Chiral Nematic Stained Glass: Controlling the Optical Properties of Nanocrystalline Celluose-Templated Materials

Supporting Information

Joel A. Kelly,[†] Kevin E. Shopsowitz,[†] Jun Myun Ahn,[†] Wadood Y. Hamad,[‡] and Mark J. $MacLachlan^{\dagger,*}$

† Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1

CelluForce Inc., 3800 Wesbrook Mall, Vancouver, British Columbia, Canada V6S 2L9

Figure S1: a) SEM of NCC/SiO₂ composite loaded with 2.5 mM Fe(NO₃)₃ showing a loss of chiral ordering. b) Higher magnification image showing a disordered, layered structure.

Figure S2: XRD of 1 mM H₂PtCl₆-loaded sample after calcination.

Figure S3: a) TEM of Au nanoparticles prepared by calcination at 540°C of a 1 mM-loaded HAuCl₄ NCC/SiO₂ composite. b) Histogram of size distribution derived from TEM analysis and lognormal density (28.2 ± 20.7 nm).

Figure S4: XRD of calcined Au-loaded SiO₂ films showing characteristic reflections of fcc Au

(inset: 111 reflection).

Table S1: Comparison of Nitrogen Adsorption Data for calcined HAuCl4-loaded sample	es.
(Constant NCC/TMOS ratio in each composite 65 wt% NCC)	

HAuCl ₄ loading (mM)	BET Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)	BJH Pore diameter (nm) ^a
0	769	0.65	3.7
1	727	0.65	3.9
2.5	657	0.62	4.2
5	561	0.52	4.1
10	654	0.66	4.66

^a Calculated from the adsorption branch of the isotherm.

Figure S5: a) SEM of a carbonized 1 mM HAuCl₄-loaded film. b) N_2 isotherm and BJH poresize distribution (inset) of a Au-loaded carbon film after etching with NaOH. c) XRD of Auloaded carbon film showing characteristic reflections of fcc Au. d) SEM of a fractured edge of a carbonized 1 mM H₂PtCl₆ film. e) N_2 isotherm and BJH pore-size distribution (inset) of a Ptloaded carbon film after etching with NaOH. f) XRD of Pt-loaded carbon film showing characteristic reflections of fcc Pt.

Figure S6: CD spectra of dry Ag nanoparticle-decorated films prepared from varying loadings of AgNO₃.