = 0.2660$                 |  |  |
| Extinction coefficient                  | 0.0026(9)                          |                                             |  |  |
| Largest diff. peak and hole             | 1.467 and -2.787 e.Å <sup>-3</sup> | 1.467 and -2.787 e.Å <sup>-3</sup>          |  |  |

Table S1. Crystal data and structure refinement for 2a.

**2'a**: The crystals were grown by slow evaporation of a  $CH_2Cl_2$  solution. One single crystal of 0.25 X 0.30 X 0.30 mm<sup>3</sup> was mounted using a glass fiber on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

| Empirical formula                       | C9 H8 Br N O                       |                                             |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|
| Formula weight                          | 226.07                             |                                             |  |
| Temperature                             | 293(2) K                           |                                             |  |
| Wavelength                              | 1.54176 Å                          |                                             |  |
| Crystal system                          | Orthorhombic                       |                                             |  |
| Space group                             | Pnab                               |                                             |  |
| Unit cell dimensions                    | a = 7.174(2) Å                     | <i>α</i> = 90°.                             |  |
|                                         | b = 10.884(7)  Å                   | $\beta = 90^{\circ}$ .                      |  |
|                                         | c = 23.910(8)  Å                   | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                  | 1867.0(15) Å <sup>3</sup>          |                                             |  |
| Z                                       | 8                                  |                                             |  |
| Density (calculated)                    | 1.609 Mg/m <sup>3</sup>            |                                             |  |
| Absorption coefficient                  | 5.609 mm <sup>-1</sup>             |                                             |  |
| F(000)                                  | 896                                |                                             |  |
| Crystal size                            | 0.30 x 0.30 x 0.25 mm <sup>3</sup> | 0.30 x 0.30 x 0.25 mm <sup>3</sup>          |  |
| Theta range for data collection         | 7.62 to 69.82°.                    | 7.62 to 69.82°.                             |  |
| Index ranges                            | 0<=h<=8, 0<=k<=13, 0               | 0<=h<=8, 0<=k<=13, 0<=l<=29                 |  |
| Reflections collected                   | 1717                               | 1717                                        |  |
| Independent reflections                 | 1717 [R(int) = 0.0000]             |                                             |  |
| Completeness to theta = $25.50^{\circ}$ | 90.5 %                             |                                             |  |
| Absorption correction                   | Psi-scan                           |                                             |  |
| Max. and min. transmission              | 0.3345 and 0.2839                  | 0.3345 and 0.2839                           |  |
| Refinement method                       | Full-matrix least-square           | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters          | 1717 / 3 / 106                     | 1717 / 3 / 106                              |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.852                              |                                             |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0894, wR2 = 0.2             | R1 = 0.0894, wR2 = 0.2261                   |  |
| R indices (all data)                    | R1 = 0.2136, wR2 = 0.2             | R1 = 0.2136, wR2 = 0.2792                   |  |
| Extinction coefficient                  | 0.0008(4)                          |                                             |  |
| Largest diff. peak and hole             | 0.493 and -0.488 e.Å <sup>-3</sup> |                                             |  |

Table S2. Crystal data and structure refinement for 2'a.

**2b**: The crystals were grown by slow evaporation of THF at room temperature. One single crystal of 0.03 X  $0.30 \times 0.35 \text{ mm}^3$  was mounted using a glass fiber at 193(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S3. Crystal data and structure refinement for **2b**.

| Empirical formula                       | C18 H8 F4 I2 N2                    |                                             |  |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|--|
| Formula weight                          | 582.06                             |                                             |  |  |
| Temperature                             | 193(2) K                           |                                             |  |  |
| Wavelength                              | 0.71073 Å                          |                                             |  |  |
| Crystal system                          | Orthorhombic                       |                                             |  |  |
| Space group                             | Pna21                              |                                             |  |  |
| Unit cell dimensions                    | a = 5.887(2)  Å                    | $\alpha = 90^{\circ}$ .                     |  |  |
|                                         | b = 7.940(2)  Å                    | $\beta = 90^{\circ}$ .                      |  |  |
|                                         | c = 36.911(11) Å                   | $\gamma = 90^{\circ}$ .                     |  |  |
| Volume                                  | 1725.2(10) Å <sup>3</sup>          |                                             |  |  |
| Z                                       | 4                                  |                                             |  |  |
| Density (calculated)                    | 2.241 Mg/m <sup>3</sup>            |                                             |  |  |
| Absorption coefficient                  | 3.690 mm <sup>-1</sup>             |                                             |  |  |
| F(000)                                  | 1088                               |                                             |  |  |
| Crystal size                            | 0.35 x 0.30 x 0.03 mm <sup>3</sup> | 0.35 x 0.30 x 0.03 mm <sup>3</sup>          |  |  |
| Theta range for data collection         | 2.62 to 25.55°.                    | 2.62 to 25.55°.                             |  |  |
| Index ranges                            | 0<=h<=7, 0<=k<=9, 0<=l             | 0<=h<=7, 0<=k<=9, 0<=l<=44                  |  |  |
| Reflections collected                   | 1589                               |                                             |  |  |
| Independent reflections                 | 1589 [R(int) = 0.0000]             | 1589 [ $R(int) = 0.0000$ ]                  |  |  |
| Completeness to theta = $25.50^{\circ}$ | 97.2 %                             | 97.2 %                                      |  |  |
| Absorption correction                   | Psi-scan                           |                                             |  |  |
| Max. and min. transmission              | 0.8973 and 0.3583                  |                                             |  |  |
| Refinement method                       | Full-matrix least-squares of       | Full-matrix least-squares on F <sup>2</sup> |  |  |
| Data / restraints / parameters          | 1589 / 4 / 69                      | 1589 / 4 / 69                               |  |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.886                              | 0.886                                       |  |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0549, wR2 = 0.117           | R1 = 0.0549, wR2 = 0.1179                   |  |  |
| R indices (all data)                    | R1 = 0.1687, wR2 = 0.149           | R1 = 0.1687, wR2 = 0.1492                   |  |  |
| Absolute structure parameter            | 0.0(5)                             |                                             |  |  |
| Extinction coefficient                  | 0.0009(2)                          |                                             |  |  |
| Largest diff. peak and hole             | 1.726 and -1.267 e.Å <sup>-3</sup> |                                             |  |  |

**2c**: The crystals were grown in by slow vapor diffusion of EtOH on a  $CHCl_3$  solution at room temperature. One single crystal of 0.025 X 0.20 X 0.20 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S4. Crystal data and structure refinement for **2c**.

| Empirical formula                       | C18 H8 Cl4 I2 N2                   |                                             |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|
| Formula weight                          | 647.90                             |                                             |  |
| Temperature                             | 293(2) K                           |                                             |  |
| Wavelength                              | 0.71073 Å                          |                                             |  |
| Crystal system                          | Orthorhombic                       |                                             |  |
| Space group                             | Pcan                               |                                             |  |
| Unit cell dimensions                    | a = 6.232(3)  Å                    | <i>α</i> = 90°.                             |  |
|                                         | b = 15.450(5)  Å                   | $\beta = 90^{\circ}$ .                      |  |
|                                         | c = 20.624(5)  Å                   | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                  | 1985.9(12) Å <sup>3</sup>          |                                             |  |
| Z                                       | 4                                  |                                             |  |
| Density (calculated)                    | 2.167 Mg/m <sup>3</sup>            |                                             |  |
| Absorption coefficient                  | 3.711 mm <sup>-1</sup>             |                                             |  |
| F(000)                                  | 1216                               |                                             |  |
| Crystal size                            | 0.20 x 0.20 x 0.03 mm <sup>3</sup> |                                             |  |
| Theta range for data collection         | 2.37 to 25.59°.                    | 2.37 to 25.59°.                             |  |
| Index ranges                            | 0<=h<=4, 0<=k<=18, 0               | 0<=h<=4, 0<=k<=18, 0<=l<=25                 |  |
| Reflections collected                   | 1373                               |                                             |  |
| Independent reflections                 | 1373 [R(int) = 0.0000]             |                                             |  |
| Completeness to theta = $25.50^{\circ}$ | 73.5 %                             |                                             |  |
| Absorption correction                   | Psi-Scan                           |                                             |  |
| Max. and min. transmission              | 0.8968 and 0.5240                  |                                             |  |
| Refinement method                       | Full-matrix least-squares          | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters          | 1373 / 0 / 64                      | 1373 / 0 / 64                               |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.768                              |                                             |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0821, wR2 = 0.1             | R1 = 0.0821, $wR2 = 0.1353$                 |  |
| R indices (all data)                    | R1 = 0.3495, wR2 = 0.1             | 862                                         |  |
| Largest diff. peak and hole             | 0.724 and -0.866 e.Å <sup>-3</sup> |                                             |  |

**3b**: The crystals were grown by slow evaporation of a  $CH_2Cl_2/MeOH$  (75/25) solution at room temperature. One single crystal of 0.15 X 0.30 X 0.55 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S5. Crystal data and structure refinement for **3b**.

| Empirical formula                       | C18 H10 F4 I2 N2                            |                         |  |
|-----------------------------------------|---------------------------------------------|-------------------------|--|
| Formula weight                          | 584.08                                      |                         |  |
| Temperature                             | 293(2) K                                    |                         |  |
| Wavelength                              | 0.71073 Å                                   |                         |  |
| Crystal system                          | Orthorhombic                                |                         |  |
| Space group                             | Pnaa                                        |                         |  |
| Unit cell dimensions                    | a = 5.793(2)  Å                             | α= 90°.                 |  |
|                                         | b = 8.312(5)  Å                             | $\beta = 90^{\circ}$ .  |  |
|                                         | c = 36.680(13)  Å                           | $\gamma = 90^{\circ}$ . |  |
| Volume                                  | 1766.0(14) Å <sup>3</sup>                   |                         |  |
| Z                                       | 4                                           |                         |  |
| Density (calculated)                    | 2.197 Mg/m <sup>3</sup>                     |                         |  |
| Absorption coefficient                  | 3.606 mm <sup>-1</sup>                      |                         |  |
| F(000)                                  | 1096                                        |                         |  |
| Crystal size                            | 0.55 x 0.30 x 0.15 mm <sup>3</sup>          |                         |  |
| Theta range for data collection         | 1.11 to 25.56°.                             |                         |  |
| Index ranges                            | 0<=h<=7, 0<=k<=10, 0<=l<=44                 |                         |  |
| Reflections collected                   | 1654                                        |                         |  |
| Independent reflections                 | 1654 [R(int) = 0.0000]                      |                         |  |
| Completeness to theta = $25.50^{\circ}$ | 100.0 %                                     |                         |  |
| Absorption correction                   | Psi-Scan                                    |                         |  |
| Max. and min. transmission              | 0.6138 and 0.2417                           |                         |  |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                         |  |
| Data / restraints / parameters          | 1654 / 0 / 119                              |                         |  |
| Goodness-of-fit on F <sup>2</sup>       | 1.020                                       |                         |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0503, wR2 = 0.1172                   |                         |  |
| R indices (all data)                    | R1 = 0.1149, w $R2 = 0.1330$                |                         |  |
| Extinction coefficient                  | 0.0016(3)                                   |                         |  |
| Largest diff. peak and hole             | 0.748 and -0.614 e.Å <sup>-3</sup>          |                         |  |

**3'c**: The crystals were grown by slow evaporation of a  $CH_2Cl_2$  solution at room temperature. One single crystal of 0.20 X 0.30 X 0.60 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

| Empirical formula                       | C18 H10 Br2 Cl4 N2                 |                                             |  |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|--|
| Formula weight                          | 555.90                             |                                             |  |  |
| Temperature                             | 293(2) K                           | 293(2) K                                    |  |  |
| Wavelength                              | 0.71073 Å                          |                                             |  |  |
| Crystal system                          | Monoclinic                         |                                             |  |  |
| Space group                             | P21/C                              |                                             |  |  |
| Unit cell dimensions                    | a = 4.5815(15) Å                   | $\alpha$ = 90°.                             |  |  |
|                                         | b = 9.242(4)  Å                    | $\beta = 95.06(2)^{\circ}.$                 |  |  |
|                                         | c = 22.912(4)  Å                   | $\gamma = 90^{\circ}$ .                     |  |  |
| Volume                                  | 966.3(5) Å <sup>3</sup>            |                                             |  |  |
| Z                                       | 2                                  |                                             |  |  |
| Density (calculated)                    | 1.911 Mg/m <sup>3</sup>            |                                             |  |  |
| Absorption coefficient                  | 4.753 mm <sup>-1</sup>             |                                             |  |  |
| F(000)                                  | 540                                |                                             |  |  |
| Crystal size                            | 0.60 x 0.30 x 0.20 mm <sup>3</sup> | 0.60 x 0.30 x 0.20 mm <sup>3</sup>          |  |  |
| Theta range for data collection         | 1.78 to 25.59°.                    | 1.78 to 25.59°.                             |  |  |
| Index ranges                            | -5<=h<=5, 0<=k<=11, 0              | -5<=h<=5, 0<=k<=11, 0<=l<=27                |  |  |
| Reflections collected                   | 1805                               | 1805                                        |  |  |
| Independent reflections                 | 1805 [R(int) = 0.0000]             | 1805 [R(int) = 0.0000]                      |  |  |
| Completeness to theta = $25.50^{\circ}$ | 99.8 %                             | 99.8 %                                      |  |  |
| Absorption correction                   | Psi-Scan                           |                                             |  |  |
| Max. and min. transmission              | 0.4499 and 0.1627                  |                                             |  |  |
| Refinement method                       | Full-matrix least-square           | Full-matrix least-squares on F <sup>2</sup> |  |  |
| Data / restraints / parameters          | 1805 / 0 / 76                      | 1805 / 0 / 76                               |  |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.857                              |                                             |  |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0675, wR2 = 0.1             | R1 = 0.0675, $wR2 = 0.1444$                 |  |  |
| R indices (all data)                    | R1 = 0.2129, wR2 = 0.1             | 798                                         |  |  |
| Largest diff. peak and hole             | 0.535 and -0.793 e.Å <sup>-3</sup> | 0.535 and -0.793 e.Å <sup>-3</sup>          |  |  |

Table S6. Crystal data and structure refinement for **3'c**.

**3d**: The crystals were grown by slow evaporation of a  $CHCl_3$  solution at room temperature. One single crystal of 0.20 X 0.30 X 0.40 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S7. Crystal data and structure refinement for **3d**.

| Empirical formula                       | C22 H22 I2 N2                               |                               |
|-----------------------------------------|---------------------------------------------|-------------------------------|
| Formula weight                          | 568.22                                      |                               |
| Temperature                             | 293(2) K                                    |                               |
| Wavelength                              | 0.71073 Å                                   |                               |
| Crystal system                          | Triclinic                                   |                               |
| Space group                             | p-1                                         |                               |
| Unit cell dimensions                    | a = 8.632(2)  Å                             | $\alpha = 72.46(4)^{\circ}$ . |
|                                         | b = 10.136(5) Å                             | β= 78.12(3)°.                 |
|                                         | c = 13.097(6)  Å                            | $\gamma = 79.22(4)^{\circ}$ . |
| Volume                                  | 1059.5(7) Å <sup>3</sup>                    |                               |
| Z                                       | 2                                           |                               |
| Density (calculated)                    | 1.781 Mg/m <sup>3</sup>                     |                               |
| Absorption coefficient                  | 2.976 mm <sup>-1</sup>                      |                               |
| F(000)                                  | 548                                         |                               |
| Crystal size                            | 0.40 x 0.30 x 0.20 mm <sup>3</sup>          |                               |
| Theta range for data collection         | 1.65 to 25.54°.                             |                               |
| Index ranges                            | -10<=h<=10, 0<=k<=12, -14<=l<=15            |                               |
| Reflections collected                   | 3953                                        |                               |
| Independent reflections                 | 3953 [R(int) = 0.0000]                      |                               |
| Completeness to theta = $25.50^{\circ}$ | 99.9 %                                      |                               |
| Absorption correction                   | Psi-Scan                                    |                               |
| Max. and min. transmission              | 0.5875 and 0.3823                           |                               |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                               |
| Data / restraints / parameters          | 3953 / 0 / 236                              |                               |
| Goodness-of-fit on F <sup>2</sup>       | 1.014                                       |                               |
| Final R indices [I>2sigma(I)]           | R1 = 0.0593, wR2 = 0.1439                   |                               |
| R indices (all data)                    | R1 = 0.1141, wR2 = 0.1639                   |                               |
| Extinction coefficient                  | 0.0026(10)                                  |                               |
| Largest diff. peak and hole             | 1.048 and -1.108 e.Å <sup>-3</sup>          |                               |

**4a**: The crystals were grown by slow evaporation of a  $CH_2Cl_2$  solution. One single crystal of 0.10 X 0.20 X 0.40 mm<sup>3</sup> was mounted using a glass fiber on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

| Empirical formula                       | C28 H32 N2 Si2                              |                                 |
|-----------------------------------------|---------------------------------------------|---------------------------------|
| Formula weight                          | 452.74                                      |                                 |
| Temperature                             | 293(2) K                                    |                                 |
| Wavelength                              | 1.54176 Å                                   |                                 |
| Crystal system                          | Triclinic                                   |                                 |
| Space group                             | P-1                                         |                                 |
| Unit cell dimensions                    | a = 6.1972(11) Å                            | $\alpha = 103.779(17)^{\circ}.$ |
|                                         | b = 8.5180(14) Å                            | $\beta = 100.711(18)^{\circ}.$  |
|                                         | c = 13.484(3)  Å                            | $\gamma = 94.252(15)^{\circ}.$  |
| Volume                                  | 674.0(2) Å <sup>3</sup>                     |                                 |
| Z                                       | 1                                           |                                 |
| Density (calculated)                    | 1.115 Mg/m <sup>3</sup>                     |                                 |
| Absorption coefficient                  | 1.309 mm <sup>-1</sup>                      |                                 |
| F(000)                                  | 242                                         |                                 |
| Crystal size                            | 0.40 x 0.20 x 0.10 mm <sup>3</sup>          |                                 |
| Theta range for data collection         | 3.45 to 69.96°.                             |                                 |
| Index ranges                            | -7<=h<=7, 0<=k<=10, -16<=l<=15              |                                 |
| Reflections collected                   | 2520                                        |                                 |
| Independent reflections                 | 2520 [R(int) = 0.0000]                      |                                 |
| Completeness to theta = $69.96^{\circ}$ | 97.9 %                                      |                                 |
| Absorption correction                   | Psi-scan                                    |                                 |
| Max. and min. transmission              | 0.8802 and 0.6225                           |                                 |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                                 |
| Data / restraints / parameters          | 2520/0/146                                  |                                 |
| Goodness-of-fit on F <sup>2</sup>       | 1.032                                       |                                 |
| Final R indices [I>2sigma(I)]           | R1 = 0.0842, wR2 = 0.2297                   |                                 |
| R indices (all data)                    | R1 = 0.1486, wR2 = 0.2632                   |                                 |
| Extinction coefficient                  | 0.070(9)                                    |                                 |
| Largest diff. peak and hole             | 0.268 and -0.220 e.Å <sup>-3</sup>          |                                 |

Table S8. Crystal data and structure refinement for 4a.

**4b**: The crystals were grown by slow evaporation of  $CH_2Cl_2$  at room temperature. One single crystal of 0.10 X 0.40 X 0.50 mm<sup>3</sup> was mounted using a glass fiber at 193(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

| Table S9. | Crystal | data a | nd structure | refinement | for <b>4b</b> . |
|-----------|---------|--------|--------------|------------|-----------------|
|           |         |        |              |            |                 |

| Empirical formula                       | C28 H28 F4 N2 Si2                           |                              |
|-----------------------------------------|---------------------------------------------|------------------------------|
| Formula weight                          | 524.71                                      |                              |
| Temperature                             | 193(2) K                                    |                              |
| Wavelength                              | 0.71073 Å                                   |                              |
| Crystal system                          | Monoclinic                                  |                              |
| Space group                             | P21/n                                       |                              |
| Unit cell dimensions                    | a = 5.647(7)  Å                             | <i>α</i> = 90°.              |
|                                         | b = 5.670(8)  Å                             | $\beta = 92.41(12)^{\circ}.$ |
|                                         | c = 41.2(7)  Å                              | $\gamma = 90^{\circ}$ .      |
| Volume                                  | 1318(23) Å <sup>3</sup>                     |                              |
| Z                                       | 2                                           |                              |
| Density (calculated)                    | 1.323 Mg/m <sup>3</sup>                     |                              |
| Absorption coefficient                  | 0.183 mm <sup>-1</sup>                      |                              |
| F(000)                                  | 548                                         |                              |
| Crystal size                            | 0.50 x 0.40 x 0.10 mm <sup>3</sup>          |                              |
| Theta range for data collection         | 1.98 to 25.55°.                             |                              |
| Index ranges                            | -6<=h<=6, 0<=k<=6, 0<=l<=49                 |                              |
| Reflections collected                   | 2278                                        |                              |
| Independent reflections                 | 2278 [R(int) = 0.0000]                      |                              |
| Completeness to theta = $25.50^{\circ}$ | 92.8 %                                      |                              |
| Absorption correction                   | Psi-Scan                                    |                              |
| Max. and min. transmission              | 0.9819 and 0.9141                           |                              |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                              |
| Data / restraints / parameters          | 2278/0/163                                  |                              |
| Goodness-of-fit on F <sup>2</sup>       | 0.921                                       |                              |
| Final R indices [I>2sigma(I)]           | R1 = 0.0844, wR2 = 0.1296                   |                              |
| R indices (all data)                    | R1 = 0.2393, wR2 = 0.1640                   |                              |
| Largest diff. peak and hole             | 0.364 and -0.396 e.Å <sup>-3</sup>          |                              |

**4c**: The crystals were grown by slow evaporation of  $CHCl_3$  at room temperature. One single crystal of 0.05 X 0.40 X 0.50 mm<sup>3</sup> was mounted using a glass fiber at 298(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S10. Crystal data and structure refinement for 4c.

| Empirical formula                       | C28 H28 Cl4 N2 Si2                                  |                              |
|-----------------------------------------|-----------------------------------------------------|------------------------------|
| Formula weight                          | 590.50                                              |                              |
| Temperature                             | 293(2) K                                            |                              |
| Wavelength                              | 1.54176 Å                                           |                              |
| Crystal system                          | Monoclinic                                          |                              |
| Space group                             | P21/n                                               |                              |
| Unit cell dimensions                    | a = 5.9752(19)  Å                                   | $\alpha = 90^{\circ}$ .      |
|                                         | b = 50.52(3)  Å                                     | $\beta = 93.96(3)^{\circ}$ . |
|                                         | c = 10.226(6)  Å                                    | $\gamma = 90^{\circ}$ .      |
| Volume                                  | 3080(3) Å <sup>3</sup>                              |                              |
| Z                                       | 4                                                   |                              |
| Density (calculated)                    | 1.274 Mg/m <sup>3</sup>                             |                              |
| Absorption coefficient                  | 4.388 mm <sup>-1</sup>                              |                              |
| F(000)                                  | 1224                                                |                              |
| Crystal size                            | $0.50 \text{ x } 0.40 \text{ x } 0.05 \text{ mm}^3$ |                              |
| Theta range for data collection         | 3.50 to 69.99°.                                     |                              |
| Index ranges                            | -7<=h<=7, 0<=k<=61, 0<=l<=                          | 12                           |
| Reflections collected                   | 5582                                                |                              |
| Independent reflections                 | 5582 [R(int) = 0.0000]                              |                              |
| Completeness to theta = $69.99^{\circ}$ | 95.5 %                                              |                              |
| Absorption correction                   | Psi-Scan                                            |                              |
| Max. and min. transmission              | 0.8105 and 0.2177                                   |                              |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup>         |                              |
| Data / restraints / parameters          | 5582 / 3 / 329                                      |                              |
| Goodness-of-fit on F <sup>2</sup>       | 0.850                                               |                              |
| Final R indices [I>2sigma(I)]           | R1 = 0.1046, wR2 = 0.2133                           |                              |
| R indices (all data)                    | R1 = 0.3464, wR2 = 0.2865                           |                              |
| Largest diff. peak and hole             | 0.380 and -0.471 e.Å <sup>-3</sup>                  |                              |

**5a**: The crystals were grown by slow vapor evaporation of a mixture 70:30 DMF:MeOH solution. One single crystal of  $0.10 \times 0.10 \times 0.30 \text{ mm}^3$  was mounted using a glass fiber on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Empirical formula C28 H30 N2 Si2 Formula weight 450.72 Temperature 293(2) K Wavelength 1.54176 Å Crystal system Monoclinic P21/C Space group a = 6.091(5) ÅUnit cell dimensions  $\alpha = 90^{\circ}$ . b = 25.289(13) Å $\beta = 102.69(7)^{\circ}$ . c = 8.863(7) Å $\gamma = 90^{\circ}$ . Volume 1332.0(16) Å<sup>3</sup> Ζ 2  $1.124 \text{ Mg/m}^3$ Density (calculated) 1.325 mm<sup>-1</sup> Absorption coefficient F(000) 480 Crystal size 0.30 x 0.10 x 0.10 mm<sup>3</sup> Theta range for data collection 3.50 to 69.94°. Index ranges -7<=h<=7, 0<=k<=30, 0<=l<=10 Reflections collected 2427 2427 [R(int) = 0.0000]Independent reflections Completeness to theta =  $69.94^{\circ}$ 95.8 % Absorption correction Psi-Scan Max. and min. transmission 0.8789 and 0.6920 Refinement method Full-matrix least-squares on F<sup>2</sup> 2427 / 0 / 145 Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> 0.800 Final R indices [I>2sigma(I)] R1 = 0.0783, wR2 = 0.1393R indices (all data) R1 = 0.2912, wR2 = 0.19080.189 and -0.260 e.Å<sup>-3</sup> Largest diff. peak and hole

Table S11. Crystal data and structure refinement for 5a.

**5b**: The crystals were grown by slow evaporation of a  $CH_2Cl_2/MeOH$  (75/25) solution at room temperature. One single crystal of 0.300 X 0.300 X 0.025 mm was mounted using a glass fiber on the goniometer at 293(2) K. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S12. Crystal data and structure refinement for **5b**.

| Empirical formula                       | C28 H26 F4 N2 Si2                           |                              |
|-----------------------------------------|---------------------------------------------|------------------------------|
| Formula weight                          | 522.69                                      |                              |
| Temperature                             | 293(2) K                                    |                              |
| Wavelength                              | 1.54176 Å                                   |                              |
| Crystal system                          | Monoclinic                                  |                              |
| Space group                             | P21/C                                       |                              |
| Unit cell dimensions                    | a = 5.867(3)  Å                             | <i>α</i> = 90°.              |
|                                         | b = 5.788(3)  Å                             | $\beta = 91.53(4)^{\circ}$ . |
|                                         | c = 40.37(2)  Å                             | $\gamma = 90^{\circ}$ .      |
| Volume                                  | 1370.5(13) Å <sup>3</sup>                   |                              |
| Z                                       | 2                                           |                              |
| Density (calculated)                    | 1.267 Mg/m <sup>3</sup>                     |                              |
| Absorption coefficient                  | 1.578 mm <sup>-1</sup>                      |                              |
| F(000)                                  | 544                                         |                              |
| Crystal size                            | 0.300 x 0.300 x 0.025 mm <sup>3</sup>       |                              |
| Theta range for data collection         | 2.19 to 70.00°.                             |                              |
| Index ranges                            | -7<=h<=7, 0<=k<=7, 0<=l<=4                  | 9                            |
| Reflections collected                   | 2460                                        |                              |
| Independent reflections                 | 2460 [R(int) = 0.0000]                      |                              |
| Completeness to theta = $70.00^{\circ}$ | 95.4 %                                      |                              |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                              |
| Data / restraints / parameters          | 2460 / 0 / 167                              |                              |
| Goodness-of-fit on F <sup>2</sup>       | 0.921                                       |                              |
| Final R indices [I>2sigma(I)]           | R1 = 0.0887, w $R2 = 0.2274$                |                              |
| R indices (all data)                    | R1 = 0.2223, $wR2 = 0.2867$                 |                              |
| Extinction coefficient                  | 0.0048(11)                                  |                              |
| Largest diff. peak and hole             | 0.265 and -0.262 e.Å <sup>-3</sup>          |                              |

**5c**: The crystals were grown by slow evaporation of a  $CH_2Cl_2/MeOH$  (75/25) at room temperature. One single crystal of 0.05 X 0.70 X 0.80 mm<sup>3</sup> was mounted on a glass fiber and mounted on the goniometer at 298(2) K. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S13. Crystal data and structure refinement for 5c.

| Empirical formula                       | C28 H26 Cl4 F0 N2 Si2                       |                              |
|-----------------------------------------|---------------------------------------------|------------------------------|
| Formula weight                          | 588.49                                      |                              |
| Temperature                             | 293(2) K                                    |                              |
| Wavelength                              | 1.54176 Å                                   |                              |
| Crystal system                          | Monoclinic                                  |                              |
| Space group                             | P21/a                                       |                              |
| Unit cell dimensions                    | a = 11.181(6)  Å                            | <i>α</i> = 90°.              |
|                                         | b = 5.613(3) Å                              | $\beta = 102.47(4)^{\circ}.$ |
|                                         | c = 24.414(14)  Å                           | $\gamma = 90^{\circ}$ .      |
| Volume                                  | 1496.0(13) Å <sup>3</sup>                   |                              |
| Z                                       | 2                                           |                              |
| Density (calculated)                    | 1.306 Mg/m <sup>3</sup>                     |                              |
| Absorption coefficient                  | 4.516 mm <sup>-1</sup>                      |                              |
| F(000)                                  | 608                                         |                              |
| Crystal size                            | 0.80 x 0.70 x 0.05 mm <sup>3</sup>          |                              |
| Theta range for data collection         | 1.85 to 70.09°.                             |                              |
| Index ranges                            | -13<=h<=13, 0<=k<=6, 0<=l<=                 | =29                          |
| Reflections collected                   | 2787                                        |                              |
| Independent reflections                 | 2787 [R(int) = 0.0000]                      |                              |
| Completeness to theta = $70.00^{\circ}$ | 98.2 %                                      |                              |
| Absorption correction                   | Psi-Scan                                    |                              |
| Max. and min. transmission              | 0.8057 and 0.1228                           |                              |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                              |
| Data / restraints / parameters          | 2787 / 0 / 164                              |                              |
| Goodness-of-fit on F <sup>2</sup>       | 0.987                                       |                              |
| Final R indices [I>2sigma(I)]           | R1 = 0.0839, w $R2 = 0.2248$                |                              |
| R indices (all data)                    | R1 = 0.1265, wR2 = 0.2573                   |                              |
| Extinction coefficient                  | 0.0125(17)                                  |                              |
| Largest diff. peak and hole             | 0.526 and -0.501 e.Å <sup>-3</sup>          |                              |

**6b**: The crystals were grown by slow evaporation of an ethyl acetate solution at room temperature. One single crystal of  $0.05 \times 0.30 \times 0.60 \text{ mm}^3$  was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S14. Crystal data and structure refinement for **6b**.

| Empirical formula                       | C22 H12 F4 N2                               |                               |  |
|-----------------------------------------|---------------------------------------------|-------------------------------|--|
| Formula weight                          | 380.34                                      |                               |  |
| Temperature                             | 293(2) K                                    |                               |  |
| Wavelength                              | 1.54176 Å                                   |                               |  |
| Crystal system                          | Monoclinic                                  |                               |  |
| Space group                             | P21/n                                       |                               |  |
| Unit cell dimensions                    | a = 7.7079(10)  Å                           | <i>α</i> = 90°.               |  |
|                                         | b = 5.7966(9) Å                             | $\beta = 90.594(12)^{\circ}.$ |  |
|                                         | c = 19.243(3) Å                             | $\gamma = 90^{\circ}$ .       |  |
| Volume                                  | 859.7(2) Å <sup>3</sup>                     |                               |  |
| Z                                       | 2                                           |                               |  |
| Density (calculated)                    | 1.469 Mg/m <sup>3</sup>                     |                               |  |
| Absorption coefficient                  | 1.006 mm <sup>-1</sup>                      |                               |  |
| F(000)                                  | 388                                         |                               |  |
| Crystal size                            | 0.60 x 0.30 x 0.05 mm <sup>3</sup>          |                               |  |
| Theta range for data collection         | 6.16 to 69.90°.                             |                               |  |
| Index ranges                            | -9<=h<=9, 0<=k<=7, 0<=l<=2                  | 3                             |  |
| Reflections collected                   | 1605                                        |                               |  |
| Independent reflections                 | 1605 [R(int) = 0.0000]                      |                               |  |
| Completeness to theta = $69.90^{\circ}$ | 98.8 %                                      |                               |  |
| Absorption correction                   | Psi-scan                                    |                               |  |
| Max. and min. transmission              | 0.9514 and 0.5836                           |                               |  |
| Refinement method                       | Full-matrix least-squares on F <sup>2</sup> |                               |  |
| Data / restraints / parameters          | 1605 / 0 / 128                              |                               |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.946                                       |                               |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0740, $wR2 = 0.1863$                 |                               |  |
| R indices (all data)                    | R1 = 0.1488, $wR2 = 0.2182$                 |                               |  |
| Extinction coefficient                  | 0.039(4)                                    |                               |  |
| Largest diff. peak and hole             | 0.231 and -0.222 e.Å <sup>-3</sup>          |                               |  |

**6c**: The crystals were grown by slow evaporation of  $CHCl_3$  at room temperature. One single crystal of 0.11 X 0.40 X 0.40 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

Table S15. Crystal data and structure refinement for 6c.

| Empirical formula                       | C22 H12 Cl4 N2                     |                                             |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|
| Formula weight                          | 446.14                             | 446.14                                      |  |
| Temperature                             | 293(2) K                           | 293(2) K                                    |  |
| Wavelength                              | 0.71073 Å                          |                                             |  |
| Crystal system                          | Monoclinic                         |                                             |  |
| Space group                             | P21/n                              |                                             |  |
| Unit cell dimensions                    | a = 5.576(3)  Å                    | $\alpha = 90^{\circ}$ .                     |  |
|                                         | b = 10.283(7)  Å                   | $\beta = 96.69(5)^{\circ}.$                 |  |
|                                         | c = 17.257(11)  Å                  | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                  | 982.7(10) Å <sup>3</sup>           |                                             |  |
| Z                                       | 2                                  |                                             |  |
| Density (calculated)                    | 1.508 Mg/m <sup>3</sup>            | 1.508 Mg/m <sup>3</sup>                     |  |
| Absorption coefficient                  | 0.613 mm <sup>-1</sup>             | 0.613 mm <sup>-1</sup>                      |  |
| F(000)                                  | 452                                | 452                                         |  |
| Crystal size                            | 0.40 x 0.40 x 0.11 mm <sup>3</sup> | 0.40 x 0.40 x 0.11 mm <sup>3</sup>          |  |
| Theta range for data collection         | 2.31 to 25.54°.                    | 2.31 to 25.54°.                             |  |
| Index ranges                            | -6<=h<=6, 0<=k<=12, 0              | )<=l<=20                                    |  |
| Reflections collected                   | 1825                               |                                             |  |
| Independent reflections                 | 1825 [R(int) = 0.0000]             | 1825 [R(int) = 0.0000]                      |  |
| Completeness to theta = $25.50^{\circ}$ | 99.4 %                             | 99.4 %                                      |  |
| Absorption correction                   | Psi-Scan                           | Psi-Scan                                    |  |
| Max. and min. transmission              | 0.9356 and 0.7916                  | 0.9356 and 0.7916                           |  |
| Refinement method                       | Full-matrix least-square           | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters          | 1825 / 0 / 127                     | 1825 / 0 / 127                              |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.947                              | 0.947                                       |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0628, wR2 = 0.1             | R1 = 0.0628, wR2 = 0.1169                   |  |
| R indices (all data)                    | R1 = 0.1602, wR2 = 0.1             | R1 = 0.1602, $wR2 = 0.1369$                 |  |
| Largest diff. peak and hole             | 0.227 and -0.285 e.Å <sup>-3</sup> | 0.227 and -0.285 e.Å <sup>-3</sup>          |  |

**7a**: The crystals were grown by slow evaporation of a CHCl<sub>3</sub> solution at room temperature. One single crystal of  $0.10 \times 0.40 \times 0.50 \text{ mm}^3$  was mounted using a glass fiber on the goniometer at 293(2) K.

| Table 16. Crystal data and structure refiner | ment for <b>7a</b> .               |                                             |  |
|----------------------------------------------|------------------------------------|---------------------------------------------|--|
| Identification code                          | tkbxr3                             |                                             |  |
| Empirical formula                            | C22 H14 N2                         |                                             |  |
| Formula weight                               | 306.35                             |                                             |  |
| Temperature                                  | 293(2) K                           |                                             |  |
| Wavelength                                   | 1.54176 Å                          |                                             |  |
| Crystal system                               | Monoclinic                         |                                             |  |
| Space group                                  | P21/n                              |                                             |  |
| Unit cell dimensions                         | a = 5.6880(13)  Å                  | $\alpha = 90^{\circ}$ .                     |  |
|                                              | b = 37.790(16) Å                   | $\beta = 93.264(18)^{\circ}.$               |  |
|                                              | c = 7.7896(16)  Å                  | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                       | 1671.7(9) Å <sup>3</sup>           |                                             |  |
| Z                                            | 4                                  |                                             |  |
| Density (calculated)                         | 1.217 Mg/m <sup>3</sup>            |                                             |  |
| Absorption coefficient                       | 0.558 mm <sup>-1</sup>             | 0.558 mm <sup>-1</sup>                      |  |
| F(000)                                       | 640                                | 640                                         |  |
| Crystal size                                 | 0.50 x 0.40 x 0.10 mm <sup>3</sup> | 0.50 x 0.40 x 0.10 mm <sup>3</sup>          |  |
| Theta range for data collection              | 2.34 to 70.06°.                    | 2.34 to 70.06°.                             |  |
| Index ranges                                 | -6<=h<=6, 0<=k<=46, 0              | -6<=h<=6, 0<=k<=46, 0<=l<=9                 |  |
| Reflections collected                        | 3168                               | 3168                                        |  |
| Independent reflections                      | 3168 [R(int) = 0.0000]             | 3168 [R(int) = 0.0000]                      |  |
| Completeness to theta = $70.00^{\circ}$      | 100.0 %                            | 100.0 %                                     |  |
| Absorption correction                        | Psi-Scan                           | Psi-Scan                                    |  |
| Max. and min. transmission                   | 0.9463 and 0.7677                  | 0.9463 and 0.7677                           |  |
| Refinement method                            | Full-matrix least-squares          | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters               | 3168 / 0 / 218                     | 3168 / 0 / 218                              |  |
| Goodness-of-fit on F <sup>2</sup>            | 1.065                              | 1.065                                       |  |
| Final R indices [I>2sigma(I)]                | R1 = 0.0692, wR2 = 0.13            | R1 = 0.0692, $wR2 = 0.1878$                 |  |
| R indices (all data)                         | R1 = 0.1301, $wR2 = 0.2$           | 176                                         |  |
| Extinction coefficient                       | 0.0073(10)                         |                                             |  |
| Largest diff. peak and hole                  | 0.198 and -0.203 e.Å <sup>-3</sup> | 0.198 and -0.203 e.Å <sup>-3</sup>          |  |

**7b:** The crystals were grown in by slow evaporation of dioxane at room temperature. One single crystal of  $0.20 \times 0.20 \times 0.50 \text{ mm}^3$  was mounted using a glass fiber at 293(2) K on the goniometer.

|  | Table 17. | Crystal | data and | structure | refinement | for | 7b. |
|--|-----------|---------|----------|-----------|------------|-----|-----|
|--|-----------|---------|----------|-----------|------------|-----|-----|

| Empirical formula                       | C22 H8 F4 N2                       | C22 H8 F4 N2                                |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|
| Formula weight                          | 376.31                             | 376.31                                      |  |
| Temperature                             | 293(2) K                           | 293(2) K                                    |  |
| Wavelength                              | 1.54176 Å                          |                                             |  |
| Crystal system                          | Orthorhombic                       |                                             |  |
| Space group                             | pbc21                              |                                             |  |
| Unit cell dimensions                    | a = 6.067(4)  Å                    | $\alpha$ = 90°.                             |  |
|                                         | b = 11.96(2) Å                     | $\beta = 90^{\circ}$ .                      |  |
|                                         | c = 24.27(4)  Å                    | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                  | 1761(5) Å <sup>3</sup>             |                                             |  |
| Z                                       | 4                                  |                                             |  |
| Density (calculated)                    | 1.419 Mg/m <sup>3</sup>            |                                             |  |
| Absorption coefficient                  | 0.982 mm <sup>-1</sup>             |                                             |  |
| F(000)                                  | 760                                | 760                                         |  |
| Crystal size                            | 0.50 x 0.20 x 0.20 mm <sup>3</sup> | 0.50 x 0.20 x 0.20 mm <sup>3</sup>          |  |
| Theta range for data collection         | 3.64 to 70.10°.                    | 3.64 to 70.10°.                             |  |
| Index ranges                            | 0<=h<=7, 0<=k<=14, 0<              | 0<=h<=7, 0<=k<=14, 0<=l<=29                 |  |
| Reflections collected                   | 1650                               | 1650                                        |  |
| Independent reflections                 | 1650 [R(int) = 0.0000]             | 1650 [R(int) = 0.0000]                      |  |
| Completeness to theta = $70.00^{\circ}$ | 96.0 %                             | 96.0 %                                      |  |
| Absorption correction                   | Psi-Scan                           | Psi-Scan                                    |  |
| Max. and min. transmission              | 0.8279 and 0.6396                  | 0.8279 and 0.6396                           |  |
| Refinement method                       | Full-matrix least-squares          | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters          | 1650 / 1 / 254                     | 1650 / 1 / 254                              |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.873                              | 0.873                                       |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0793, $wR2 = 0.13$          | R1 = 0.0793, $wR2 = 0.1898$                 |  |
| R indices (all data)                    | R1 = 0.1919, wR2 = 0.24            | R1 = 0.1919, $wR2 = 0.2411$                 |  |
| Absolute structure parameter            | 0.0(6)                             | 0.0(6)                                      |  |
| Extinction coefficient                  | 0.0034(9)                          | 0.0034(9)                                   |  |
| Largest diff. peak and hole             | 0.447 and -0.213 e.Å <sup>-3</sup> | 0.447 and -0.213 e.Å <sup>-3</sup>          |  |

**9b**: The crystals were grown by slow evaporation of a CHCl<sub>3</sub> solution at room temperature. One single crystal of 0.10 X 0.20 X 0.30 mm<sup>3</sup> was mounted using a glass fiber at 293(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

| Empirical formula                       | C70 H118 Cl2 F4 N2 P4              | C70 H118 Cl2 F4 N2 P4 Pt2                   |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|
| Formula weight                          | 1648.68                            | 1648.68                                     |  |
| Temperature                             | 293(2) K                           | 293(2) K                                    |  |
| Wavelength                              | 1.54176 Å                          |                                             |  |
| Crystal system                          | Monoclinic                         |                                             |  |
| Space group                             | P21/n                              |                                             |  |
| Unit cell dimensions                    | a = 12.307(4)  Å                   | $\alpha = 90^{\circ}$ .                     |  |
|                                         | b = 23.926(4)  Å                   | $\beta = 114.10(2)^{\circ}.$                |  |
|                                         | c = 14.694(5)  Å                   | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                  | 3949.8(18) Å <sup>3</sup>          |                                             |  |
| Z                                       | 2                                  |                                             |  |
| Density (calculated)                    | 1.386 Mg/m <sup>3</sup>            | 1.386 Mg/m <sup>3</sup>                     |  |
| Absorption coefficient                  | 8.279 mm <sup>-1</sup>             | 8.279 mm <sup>-1</sup>                      |  |
| F(000)                                  | 1676                               | 1676                                        |  |
| Crystal size                            | 0.30 x 0.20 x 0.10 mm <sup>3</sup> | 0.30 x 0.20 x 0.10 mm <sup>3</sup>          |  |
| Theta range for data collection         | 3.69 to 69.77°.                    | 3.69 to 69.77°.                             |  |
| Index ranges                            | -14<=h<=13, 0<=k<=29               | ), 0<=l<=17                                 |  |
| Reflections collected                   | 7310                               |                                             |  |
| Independent reflections                 | 7310 [R(int) = 0.0000]             |                                             |  |
| Completeness to theta = $69.77^{\circ}$ | 98.3 %                             | 98.3 %                                      |  |
| Absorption correction                   | Psi-Scan                           | Psi-Scan                                    |  |
| Max. and min. transmission              | 0.4915 and 0.1902                  | 0.4915 and 0.1902                           |  |
| Refinement method                       | Full-matrix least-square           | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters          | 7310 / 2 / 260                     | 7310 / 2 / 260                              |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.989                              | 0.989                                       |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0850, wR2 = 0.2             | R1 = 0.0850, wR2 = 0.2110                   |  |
| R indices (all data)                    | R1 = 0.1709, wR2 = 0.2             | R1 = 0.1709, wR2 = 0.2465                   |  |
| Extinction coefficient                  | 0.00143(12)                        | 0.00143(12)                                 |  |
| Largest diff. peak and hole             | 0.949 and -1.112 e.Å <sup>-3</sup> | 0.949 and -1.112 e.Å <sup>-3</sup>          |  |

Table S18. Crystal data and structure refinement for 9b.

Largest diff. peak and hole

**9c**: The crystals were grown by slow evaporation of a  $CH_2Cl_2$ :Hexanes solvent mixture at room temperature. One single crystal of 0.10 X 0.15 X 0.60 mm<sup>3</sup> was mounted using a glass fiber at 193(2) K on the goniometer. One standard reflection was measured every 100 reflections, no intensity decay was observed during data collection.

| Empirical formula                       | C70 H118 Cl6 N2 P4 P               | C70 H118 Cl6 N2 P4 Pt2                      |  |
|-----------------------------------------|------------------------------------|---------------------------------------------|--|
| Formula weight                          | 1714.42                            | 1714.42                                     |  |
| Temperature                             | 193(2) K                           | 193(2) K                                    |  |
| Wavelength                              | 0.70930 Å                          |                                             |  |
| Crystal system                          | Monoclinic                         |                                             |  |
| Space group                             | P21/n                              |                                             |  |
| Unit cell dimensions                    | a = 14.294(5)  Å                   | $\alpha$ = 90°.                             |  |
|                                         | b = 12.545(5)  Å                   | $\beta = 98.48(3)^{\circ}.$                 |  |
|                                         | c = 23.197(9) Å                    | $\gamma = 90^{\circ}$ .                     |  |
| Volume                                  | 4114(3) Å <sup>3</sup>             |                                             |  |
| Z                                       | 2                                  |                                             |  |
| Density (calculated)                    | 1.384 Mg/m <sup>3</sup>            | 1.384 Mg/m <sup>3</sup>                     |  |
| Absorption coefficient                  | 3.706 mm <sup>-1</sup>             | 3.706 mm <sup>-1</sup>                      |  |
| F(000)                                  | 1740                               | 1740                                        |  |
| Crystal size                            | 0.60 x 0.15 x 0.10 mm <sup>3</sup> | 0.60 x 0.15 x 0.10 mm <sup>3</sup>          |  |
| Theta range for data collection         | 1.57 to 25.48°.                    |                                             |  |
| Index ranges                            | -17<=h<=17, 0<=k<=1                | 5, 0<=l<=28                                 |  |
| Reflections collected                   | 7306                               |                                             |  |
| Independent reflections                 | 7306 [R(int) = 0.0000]             | 7306 [R(int) = 0.0000]                      |  |
| Completeness to theta = $25.48^{\circ}$ | 95.0 %                             | 95.0 %                                      |  |
| Absorption correction                   | Psi-Scan                           | Psi-Scan                                    |  |
| Max. and min. transmission              | 0.7082 and 0.2146                  | 0.7082 and 0.2146                           |  |
| Refinement method                       | Full-matrix least-square           | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters          | 7306 / 0 / 187                     | 7306 / 0 / 187                              |  |
| Goodness-of-fit on F <sup>2</sup>       | 0.830                              |                                             |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0859, wR2 = 0.1             | R1 = 0.0859, wR2 = 0.1211                   |  |
| R indices (all data)                    | R1 = 0.2789, wR2 = 0.1             | R1 = 0.2789, wR2 = 0.1551                   |  |
| Largest diff. peak and hole             | 0.951 and -1.656 e.Å <sup>-3</sup> | 0.951 and -1.656 e.Å <sup>-3</sup>          |  |

Table S19. Crystal data and structure refinement for **9c**.



Figure S1. Absorption spectra of compounds **4a,b,c** and **5a,b,c** in 2MeTHF at 298 (blue) and 77 K (black).


Figure S2. Absorption spectra of compounds **11a,c** in 2MeTHF at 298 (blue) and 77 K (black), along with PhC=C-Pt(PBu<sub>3</sub>)<sub>2</sub>-C=CC<sub>6</sub>H<sub>4</sub>-NH-C<sub>6</sub>F<sub>4</sub>-NH-C<sub>6</sub>H<sub>4</sub>C=C-Pt(PBu<sub>3</sub>)<sub>2</sub>-C=CPh and PhC=C-Pt(PBu<sub>3</sub>)<sub>2</sub>-C=CC<sub>6</sub>H<sub>4</sub>-N=C<sub>6</sub>F<sub>4</sub>=N-C<sub>6</sub>H<sub>4</sub>C=C-Pt(PBu<sub>3</sub>)<sub>2</sub>-C=CPh.



Figure S3. Absorption spectra of polymers **8b,c** and **10a,b** in 2MeTHF at 298 (blue) and 77 K (black).



Table S20. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for compound **5a**.

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                                                               |
|-----|----------------------|-------|-------|---------------------------------------------------------------------------------------|
| 1   | 17686                | 565   | 0.996 | HOMO→LUMO (93)                                                                        |
| 2   | 19232                | 519   | 0.000 | H-1→LUMO (93)                                                                         |
| 3   | 27823                | 359   | 0.948 | H-8 $\rightarrow$ LUMO (27), H-4 $\rightarrow$ LUMO (15), H-2 $\rightarrow$ LUMO (46) |
| 4   | 28658                | 348   | 0.000 | H-3→LUMO (86)                                                                         |
| 5   | 29617                | 337   | 0.000 | H-5→LUMO (94)                                                                         |
| 6   | 29753                | 336   | 0.034 | H-8→LUMO (36), H-4→LUMO (60)                                                          |
| 7   | 31145                | 321   | 0.000 | H-7→LUMO (90)                                                                         |
| 8   | 31167                | 320   | 0.000 | H-6→LUMO (91)                                                                         |
| 9   | 31467                | 317   | 0.578 | H-8 $\rightarrow$ LUMO (26), H-4 $\rightarrow$ LUMO (18), H-2 $\rightarrow$ LUMO (35) |
| 10  | 31976                | 312   | 0.000 | H-9→LUMO (96)                                                                         |
| 11  | 34721                | 288   | 0.000 | HOMO→L+1 (91)                                                                         |
| 12  | 36954                | 270   | 0.058 | H-1→L+1 (72), HOMO→L+2 (23)                                                           |
| 13  | 37935                | 263   | 0.363 | H-11→LUMO (34), HOMO→L+2 (44)                                                         |
| 14  | 38291                | 261   | 0.000 | H-10→LUMO (12), HOMO→L+3 (74)                                                         |
| 15  | 38376                | 260   | 0.000 | H-10→LUMO (79), HOMO→L+3 (10)                                                         |
| 16  | 39081                | 255   | 0.042 | H-1→L+3 (11), HOMO→L+4 (67)                                                           |
| 17  | 39582                | 252   | 0.000 | H-1→L+2 (25), HOMO→L+5 (53)                                                           |
| 18  | 39671                | 252   | 0.000 | H-1→L+2 (66), HOMO→L+5 (21)                                                           |
| 19  | 39986                | 250   | 0.216 | H-11→LUMO (61), HOMO→L+2 (19)                                                         |
| 20  | 40328                | 247   | 0.001 | H-13→LUMO (28), H-12→LUMO (68)                                                        |



Figure S4. Representation of the frontier MOs of compound **5a**. The units are a.u.



Table S21. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for compound **4a**.

| <br>1 | 27570 | 362 | 1.916 | HOMO→LUMO (98)                                                         |
|-------|-------|-----|-------|------------------------------------------------------------------------|
| 2     | 31845 | 314 | 0.000 | $HOMO \rightarrow L+1$ (96)                                            |
| 3     | 32391 | 308 | 0.059 | HOMO→L+2 (95)                                                          |
| 4     | 33895 | 295 | 0.000 | HOMO→L+3 (92)                                                          |
| 5     | 34118 | 293 | 0.027 | HOMO→L+4 (93)                                                          |
| 6     | 34928 | 286 | 0.000 | H-1→LUMO (93)                                                          |
| 7     | 37486 | 266 | 0.590 | H-1→L+1 (82), HOMO→L+5 (15)                                            |
| 8     | 38546 | 259 | 0.000 | H-1→L+2 (94)                                                           |
| 9     | 39840 | 251 | 0.086 | H-2→LUMO (11), H-1→L+1 (14), HOMO→L+5 (68)                             |
| 10    | 40254 | 248 | 0.006 | H-1→L+3 (76)                                                           |
| 11    | 40325 | 247 | 0.000 | H-1→L+4 (76)                                                           |
| 12    | 40590 | 246 | 0.000 | H-1→L+7 (14), HOMO→L+6 (76)                                            |
| 13    | 40601 | 246 | 0.001 | H-1→L+6 (15), HOMO→L+7 (77)                                            |
| 14    | 42771 | 233 | 0.164 | H-2→LUMO (66)                                                          |
| 15    | 42896 | 233 | 0.001 | H-7→L+1 (22), H-6→LUMO (58)                                            |
| 16    | 42922 | 232 | 0.031 | H-7→LUMO (30), H-6→L+1 (27), H-5→LUMO (14), H-2→LUMO (16)              |
| 17    | 44781 | 223 | 0.001 | H-2→L+1 (69), H-1→L+5 (14)                                             |
| 18    | 44960 | 222 | 0.000 | H-2→L+1 (17), H-1→L+5 (73)                                             |
| 19    | 45073 | 221 | 0.011 | H-7→LUMO (18), H-5→LUMO (14), H-3→LUMO (30), H-2→L+2 (28)              |
| 20    | 46234 | 216 | 0.097 | H-5→LUMO (17), H-3→LUMO (29), H-2→L+2 (13), H-2→L+4 (18), H-1→L+3 (15) |
|       |       |     |       |                                                                        |



Figure S5. Representation of the frontier MOs of compound 4a. The units are a.u.



Table S22. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for compound **5b**.

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                     |
|-----|----------------------|-------|-------|---------------------------------------------|
| 1   | 16628                | 601   | 1.635 | HOMO→LUMO (93)                              |
| 2   | 19507                | 512   | 0.000 | H-1→LUMO (87)                               |
| 3   | 24634                | 405   | 0.849 | H-9→LUMO (24), H-2→LUMO (64)                |
| 4   | 25370                | 394   | 0.000 | H-3→LUMO (97)                               |
| 5   | 26293                | 380   | 0.000 | H-8→LUMO (27), H-4→LUMO (47), H-1→LUMO (10) |
| 6   | 27321                | 366   | 0.021 | H-5→LUMO (94)                               |
| 7   | 27383                | 365   | 0.000 | H-8→LUMO (29), H-6→LUMO (25), H-4→LUMO (42) |
| 8   | 28290                | 353   | 0.000 | H-7→LUMO (89)                               |
| 9   | 28292                | 353   | 0.000 | H-8→LUMO (34), H-6→LUMO (62)                |
| 10  | 29879                | 334   | 0.205 | H-9→LUMO (61), H-2→LUMO (21)                |
| 11  | 33195                | 301   | 0.000 | H-10→LUMO (11), HOMO→L+1 (80)               |
| 12  | 35777                | 279   | 0.000 | H-10→LUMO (85), HOMO→L+1 (13)               |
| 13  | 36112                | 276   | 0.081 | H-11→LUMO (81), H-1→L+1 (10)                |
| 14  | 37237                | 268   | 0.021 | H-1→L+1 (68), HOMO→L+2 (23)                 |
| 15  | 37318                | 267   | 0.001 | H-12→LUMO (97)                              |
| 16  | 37321                | 267   | 0.000 | H-13→LUMO (97)                              |
| 17  | 39139                | 255   | 0.420 | H-11→LUMO (12), H-1→L+1 (10), HOMO→L+2 (58) |
| 18  | 39506                | 253   | 0.000 | H-14→LUMO (31), HOMO→L+3 (50)               |
| 19  | 39601                | 252   | 0.000 | H-14→LUMO (59), HOMO→L+3 (27)               |
| 20  | 39764                | 251   | 0.039 | H-4→L+1 (10), HOMO→L+4 (66)                 |



Figure S6. Representation of the frontier MOs of compound **5b**. The units are a.u.



Table S23. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for compound **4b**.

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                                  |
|-----|----------------------|-------|-------|----------------------------------------------------------|
| 1   | 28579                | 350   | 2.182 | HOMO→LUMO (98)                                           |
| 2   | 33504                | 298   | 0.014 | HOMO→L+2 (92)                                            |
| 3   | 33798                | 295   | 0.000 | H-1→LUMO (23), HOMO→L+1 (76)                             |
| 4   | 34904                | 286   | 0.000 | H-1→LUMO (75), HOMO→L+1 (22)                             |
| 5   | 36107                | 276   | 0.000 | HOMO→L+3 (86)                                            |
| 6   | 36205                | 276   | 0.023 | HOMO→L+4 (84)                                            |
| 7   | 38405                | 260   | 0.367 | H-1→L+1 (66), HOMO→L+5 (29)                              |
| 8   | 38797                | 257   | 0.000 | H-1→L+2 (97)                                             |
| 9   | 39547                | 252   | 0.242 | H-2→LUMO (12), H-1→L+1 (28), HOMO→L+5 (54)               |
| 10  | 39800                | 251   | 0.000 | HOMO→L+6 (90)                                            |
| 11  | 41374                | 241   | 0.001 | H-5→LUMO (11), H-1→L+3 (68), HOMO→L+4 (10)               |
| 12  | 41471                | 241   | 0.000 | H-4→LUMO (12), H-1→L+4 (65), HOMO→L+3 (11)               |
| 13  | 41997                | 238   | 0.000 | H-7→L+1 (19), H-6→LUMO (39), HOMO→L+8 (22)               |
| 14  | 41998                | 238   | 0.000 | H-7→LUMO (39), H-6->L+1 (19), HOMO→L+7 (22)              |
| 15  | 42603                | 234   | 0.001 | H-7→L+1 (10), H-6→LUMO (22), H-1→L+7 (13), HOMO→L+8 (48) |
| 16  | 42609                | 234   | 0.000 | H-7→LUMO (22), H-6→L+1 (10), H-1→L+8 (14), HOMO→L+7 (49) |
| 17  | 42817                | 233   | 0.092 | H-2→LUMO (77)                                            |
| 18  | 43253                | 231   | 0.072 | H-3→LUMO (65), H-2→L+2 (15)                              |
| 19  | 43680                | 228   | 0.000 | H-1→L+5 (91)                                             |
| 20  | 45593                | 219   | 0.000 | H-8→LUMO (19), H-2→L+1 (72)                              |



Figure S7. Representation of the frontier MOs of compound 4b. The units are a.u.



Table S24. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for compound **5c**.

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                                                                 |
|-----|----------------------|-------|-------|-----------------------------------------------------------------------------------------|
| 1   | 13725                | 728   | 0.648 | HOMO→LUMO (96)                                                                          |
| 2   | 15186                | 658   | 0.000 | H-1→LUMO (96)                                                                           |
| 3   | 23951                | 417   | 0.000 | H-2→LUMO (93)                                                                           |
| 4   | 25280                | 395   | 0.105 | H-7→LUMO (14), H-3→LUMO (78)                                                            |
| 5   | 25589                | 390   | 0.000 | H-6→LUMO (92)                                                                           |
| 6   | 26299                | 380   | 0.546 | H-8→LUMO (78), H-7→LUMO (12)                                                            |
| 7   | 26479                | 377   | 0.000 | H-9→LUMO (88)                                                                           |
| 8   | 27077                | 369   | 0.000 | H-5→LUMO (14), H-4→LUMO (83)                                                            |
| 9   | 27077                | 369   | 0.000 | H-5→LUMO (77), H-4→LUMO (15)                                                            |
| 10  | 28909                | 345   | 0.802 | H-8→LUMO (12), H-7→LUMO (63), H-3→LUMO (13)                                             |
| 11  | 32451                | 308   | 0.000 | H-14 $\rightarrow$ LUMO (35), H-10 $\rightarrow$ LUMO (42), HOMO $\rightarrow$ L+2 (17) |
| 12  | 32976                | 303   | 0.000 | H-10→LUMO (10), HOMO→L+2 (81)                                                           |
| 13  | 34194                | 292   | 0.000 | H-14→LUMO (10), HOMO→L+1 (81)                                                           |
| 14  | 34675                | 288   | 0.231 | H-11→LUMO (45), H-1→L+2 (14), HOMO→L+3 (30)                                             |
| 15  | 35063                | 285   | 0.077 | H-11→LUMO (39), H-1→L+2 (36), HOMO→L+3 (15)                                             |
| 16  | 35224                | 283   | 0.030 | H-1→L+2 (44), HOMO→L+3 (40)                                                             |
| 17  | 35401                | 282   | 0.000 | H-14 $\rightarrow$ LUMO (41), H-10 $\rightarrow$ LUMO (38), HOMO $\rightarrow$ L+1 (14) |
| 18  | 35795                | 279   | 0.122 | H-15→LUMO (68), H-1→L+1 (24)                                                            |
| 19  | 36078                | 277   | 0.003 | H-13→LUMO (23), H-12→LUMO (75)                                                          |
| 20  | 36079                | 277   | 0.000 | H-13→LUMO (75), H-12→LUMO (23)                                                          |



Figure S8. Representation of the frontier MOs of compound 5c. The units are a.u.



Table S25. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for compound **4c**.

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                                   |
|-----|----------------------|-------|-------|-----------------------------------------------------------|
| 1   | 28293                | 353   | 1.401 | HOMO→LUMO (98)                                            |
| 2   | 28917                | 345   | 0.041 | HOMO→L+1 (97)                                             |
| 3   | 31357                | 318   | 0.000 | H-1→LUMO (13), H-1→L+1 (20), HOMO→L+2 (60)                |
| 4   | 31634                | 316   | 0.000 | H-1→LUMO (70), HOMO->L+2 (21)                             |
| 5   | 31898                | 313   | 0.000 | H-1→LUMO (14%), H-1->L+1 (75)                             |
| 6   | 34870                | 286   | 0.036 | H-1→L+2 (91)                                              |
| 7   | 35762                | 279   | 0.000 | HOMO→L+3 (89)                                             |
| 8   | 37462                | 266   | 0.194 | HOMO→L+4 (46), HOMO→L+6 (34)                              |
| 9   | 37533                | 266   | 0.000 | H-4→LUMO (10), H-1→L+6 (15), HOMO→L+5 (67)                |
| 10  | 37590                | 266   | 0.217 | HOMO→L+4 (44), HOMO→L+6 (31)                              |
| 11  | 38233                | 261   | 0.721 | H-1→L+3 (86)                                              |
| 12  | 39226                | 254   | 0.028 | H-3→LUMO (35), H-2→L+1 (37)                               |
| 13  | 40240                | 248   | 0.000 | H-1→L+4 (95)                                              |
| 14  | 40630                | 246   | 0.002 | HOMO→L+7 (93)                                             |
| 15  | 41543                | 240   | 0.046 | H-2→LUMO (16), H-1→L+5 (42), HOMO→L+6 (25)                |
| 16  | 41567                | 240   | 0.000 | H-4→LUMO (13%), H-1→L+6 (54), HOMO→L+5 (29)               |
| 17  | 41740                | 239   | 0.066 | H-5→LUMO (15), H-2→LUMO (33), H-1→L+5 (10)                |
| 18  | 41809                | 239   | 0.000 | H-7→L+3 (11), H-6→LUMO (53)                               |
| 19  | 41845                | 238   | 0.000 | H-3→L+2 (62)                                              |
| 20  | 41850                | 238   | 0.037 | H-7→LUMO (27), H-6→L+3 (13), H-5→LUMO (13), H-2→LUMO (18) |



Figure S9. Representation of the frontier MOs of compound 4c. The units are a.u.



Table S26 . TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for the model  $[PtL_2]a$ .

| No. | v(cm⁻¹) | λ(nm) | f     | Major contributions (%)                                   |
|-----|---------|-------|-------|-----------------------------------------------------------|
| 1   | 15481   | 646   | 2.081 | HOMO $\rightarrow$ LUMO (78), HOMO $\rightarrow$ L+1 (10) |
| 2   | 16279   | 614   | 0.001 | $HOMO \rightarrow L+1$ (81)                               |
| 3   | 17650   | 566   | 0.179 | H-1→LUMO (75), HOMO→LUMO (10)                             |
| 4   | 18246   | 548   | 0.159 | H-1→LUMO (10), H-1→L+1 (80)                               |
| 5   | 19479   | 513   | 0.201 | H-4→LUMO (19), H-4→L+1 (27), H-3→LUMO (28), H-3→L+1 (11)  |
| 6   | 19506   | 512   | 0.002 | H-4→LUMO (41), H-3→L+1 (43)                               |
| 7   | 20536   | 487   | 0.000 | H-2→LUMO (85)                                             |
| 8   | 20753   | 482   | 0.000 | H-2→L+1 (87)                                              |
| 9   | 22865   | 437   | 0.001 | H-4→LUMO (13), H-3→LUMO (58), H-3→L+1 (21)                |
| 10  | 23247   | 430   | 0.001 | H-4→LUMO (18), H-4→L+1 (62), H-3→L+1 (12)                 |
| 11  | 25103   | 398   | 0.206 | H-8→L+1 (25), H-6→LUMO (17), H-6→L+1 (33)                 |
| 12  | 25597   | 390   | 0.123 | H-9→LUMO (30), H-7→LUMO (31)                              |
| 13  | 26785   | 373   | 0.000 | H-5→LUMO (100)                                            |
| 14  | 26992   | 370   | 0.000 | H-5→L+1 (100)                                             |
| 15  | 28323   | 353   | 1.338 | H-8→L+1 (26), H-6→LUMO (25)                               |
| 16  | 28470   | 351   | 0.252 | H-7→LUMO (25), H-6→LUMO (35), H-6→L+1 (18)                |
| 17  | 28544   | 350   | 0.114 | H-9→LUMO (19), H-6→LUMO (10), H-6→L+1 (16)                |
| 18  | 29102   | 343   | 0.113 | H-11→LUMO (24), H-11→L+1 (63)                             |
| 19  | 29180   | 342   | 0.050 | H-12→LUMO (31), H-7→LUMO (17), H-7→L+1 (37)               |
| 20  | 29222   | 342   | 0.043 | H-12→LUMO (38), H-12→L+1 (11), H-7→L+1 (37)               |
|     |         |       |       |                                                           |



LUMO+1: -0.1107



LUMO: -0.1120



HOMO: -0.1939



HOMO+3: -0.2205

Figure S10. Representation of the frontier MOs of the model [PtL<sub>2</sub>]a. The units are a.u.



Table S27. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for the model  $[PtL_2]a^2$ .

| No. | v(cm⁻¹) | λ(nm) | f     | Major contributions (%)                                   |
|-----|---------|-------|-------|-----------------------------------------------------------|
| 1   | 26556   | 376   | 3.023 | H-1→L+1 (12), HOMO→LUMO (77)                              |
| 2   | 27814   | 360   | 0.047 | H-1→LUMO (47), HOMO→L+1 (48)                              |
| 3   | 29195   | 342   | 0.380 | H-1→L+1 (25), HOMO→L+2 (59)                               |
| 4   | 29575   | 338   | 0.010 | H-1→LUMO (40), H-1→L+2 (14), HOMO→L+1 (-7)                |
| 5   | 305062  | 327   | 0.177 | H-1→L+1 (52), HOMO→LUMO (20), HOMO→L+2 (21)               |
| 6   | 31306   | 319   | 0.020 | H-1→L+2 (44), HOMO→L+4 (28)                               |
| 7   | 31344   | 319   | 0.044 | H-1→L+2 (31), H-1→L+4 (13), HOMO→L+4 (38)                 |
| 8   | 31484   | 317   | 0.049 | H-1→L+3 (37), HOMO→L+3 (39)                               |
| 9   | 32647   | 306   | 0.044 | H-1→L+6 (18), HOMO→L+6 (58)                               |
| 10  | 32858   | 304   | 0.156 | H-1→L+7 (15), HOMO→L+5 (22), HOMO→L+7 (16)                |
| 11  | 33101   | 302   | 0.223 | H-2→LUMO (11), H-1→L+7 (24), HOMO→L+7 (22), HOMO→L+8 (18) |
| 12  | 33340   | 300   | 0.049 | H-2→LUMO (25), HOMO→L+5 (20)                              |
| 13  | 33568   | 297   | 0.035 | H-1→L+9 (31), HOMO→L+9 (41)                               |
| 14  | 33640   | 297   | 0.043 | H-2→LUMO (14), H-1→L+10 (11), HOMO→L+10 (3)               |
| 15  | 33823   | 295   | 0.118 | H-4→LUMO (26), H-4→L+2 (17), HOMO→L+10 (27)               |
| 16  | 34266   | 292   | 0.024 | H-2→L+1 (13), H-1→L+5 (13), HOMO→L+5 (10)                 |
| 17  | 34486   | 290   | 0.048 | H-4→LUMO (14), H-2→LUMO (14), HOMO→L+8 (20)               |
| 18  | 34694   | 288   | 0.012 | H-1→L+3 (30), H-1→L+5 (13), HOMO→L+3 (29), HOMO→L+5 (17)  |
| 19  | 34857   | 287   | 0.087 | H-2→L+1 (34), H-1→L+5 (27)                                |
| 20  | 35027   | 285   | 0.001 | HOMO→L+11 (74)                                            |



Figure S11. Representation of the frontier MOs of the model [PtL<sub>2</sub>]a'. The units are a.u.



Table S28. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for the model [PtL<sub>2</sub>]b.

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                                  |
|-----|----------------------|-------|-------|----------------------------------------------------------|
| 1   | 14596                | 685   | 2.423 | HOMO->LUMO (97)                                          |
| 2   | 15523                | 644   | 0.537 | H-1->LUMO (15), HOMO->L+1 (82)                           |
| 3   | 16532                | 604   | 0.687 | H-1→LUMO (56), H-1→L+1 (30), HOMO→L+1 (10)               |
| 4   | 16732                | 597   | 0.466 | H-1→LUMO (25), H-1→L+1 (67)                              |
| 5   | 18128                | 551   | 0.000 | H-2→LUMO (97)                                            |
| 6   | 18434                | 542   | 0.003 | H-2→L+1 (96)                                             |
| 7   | 19709                | 507   | 0.047 | H-4→LUMO (29), H-4→L+1 (16), H-3→LUMO (38)               |
| 8   | 19857                | 503   | 0.008 | H-4→LUMO (22), H-3→L+1 (48)                              |
| 9   | 21919                | 456   | 0.002 | H-4→LUMO (24), H-3→LUMO (48), H-3→L+1 (17)               |
| 10  | 22402                | 446   | 0.019 | H-4→LUMO (10), H-4→L+1 (47), H-3→L+1 (24)                |
| 11  | 23108                | 432   | 0.319 | H-8→LUMO (11), H-8→L+1 (39), H-6→L+1 (18), H-4→L+1 (15)  |
| 12  | 23448                | 426   | 0.166 | H-9→LUMO (48), H-9→L+1 (11), H-7→LUMO (20)               |
| 13  | 24177                | 413   | 0.000 | H-5→LUMO (99)                                            |
| 14  | 24487                | 408   | 0.000 | H-5→L+1 (99)                                             |
| 15  | 25594                | 390   | 0.483 | H-17→L+1 (10), H-8→L+1 (19), H-6→LUMO (10), H-6→L+1 (23) |
| 16  | 25611                | 390   | 0.000 | H-11→LUMO (80), H-11→L+1 (16)                            |
| 17  | 25646                | 389   | 0.040 | H-10→LUMO (22), H-10→L+1 (70)                            |
| 18  | 25789                | 387   | 0.347 | H-18→LUMO (12), H-9→LUMO (17), H-7→LUMO (34)             |
| 19  | 27217                | 367   | 0.001 | H-6→LUMO (58), H-6→L+1 (18)                              |
| 20  | 27270                | 366   | 0.005 | H-14→LUMO (57), H-14→L+1 (11), H-6→LUMO (13)             |



Figure S12. Representation of the frontier MOs of the model [PtL<sub>2</sub>]b. The units are a.u.



Table S29. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for the model  $[PtL_2]b'$ .

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                                    |
|-----|----------------------|-------|-------|------------------------------------------------------------|
| 1   | 26983                | 370   | 3.158 | H-1→L+1 (11), HOMO→LUMO (79)                               |
| 2   | 28314                | 353   | 0.060 | H-1→LUMO (27), HOMO→L+1 (69)                               |
| 3   | 30128                | 331   | 0.154 | H-1→LUMO (42), H-1→L+1 (14), HOMO→L+1 (-21), HOMO→L+2 (15) |
| 4   | 30340                | 329   | 0.118 | H-1→LUMO (20), H-1→L+1 (12), HOMO→L+2 (48)                 |
| 5   | 30933                | 323   | 0.452 | H-1→L+1 (57), HOMO→LUMO (19), HOMO→L+2 (16)                |
| 6   | 31937                | 313   | 0.011 | H-1→L+3 (19), HOMO→L+3 (72)                                |
| 7   | 32301                | 309   | 0.013 | H-1→L+4 (34), HOMO→L+4 (56)                                |
| 8   | 32847                | 304   | 0.001 | H-1→L+2 (81)                                               |
| 9   | 33354                | 299   | 0.040 | H-4→LUMO (34), H-4→L+2 (22), H-2→LUMO (35)                 |
| 10  | 33579                | 297   | 0.536 | H-4→LUMO (19), H-2→LUMO (33), H-2→L+1 (10)                 |
| 11  | 33886                | 295   | 0.076 | H-3→LUMO (23), H-2→L+1 (29), HOMO→L+5 (25)                 |
| 12  | 34576                | 289   | 0.001 | H-2→L+1 (20), HOMO→L+5 (39)                                |
| 13  | 34808                | 287   | 0.016 | HOMO→L+6 (57)                                              |
| 14  | 35107                | 284   | 0.015 | H-1→L+10 (13%), HOMO→L+10 (70)                             |
| 15  | 35121                | 284   | 0.001 | H-1→L+7 (15), H-1→L+9 (11), HOMO→L+7 (27), HOMO→L+9 (28)   |
| 16  | 35221                | 283   | 0.016 | H-1→L+7 (10), H-1→L+9 (11%), HOMO→L+7 (24), HOMO→L+9 (31)  |
| 17  | 35303                | 283   | 0.025 | HOMO→L+8 (41%)                                             |
| 18  | 35329                | 283   | 0.006 | H-1→L+4 (47), HOMO→L+4 (30)                                |
| 19  | 35444                | 282   | 0.006 | H-4→L+1 (18), H-3→LUMO (29), H-2→L+1 (11)                  |
| 20  | 35591                | 280   | 0.013 | H-1→L+3 (52), HOMO→L+3 (13), HOMO→L+8 (10)                 |



Figure S13. Representation of the frontier MOs of the model [PtL<sub>2</sub>]b'. The units are a.u.



Table S30. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for the model  $[PtL_2]c$ .

| No. | v(cm <sup>-1</sup> ) | λ(nm) | f     | Major contributions (%)                       |
|-----|----------------------|-------|-------|-----------------------------------------------|
| 1   | 12073                | 828   | 1.836 | HOMO→LUMO (78)                                |
| 2   | 12991                | 769   | 0.016 | HOMO→L+1 (81)                                 |
| 3   | 14137                | 707   | 0.108 | H-1→LUMO (77), HOMO→LUMO (10)                 |
| 4   | 14791                | 676   | 0.109 | H-1→L+1 (81)                                  |
| 5   | 15470                | 646   | 0.024 | H-4→LUMO (57), H-4→L+1 (13), H-2→LUMO (16)    |
| 6   | 15609                | 640   | 0.016 | H-3→LUMO (14), H-3→L+1 (59)                   |
| 7   | 16795                | 595   | 0.001 | H-4→LUMO (11), H-3→LUMO (16), H-2→LUMO (71)   |
| 8   | 17045                | 586   | 0.000 | H-3→L+1 (14), H-2→L+1 (76)                    |
| 9   | 18825                | 531   | 0.000 | H-3→LUMO (62), H-3→L+1 (17)                   |
| 10  | 19238                | 519   | 0.001 | H-4→LUMO (12), H-4→L+1 (70), H-2→L+1 (11)     |
| 11  | 22641                | 441   | 0.289 | H-6→LUMO (14), H-6→L+1 (52)                   |
| 12  | 22762                | 439   | 0.001 | H-5→LUMO (98)                                 |
| 13  | 23007                | 434   | 0.001 | H-5→L+1 (98)                                  |
| 14  | 23123                | 432   | 0.084 | H-7→LUMO (55), H-7→L+1 (12)                   |
| 15  | 24016                | 416   | 0.000 | H-9→LUMO (79), H-9→L+1 (15)                   |
| 16  | 24041                | 415   | 0.000 | H-8→LUMO (20), H-8→L+1 (75)                   |
| 17  | 25267                | 395   | 0.001 | H-6→LUMO (74), H-6→L+1 (19)                   |
| 18  | 25368                | 394   | 0.062 | H-15→LUMO (15), H-11→LUMO (54), H-11→L+1 (10) |
| 19  | 25391                | 393   | 0.044 | H-13→L+1 (24), H-10→LUMO (14), H-10→L+1 (49)  |
| 20  | 25882                | 386   | 0.013 | H-7→LUMO (12), H-7→L+1 (63)                   |



Figure S14. Representation of the frontier MOs of the model [PtL<sub>2</sub>]c. The units are a.u.



Table S31. TDDFT Calculated energy, position, oscillator strength (f) and major contributions of the first 20 singlet-singlet electronic transitions for the model  $[PtL_2]c'$ .

| No. | v(cm⁻¹) | λ(nm) | f     | Major contributions (%)                                   |
|-----|---------|-------|-------|-----------------------------------------------------------|
| 1   | 24700   | 405   | 0.575 | HOMO→LUMO (88)                                            |
| 2   | 25672   | 389   | 0.010 | HOMO→L+2 (89)                                             |
| 3   | 26515   | 377   | 0.876 | H-1→L+1 (17), HOMO→L+1 (77)                               |
| 4   | 26885   | 371   | 0.058 | H-1→L+3 (25), HOMO→L+3 (72)                               |
| 5   | 29084   | 343   | 0.068 | H-1→LUMO (13), H-1→L+1 (51), HOMO→L+1 (12), HOMO→L+5 (13) |
| 6   | 29168   | 342   | 0.141 | HOMO→L+5 (73)                                             |
| 7   | 29412   | 340   | 0.243 | H-1→LUMO (62), H-1→L+1 (14)                               |
| 8   | 29537   | 338   | 0.035 | H-1→L+3 (59), HOMO→L+3 (23)                               |
| 9   | 29735   | 336   | 0.018 | H-1→L+4 (26), HOMO→L+4 (60)                               |
| 10  | 29918   | 334   | 0.497 | HOMO→L+6 (69)                                             |
| 11  | 30295   | 330   | 0.004 | H-3→L+2 (14), H-1→L+2 (69)                                |
| 12  | 30568   | 327   | 0.167 | H-3→LUMO (71)                                             |
| 13  | 31021   | 322   | 0.007 | H-3→L+2 (69), H-1→L+2 (17)                                |
| 14  | 31121   | 321   | 0.016 | H-2→L+1 (38), H-2→L+3 (36)                                |
| 15  | 31391   | 318   | 0.037 | H-2→L+1 (39), H-2→L+3 (37)                                |
| 16  | 32414   | 308   | 0.007 | H-2→L+4 (10), H-1→L+4 (54), HOMO→L+4 (31)                 |
| 17  | 32584   | 307   | 0.022 | H-4→LUMO (46), H-4→L+1 (18), H-4→L+6 (12), H-2→LUMO (13)  |
| 18  | 33237   | 300   | 0.005 | H-4→LUMO (12), H-4→L+1 (43), H-2→LUMO (24)                |
| 19  | 33357   | 299   | 0.004 | H-1→L+5 (14), H-1→L+6 (67)                                |
| 20  | 33669   | 297   | 0.000 | HOMO→L+7 (77)                                             |



Figure S15. Representation of the frontier MOs of compound [PtL<sub>2</sub>]c'. The units are a.u.



Figure S16. TDDFT calculated spectra of the spacers 4a,b,c and 5a,b,c using a THF polarizable continuum solvation model. The green lines represent the calculated 0-0 transitions. The red lines represent the same transitions except a thickness of 500 cm<sup>-1</sup> is assigned give a shape to the absorption spectra. The vibronic components are not included.



Figure S17. TDDFT calculated spectra of the Pt-containing models  $[PtL_2]a,b,c$  and  $[PtL_2]a',b',c'$  using a THF polarizable continuum solvation model. The green lines represent the calculated 0-0 transitions. The red lines represent the same transitions except a thickness of 500 cm<sup>-1</sup> is assigned give a shape to the absorption spectra. The vibronic components are not included.



Figure S18. CV traces of compound **4a**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S19. CV traces of compound 4a, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black line) and 500mV/s (blue dotted line).



Figure S20. CV traces of compound **4b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S21. CV traces of compound **4b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S22. CV traces of compound **4c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s.  $1^{st}$  sweep in red broken line and  $2^{nd}$  sweep in black solid line.



Figure S23. CV traces of compound 4c, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S24. CV traces of compound **5a**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s 1<sup>st</sup> sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S25. CV traces of compound 5a, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S26. CV traces of compound **5b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black line) and 500mV/s (turquoise dotted line).



Figure S27. CV traces of compound **5b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; red dot line) and without acid (black line).



Figure S28. CV traces of compound **5c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S29. CV traces of ligand 5c, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S30. CV of polymer **8b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S31. CV traces of polymer **8b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S32. CV traces of polymer **8b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; solid lines) and without acid (black dotted line).



Figure S33. CV traces of polymer **8c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S34. CV traces of polymer **8c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S35. CV traces of polymer **8c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; broken line) and without acid (black line).


Figure S36. CV traces of model compound **9b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black solid line).



Figure S37. CV traces of model compound 9b, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S38. CV traces of model compound **9b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; red broken line) and without acid (black line).



Figure S39. CV traces of model compound **9c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S40. CV traces of model compound 9c, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S41. CV traces of model compound **9c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; broken lines) and without acid (black line).



Figure S42. CV traces of polymer **10a**, 4mM in DMF containing 0,1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep in (black line).



Figure S43. CV traces of polymer 10a, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black) and 500mV/s (turquoise).



Figure S44. CV traces of polymer **10a**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; broken lines) and without acid (black line).



Figure S45. CV traces of polymer **10b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s.  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S46. CV traces of polymer **10b**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black line) and 500mV/s (blue broken line).



Figure S47. CV traces of polymer **10c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black and) 500mV/s (turquoise dotes line).



Figure S48. CV traces of polymer **10c**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA; broken lines) and without acid (black line).



Figure S49. CV traces compound **11a**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s  $1^{st}$  sweep (red broken line) and  $2^{nd}$  sweep (black line).



Figure S50. CV traces of model compound **11a**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s (black line) and 500mV/s (turquoise dotted line).



Figure S51. CV traces of model compound **11a**, 4mM in DMF containing 0.1M of TBAPF<sub>6</sub> at 100mV/s, with acid (0.7M TFA red broken line) and without acid (black line).



Figure S52. Comparison of the transient decay curves of **4a**, **4b**, **5b**, **8b**, **10b** and **11b** at 298 K in degassed 2MeTHF.  $\lambda_{exc}$ = 355 nm. Please note that **10b** is its mixed-valence form.

References.

(S1) Gagnon, K.; Bérubé, J.-F.; Bellows, D.; Caron, L.; Aly, S. M.; Wittmeyer, A.; Alaa Abd-El-Aziz, A. S.; Fortin, D.; Harvey, P. D. *Organometallics*, 2008, 27, 2201-2214.
(S2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Jr. Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; W. Gill, P. M.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.

Gaussian, Inc. Pittsburgh P.A., 1998.

(S3) Hohenberg, P.; Kohn, W. Phys. Rev. 1964 136, B864-B871.

(S4) Kohn, W.; Sham, L. J. Phys. Rev. 1965 140, A1133-A1138.

(S5)Salahub, D. R.; Zerner M. C. (The Challenge of d and f Electrons), ACS, Washington, D.C., 1989.

(S6) Parr, R. G.; Yang, W. (Density-functional theory of atoms and molecules) Oxford Univ. Press, Oxford, 1989.

(S7) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218-8224.

(S8) Bauernschmitt, R.; Ahlrichs R. Chem. Phys. Lett. 1996, 256, 454-464.

(S9) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. **1998**, 108, 4439-4449.

(S10) Becke, A.D. J. Chem. Phys. 1993, 98, 5648-5652.

(S11) Yang, Lee, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 785-789.

(S12) Miehlich, A.; Savin, H.; Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206.

(S13) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939-947.

(S14) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. **1982**, *104*, 2797-2803.

(S15) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; Defrees, D. J.; Pople, J. A.; Binkley, J. S. *J. Am. Chem. Soc.* **1982**, *104*, 5039-5048.

(S16) Dobbs, K. D.; Hehre, W. J. J. Comp. Chem. 1986, 7, 359-378.

(S17) Dobbs, K. D.; Hehre, W. J. J. Comp. Chem. 1987, 8, 861-879.

(S18) Dobbs, K. D.; Hehre, W. J. J. Comp. Chem. 1987, 8, 880-893.

(S19) SBKJC Polarized (p,2d) - LFK <u>EMSL Basis Set Exchange Library</u>.

(S20) Labello, N.P.; Ferreira, A.M.; Kurtz, H.A. J. Comput. Chem. 2005, 26, 1464-1471,

(S21) Labello, N.P.; Ferreira, A.M.; Kurtz, H.A. Int. J. Quant. Chem. 2006, 106, 3140-3148.

(S22) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560-571.

(S23) SBKJC ECP EMSL Basis Set Exchange Library.

(S24) Stevens, W.J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612-630.

(S25) Lowry, M. S.; Hudson, W. R.; Pascal, Jr., R. A.; Bernhard S. J. Am. Chem. Soc. **2004**, *126*, 14129-14135.

(S26) O'Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. J. Comp. Chem. 2008, 29, 839-845.

(S27) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093.

(S28) Flack, H.D.; Blanc, E.; Schwarzenbach, D. J. Appl. Cryst., 1992, 25, 455-459.

(S29) Gabe, E.J.; Le Page, Y.; Charland, J.-P.; Lee, F.L.; White, P.S. J. Appl. Cryst., **1999**, 22, 384-387.

(S30) Sheldrick, G. M. SHELXS-97, G.M. Sheldrick, University of Göttingen, Germany, 1997, Release 97-2.

(S31) Sheldrick, G. M. SHELXL-97, Sheldrick, G. M. University of Göttingen, Germany, 1997, Release 97-2.