Supporting Information

Total Synthesis of Muamvatin

Dale E. Ward* and M. Mehdi Zahedi
Department of Chemistry, University of Saskatchewan, 110 Science Place,
Saskatoon SK S7N 5C9, Canada
dale.ward@usask.ca

Table of Contents			
Experimental procedures and characterization data ..S2-S12			
(+)-9................... 33	14...................... 55	21a S8	$25 . S 11 ~$
(+)-S2..................S3	15......................S6	21b S9	$26 . S 12 ~$
12 33	16....................... 56	22 S9	1S12
13 54	17...................... S 7	23 S10	
S3 44	18...................... S 7	$24 . ~ S 10 ~$	
S4 55	20....................... S 8	S5 S11	
Tables S1-S2: Comparison of NMR data for natural 1 with those for synthetic $\mathbf{1}$............................S13-S14			
Structure determination for triol 14 (also, 13, S3, and S4) ...S15			
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of reported compounds ..S16-S69			
(+)-S2............ S16-17	15..................S28-29	21bS40-41	$26552-53$
12 S18-19	16.................S30-31	22S42-43	1...................S54-55
13 S20-21	17.................S32-33	23 $544-45$	S6a/S6bS56-57
S3 S22-23	18.................S34-35	24S46-47	
S4 S24-25	20.................S36-37	S5 448 -49	
14 S26-27	21a................S38-39	$25 S 50-51$	

Experimental Procedures

General Methods. Anhydrous solvents were distilled under argon atmosphere as follows: Tetrahydrofuran (THF) from benzophenone sodium ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\mathrm{CaH}_{2} ; \mathrm{MeOH}$ from $\mathrm{Mg}(\mathrm{OMe})_{2}$; DMSO from CaH_{2} at reduced pressure (stored over $4 \AA$ molecular sieves). All experiments involving air- and/or moisture-sensitive compounds were conducted in an oven dried round-bottom flask capped with a rubber septum, and attached via a needle and connecting tubing to an argon manifold equipped with mercury bubbler (ca. 5 mm positive pressure of argon). Low temperature baths were: ice/water $\left(0^{\circ} \mathrm{C}\right), \mathrm{CO}_{2(\mathrm{~s})} / \mathrm{CH}_{3} \mathrm{CN}\left(-50^{\circ} \mathrm{C}\right)$, and $\mathrm{CO}_{2(\mathrm{~s})} /$ acetone $\left(-78{ }^{\circ} \mathrm{C}\right)$. Unless otherwise noted, reaction temperatures refer to that of the bath. Concentration refers to removal of volatiles at water aspirator pressure on a rotary evaporator. Preparative TLC (PTLC) was carried out on glass plates ($20 \times 20 \mathrm{~cm}$) pre-coated $(0.25 \mathrm{~mm})$ with silica gel $60 \mathrm{~F}_{254}$. Materials were detected by visualization under an ultraviolet lamp (254 nm) and/or by treating a 1 cm vertical strip removed from the plate with a solution of phosphomolybdic acid (5\%) containing a trace of ceric sulfate in aqueous sulfuric acid ($5 \% \mathrm{v} / \mathrm{v}$) followed by charring on a hot plate. Flash column chromatography (FCC) was performed according to Still et al. ${ }^{1}$ with silica gel $60(40-63 \mu \mathrm{~m})$. All mixed solvent eluents are reported as v / v solutions. Unless otherwise noted, all reported compounds were homogeneous by thin layer chromatography (TLC) and by ${ }^{1} \mathrm{H}$ NMR.
Spectral Data. High resolution mass spectra (HRMS) and low resolution mass spectra (LRMS) were obtained on a double focusing high resolution spectrometer; only partial data are reported. EI ionization was accomplished at 70 eV and CI ionization at 50 eV with ammonia as the reagent gas; only partial data are reported. Alternatively, HRMS were obtained on an LC-MS/MS time-of-flight high resolution spectrometer with electrospray ionization (ESI) from acetonitrile solution. IR spectra were recorded on a Fourier transform interferometer using a diffuse reflectance cell (DRIFT); only diagnostic and/or intense peaks are reported. Unless otherwise noted, NMR spectra were measured in CDCl_{3} solution at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$. Signals due to the solvent (${ }^{13} \mathrm{C}$ NMR) or residual protonated solvent (${ }^{1} \mathrm{H} N \mathrm{NR}$) served as the internal standard: $\mathrm{CDCl}_{3}\left(7.26 \delta_{\mathrm{H}}, 77.23 \delta_{\mathrm{C}}\right) ; \mathrm{C}_{6} \mathrm{D}_{6}\left(7.16 \delta_{\mathrm{H}}, 128.39 \delta_{\mathrm{C}}\right)$. The ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), ap (apparent); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. Coupling constants (J) are reported to the nearest 0.5 Hz (i.e., $\pm 0.25 \mathrm{~Hz}$ as consistent with the digital resolution ca. $0.2 \mathrm{~Hz} / \mathrm{pt}$). The ${ }^{1} \mathrm{H}$ NMR assignments were made based on chemical shift and multiplicity and were confirmed by homonuclear decoupling and/or two-dimensional correlation experiments (gCOSY, gHSQC, gHMBC). ${ }^{2}$ The ${ }^{13} \mathrm{C}$ NMR assignments were made on the basis of chemical shift and multiplicity ${ }^{3}$ (as determined by ${ }^{13} \mathrm{C}$-DEPT or gHSQC) and were confirmed by two-dimensional ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ correlation experiments (gHSQC and/or gHMBC). ${ }^{2}$ Specific rotations $\left([\alpha]_{\mathrm{D}}\right)$ are the average of 5 determinations at ambient temperature using a $1 \mathrm{~mL}, 10 \mathrm{dm}$ cell; the units are 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$, the concentrations (c) are reported in $\mathrm{g} / 100 \mathrm{~mL}$, and the values are rounded to reflect the accuracy of the measured concentrations (the major source of error).
Materials. The following compounds and reagents were prepared as described previously: (-)-S1 ($>98 \%$ ee); ${ }^{4} \mathbf{7} ;{ }^{5}$ 19; ${ }^{6}$ W-2 Raney nickel. ${ }^{7}$ 2,6-Lutidine was distilled from CaH_{2} and stored over $4 \AA$ molecular sieves. All other reagents were commercially available and unless otherwise noted, were used as received.

[^0](3R)-3-[(R)-(6S)-1,4-Dioxa-8-thiaspiro[4.5]dec-6-yl(hydroxy)methyl]tetrahydro-4H-thiopyran-4-one (9). The isomerization of (-)-S1 to $(+)-\mathbf{9}(1 \mathrm{~g}$ scale) in the

(-)-S1
ca. 1: 2.3 presence of silica gel and $\mathrm{Et}_{3} \mathrm{~N}$ was reported previously. ${ }^{8}$ Using the same procedure, a slurry of silica gel $60(230-400$ mesh, 12.1 g$)$ and $\mathrm{Et}_{3} \mathrm{~N}(7.2$ $\mathrm{mL}, 5.2 \mathrm{~g}, 51 \mathrm{mmol}$) were added to a solution of (-)-S1 ($>98 \%$ ee; $4.03 \mathrm{~g}, 13.2 \mathrm{mmol}$) in ethyl acetate $(52 \mathrm{~mL})$ at room temperature. The resulting slurry was stirred for 8 h to obtain a (2.3:1 equilibrium mixture of $(+)-9$ and $(-)$-S1, respectively. The mixture was filtered and silica gel was washed with ethyl acetate. The combined filtrate and ethyl acetate washings were concentrated and fractionated by FCC (15% diethyl ether in dichloromethane) to give $(+)-9$ as a colorless oil (2.56 $\mathrm{g}, 63 \%)$ and a mixture of $(-)-\mathbf{S 1}$ and $(+)-9(1.42 \mathrm{~g})$ which subjected to the same reaction conditions (4.3 g silica gel, $2.6 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}, 18 \mathrm{~mL}$ ethyl acetate) to give (-)-S1 (435 mg, 11%) and additional (+)-9 (960 mg 23\%; 86\% over 2 cycles): $[\alpha]_{\mathrm{D}}+65\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right)$ (lit. ${ }^{8}[\alpha]_{\mathrm{D}}+64$; c $1.0, \mathrm{CHCl}_{3}$). Spectroscopic data for $(+)-9$ closely matched that previously reported for (\pm)-9. ${ }^{9}$
(3R)-3-[(R)-(6S)-1,4-Dioxa-8-thiaspiro[4.5]dec-6-yl(triethylsilyloxy)methyl]tetrahydro-4H-thiopyran-4-one

(+)-S2
(S1). Using the same procedure previously described for the preparation of (\pm)S2, ${ }^{10}$ 2,6-lutidine ($4.0 \mathrm{ml}, 3.7 \mathrm{~g}, 34 \mathrm{mmol}$), TES-OTf ($6.0 \mathrm{ml}, 6.9 \mathrm{~g}, 26 \mathrm{mmol}$) were added sequentially in to a solution of (+)-9 $(5.34 \mathrm{~g}, 17.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(78 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{MeOH}(1 \mathrm{~mL})$ was added, and the reaction mixture were diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed sequentially with NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (15% ethyl acetate in hexane) to give the title compound ($6.68 \mathrm{~g}, 91 \%$) $\left([\alpha]_{\mathrm{D}}+12 ;\right.$ c $\left.1.3 \mathrm{CHCl}_{3}\right)$. Spectroscopic data for $(+)-\mathbf{S} 2$ was consistent with that previously reported for (\pm)-S2. ${ }^{10}$
(4R,5R,6S)-6-(2-Ethyl-1,3-dioxolan-2-yl)-4-methyl-5-((triethylsilyl)oxy)heptan-3-one (12). A suspension of

12 Raney nickel (W2; 70 mL settled volume) in EtOH (150 mL) was added to (+)-S2 (4.90 g, 11.7 mmol) and the mixture was heated under reflux with vigorous stirring. After 2 h (reaction was complete by TLC analysis), the mixture was decanted and the solid was suspended in $\mathrm{EtOH}(200 \mathrm{~mL})$ and heated under reflux with vigorous stirring for several min. This washing procedure was repeated twice with acetone, and twice with methanol. The combined organic layers were filtered through Celite ${ }^{\circledR}$, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to give the title compound $(3.28 \mathrm{~g}, 78 \%)$: colorless oil, TLC $\mathrm{R}_{f}=0.3\left(10 \%\right.$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}-60\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $v_{\max }$ $1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.15(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=3,4 \mathrm{~Hz}, \mathrm{HC}-5), 3.95-3.87\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-4^{\prime}, \mathrm{H}_{2} \mathrm{C}-5^{\prime}\right)$, $2.75(1 \mathrm{H}, \mathrm{dq}, J=4,6.5 \mathrm{~Hz}, \mathrm{HC}-4), 2.64(1 \mathrm{H}, \mathrm{dq}, J=18,7 \mathrm{~Hz}, \mathrm{HC}-2), 2.41(1 \mathrm{H}, \mathrm{dq}, J=18,7 \mathrm{~Hz}, \mathrm{HC}-2), 1.85(1 \mathrm{H}$, $\mathrm{dq}, J=3,7 \mathrm{~Hz}, \mathrm{HC}-6), 1.68(1 \mathrm{H}, \mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1 "), 1.59(1 \mathrm{H}, \mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1 \mathrm{l}), 1.03(3 \mathrm{H}, \mathrm{d}, J$ $\left.=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 0.96\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCCSi} \times 3\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-\right.$ $\left.2^{\prime \prime}\right), 0.83\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.62\left(6 \mathrm{H}\right.$, ap q, $\left.J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.1(\mathrm{~s}$, C-3), 113.8 ($\mathrm{s}, \mathrm{C}-2$ '), 72.9 ($\mathrm{d}, \mathrm{C}-5$), 65.2 (t, C-4'), 65.1 (t, C-5'), 52.7 (d, C-4), 41.9 (d, C-6), 36.4 (t, C-2), 26.9 (t, C$1^{\prime \prime}$), $12.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right), 10.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 7.8(\mathrm{q}, \mathrm{C}-2$ " $), 7.4(\mathrm{q}, \mathrm{C}-1), 7.3\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 5.6\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$; LRMS

[^1](CI, NH_{3}), m / z (relative intensity): 359 ($[\mathrm{M}+1]^{+}, 0.5$), 329 (2), 273 (2), 227 (8), 101 (100), 57 (2); HRMS m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}: 359.2618$; found: $359.2611\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$.
(2S,3R,4R,6S,7R)-2-(2-Ethyl-1,3-dioxolan-2-yl)-7-hydroxy-4,6-dimethyl-3-(triethylsilyloxy)nonan-5-one (13). A solution of (-)-12 (3.61 g, 10.1 mmol$)$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added

13 dropwise via syringe to a stirred solution of $\mathrm{Et}_{3} \mathrm{~N}(3.1 \mathrm{~mL}, 2.2 \mathrm{~g}, 22$ $\mathrm{mmol})$ and $9-\mathrm{BBN}-\mathrm{OTf}(0.5 \mathrm{M}$ in hexane; $40 \mathrm{~mL}, 20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(220 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. After 2 h , a solution of propanal (3.6 $\mathrm{mL}, 2.9 \mathrm{~g}, 50 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was slowly added via syringe. After 4 h , the reaction was quenched by sequential addition of MeOH $(90 \mathrm{~mL})$, phosphate buffer ($\mathrm{pH} 7 ; 300 \mathrm{~mL}$), and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(90$ mL). The reaction vessel was transferred to an ice bath and after vigorous stirring for 20 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give the crude product whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of $2.4: 1$ mixture of a single adduct ($>20: 1 \mathrm{dr}$) and (-)-12, respectively. Fractionation of the crude by FCC (20% ethyl acetate in hexane) gave recovered (-)-12 (0.80 g, 22\%) and the title compound ($2.6 \mathrm{~g}, 62 \%$): colorless oil, $\mathrm{TLC}_{f}=0.3$ (16% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}+92$ (c 1.7, $\left.\mathrm{CHCl}_{3}\right)$; IR (DRIFT) $v_{\max } 3510,1696,2878 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09(1 \mathrm{H}, \mathrm{dd}, J=3,4.5 \mathrm{~Hz}, \mathrm{HC}-$ 3), 3.94-3.85 (5H, m, H2C-4', H2C-5', HC-7), $3.29(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{HOC}-3), 2.99(1 \mathrm{H}, \mathrm{dq}, J=4.5,7 \mathrm{~Hz}, \mathrm{HC}-$ 4), $2.82(1 \mathrm{H}, \mathrm{dq}, J=2,7.5 \mathrm{~Hz}, \mathrm{HC}-6), 1.91(1 \mathrm{H}, \mathrm{dq}, J=3,7 \mathrm{~Hz}, \mathrm{HC}-2), 1.66\left(1 \mathrm{H}, \mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime \prime}\right)$, $1.61-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-1\right.$ ", HC-8), $1.10\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.96(9 \mathrm{H}, \mathrm{t}, J=$ $\left.8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2{ }^{\prime \prime}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right)$, $0.62\left(6 \mathrm{H}\right.$, ap q, $\left.J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.3$ (s, C-5), 113.7 (s, C-2'), 73.0 (d, C-3), 72.2 (d, C-7), 65.1 (t, C-4'), 65.0 (t, C5'), 51.3 (d, C-4), 49.3 (d, C-6), 41.2 (d, C-2), 26.9 (t, C-1"), 26.7 (t, C-8), 13.0 (q, $\left.\mathrm{CH}_{3} \mathrm{C}-4\right), 10.6(\mathrm{q}, \mathrm{C}-1$ or $\mathrm{C}-9), 10.5(\mathrm{q}, \mathrm{C}-1$ or $\mathrm{C}-9), 9.3\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 7.5(\mathrm{q}, \mathrm{C}-2 \mathrm{C}), 7.2\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 5.5(\mathrm{t} \times 3$, $\left.\mathrm{CH}_{2} \mathrm{Si}\right)$; LRMS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right), m / z$ (relative intensity): 417 ([M+1] ${ }^{+}, 6$), 387 (20), 355 (30), 329 (30), 297 (23), 229 (13), 199 (10), 165 (6), 101 (100); HRMS (CI, NH_{3}), m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H}: 417.3036$; found: 417.3040.

2S,3R,4R,6S,7R)-2-(2-Ethyl-1,3-dioxolan-2-yl)-4,6-dimethyl-3,7-bis[(triethylsilyl)oxy]nonan-5-one (S3). TES-Cl

S3
$(1.40 \mathrm{~mL}, 1.27 \mathrm{~g}, 8.43 \mathrm{mmol})$ and imidazole $(0.62 \mathrm{~g}, 9.0 \mathrm{mmol})$ were added sequentially to a stirred solution of (+)-13 (2.50 g, 6.01 mmol) in DMF (20 mL) at ambient temperature under argon. After 18 h , the mixture was diluted by ethyl acetate, washed with 1 M aq HCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to give the title compound ($2.84 \mathrm{~g}, 89 \%$): colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.3(10 \%$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}+16\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $\nu_{\text {max }} 1704$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(1 \mathrm{H}, \mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, \mathrm{HC}-3), 3.95-3.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-4{ }^{\prime}, \mathrm{H}_{2} \mathrm{C}-5^{\max }\right), 3.82$ $(1 \mathrm{H}, \mathrm{ddd}, J=5,5.5,6 \mathrm{~Hz}, \mathrm{HC}-7), 2.95(1 \mathrm{H}, \mathrm{dq}, J=4.5,7 \mathrm{~Hz}, \mathrm{HC}-4), 2.85(1 \mathrm{H}, \mathrm{dq}, J=6,7 \mathrm{~Hz}, \mathrm{HC}-6), 1.83(1 \mathrm{H}$, $\mathrm{dq}, J=4.5,7 \mathrm{~Hz}, \mathrm{HC}-2), 1.69\left(1 \mathrm{H}, \mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime \prime}\right), 1.58(1 \mathrm{H}, \mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1 "), 1.49(1 \mathrm{H}$, $\mathrm{ddq}, J=4.5,14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-8), 1.32(1 \mathrm{H}, \mathrm{ddq}, J=4.5,14.5,7.5 \mathrm{~Hz}, \mathrm{HC}-8), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.07$ $\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.96\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.95\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.90(3 \mathrm{H}, \mathrm{d}, J=7$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right), 0.65-0.59\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CSi} \times 6\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.0$ ($\mathrm{s}, \mathrm{C}-5$), 113.8 ($\mathrm{s}, \mathrm{C}-2$ '), 74.8 (d, C-7), 71.1 (d, C-3), 65.2 ($\left.\mathrm{x} \times 2, \mathrm{C}-4^{\prime}, \mathrm{C}-5{ }^{\prime}\right), 52.4$ (d, C-4), 49.7 (d, C-6), 43.1 (d, C-2), 28.0 (t, C-8), 27.2 (t, C-1"), 13.5 (q, CH3 C-6), 12.4 ($q, \mathrm{CH}_{3} \mathrm{C}-4$), 11.2 (q, C-1), $9.7(\mathrm{q}, \mathrm{C}-9), 7.5\left(\mathrm{q}, \mathrm{C}-2^{\prime}\right), 7.4\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 7.2\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 5.6\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right), 5.4\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$; LRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ (relative intensity): $531\left([\mathrm{M}+1]^{+}, 0.4\right), 501$ (1), 399 (12), 337 (7), 273 (5), 173 (32), 132 (31), 101 (100); HRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ calcd for $\mathrm{C}_{28} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}_{2}+\mathrm{H}$: 531.3901; found: 531.3897.
(2S,3R,4S,5S,6R,7R)-2-(2-Ethyl-1,3-dioxolan-2-yl)-4,6-dimethyl-3,7-bis((triethylsilyl)oxy)nonan-5-ol
(S4).

S4
LiHBEt_{3} (1 M in THF; $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added dropwise via syringe to a pre-cooled, stirred solution of $\mathbf{S 3}(270 \mathrm{mg}, 0.51 \mathrm{mmol})$ in THF (24 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was removed from the ice bath and allowed to slowly warm to ambient temperature. After 18 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by sequential addition of $\mathrm{MeOH}(4 \mathrm{~mL})$, phosphate buffer ($\mathrm{pH} 7 ; 5 \mathrm{~mL}$), and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(3 \mathrm{~mL})$ with vigorous stirring. After 20 min , the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give crude product whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of a $7: 1$ mixture of diastereomers (283 mg). Fractionation of the crude by FCC (10% ethyl acetate in hexane) gave the title compound ($219 \mathrm{mg}, 81 \%$): colorless oil, $\operatorname{TLC} \mathrm{R}_{f}=0.3$ (10% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}-11\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $v_{\text {max }} 3512 \mathrm{~cm}^{-1} ; \mathbf{H}^{1} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.30(1 \mathrm{H}, \mathrm{dd}, J=1,6.5 \mathrm{~Hz}, \mathrm{HC}-3), 4.04(1 \mathrm{H}, \mathrm{ddd}, J=1.5$, $5.5,9.5 \mathrm{~Hz}, \mathrm{HC}-7), 3.95-3.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-4^{\prime}, \mathrm{H}_{2} \mathrm{C}-5\right.$ '), $3.48(1 \mathrm{H}$, ap d, $J=8.5 \mathrm{~Hz}, \mathrm{HO}), 3.29$ (1 H , ddd, $J=3.5,8.5$, $9.5 \mathrm{~Hz}, \mathrm{HC}-5), 1.93(1 \mathrm{H}, \mathrm{dq}, J=6.5,7 \mathrm{~Hz}, \mathrm{HC}-2), 1.88(1 \mathrm{H}, \mathrm{ddq}, J=1,9.5,7 \mathrm{~Hz}, \mathrm{HC}-4), 1.79-1.67$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-1^{1}$, HC-6), 1.66-1.54 ($3 \mathrm{H}, \mathrm{m}, \mathrm{HC}-1$ ", $\mathrm{H}_{2} \mathrm{C}-8$), 1.04 ($3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6$), 0.98 ($3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1$), 0.96 (9 H , $\left.\mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.95\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.84\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2{ }^{\prime \prime}\right), 0.81(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-9\right), 0.71\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.65\left(6 \mathrm{H}\right.$, ap q, $\left.J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right), 0.62\left(6 \mathrm{H}\right.$, ap q, $\left.J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right)$; ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 114.2\left(\mathrm{~s}, \mathrm{C}-2^{\prime}\right), 77.5(\mathrm{~s}, \mathrm{C}-5), 75.1(\mathrm{~d}, \mathrm{C}-7), 71.5(\mathrm{~d}, \mathrm{C}-3), 65.3(\mathrm{t}, \mathrm{C}-4)$), $65.1(\mathrm{t}, \mathrm{C}-$ $\left.5^{\prime}\right), 43.8$ (d, C-4), 43.5 (d, C-2), 34.2 (d, C-6), $28.0(\mathrm{t}, \mathrm{C}-8), 27.1(\mathrm{t}, \mathrm{C}-1 \mathrm{l}), 13.1(\mathrm{q}, \mathrm{C}-1), 11.1\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 10.2(\mathrm{q}$, $\mathrm{C}-9)$, $9.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right), 7.6(\mathrm{q}, \mathrm{C}-2 \mathrm{l}), 7.4\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 7.1\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSI}\right), 5.8\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right), 5.7\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$; LRMS (CI, NH_{3}), m / z (relative intensity): 533 ([M+1] ${ }^{+}, 1$), 401 (6), 373 (7), 339 (39), 201 (11), 173 (12), 132 (31), 132 (11), 101 (100). HRMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}+\mathrm{H}$: 533.4058 ; found: $533.4032\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$.
(2S,3R,4S,5S,6S,7R)-2-(2-Ethyl-1,3-dioxolan-2-yl)-4,6-dimethylnonane-3,5,7-triol (14). $\operatorname{LiHBEt}_{3}(1 \mathrm{M}$ in THF;

14 $17.0 \mathrm{~mL}, 17 \mathrm{mmol}$) was added dropwise via syringe to a stirred solution of $\mathbf{S 3}$ $(2.96 \mathrm{~g}, 5.57 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction vessel was removed from the ice bath and allowed to slowly warm to ambient temperature. After 18 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by sequential addition of $\mathrm{MeOH}(20 \mathrm{~mL})$, phosphate buffer ($\mathrm{pH} 7 ; 40 \mathrm{~mL}$), and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(20 \mathrm{~mL})$ with vigorous stirring. After 20 min , the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the crude product $\mathbf{S 4}(3.15 \mathrm{~g})$ that was taken up in THF $(20 \mathrm{~mL})$. TBAF $(1.2 \mathrm{~g}, 4.6 \mathrm{mmol})$ was added to the stirred solution of $\mathbf{S 4}$ at ambient temperature. After 4 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (40% ether in dichloromethane) to give the title compound ($1.22 \mathrm{~g}, 72 \%$): colorless oil, $\operatorname{TLC~R}_{f}=0.3\left(40 \%\right.$ ether in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.3\left(40 \%\right.$ ether in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}-13\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ IR (DRIFT) $v_{\text {max }} 3431 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HOC}-5), 4.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}-3), 4.01-3.94$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-4^{\prime}, \mathrm{H}_{2} \mathrm{C}-5^{\prime}\right), 3.83(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=5.5,7 \mathrm{~Hz}, \mathrm{HC}-7), 3.68(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7,8 \mathrm{~Hz}, \mathrm{HC}-5), 3.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, HOC-7), 2.98 (1 H , br s, HOC-3), 2.06 (1 H , ddq, $J=3.5,7,7 \mathrm{~Hz}, \mathrm{HC}-4$), $2.02(1 \mathrm{H}, \mathrm{dq}, J=1.5,7 \mathrm{~Hz}, \mathrm{HC}-2$), 1.82 ($1 \mathrm{H}, \mathrm{ddq}, J=1.5,6,7 \mathrm{~Hz}, \mathrm{HC}-6$), 1.73-1.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-1$ "), 1.56 ($1 \mathrm{H}, \mathrm{ddq}, J=7,13,5,7.5 \mathrm{~Hz}, \mathrm{HC}-8$), $1.42(1 \mathrm{H}$, ddq, $J=5.5,13.5,7.5 \mathrm{~Hz}, \mathrm{HC}-8), 1.08\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.96(3 \mathrm{H}, \mathrm{t}, J=7.5$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{C}-9\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 115.1$ ($\mathrm{s}, \mathrm{C}-2^{\prime}$), 80.6 (d, C-5), 74.2 (d, C-7), $72.1(\mathrm{~d}, \mathrm{C}-3$), 65.4 (t, C-4'), 65.1 (t, C-5'), 40.0 (d, C-2), 39.6 (d, C-4), 38.3 (d, $\mathrm{C}-6$), $27.1(\mathrm{t}, \mathrm{C}-1$ " or $\mathrm{C}-8), 27.0(\mathrm{t}, \mathrm{C}-1 "$ or $\mathrm{C}-8), 13.2\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right), 11.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 11.0(\mathrm{q}, \mathrm{C}-9), 10.1(\mathrm{q}, \mathrm{C}-1)$, 8.1 (q, C-2'); LRMS (CI, NH_{3}), m / z (relative intensity): 305 ([M+1] ${ }^{+}, 6$), 243 (38), 225 (44), 101 (100); HRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5}+\mathrm{H}: 305.2328$; found: 533.2325.

2-[(2S,3R,4S,5S,6S,7R)-3,5,7-Tris(allyloxy)-4,6-dimethylnonan-2-yl]-2-ethyl-1,3-dioxolane (15). A solution of

15 14 ($993 \mathrm{mg}, 3.26 \mathrm{mmol}$) in THF (20 mL) was added dropwise via syringe to stirred suspension of KH (oil free; $0.52 \mathrm{~g}, 13 \mathrm{mmol}$) and DMPU (1.6 mL , $1.7 \mathrm{~g}, 13 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min , allyl bromide (1.7 $\mathrm{mL}, 2.4 \mathrm{~g}, 19 \mathrm{mmol}$) was added dropwise via syringe. The reaction mixture was allowed to warm to ambient temperature and after 18 h , was cooled down to $0^{\circ} \mathrm{C}$ and quenched by slow addition of $\mathrm{MeOH}(6 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed sequentially with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and fractionated by FCC (10% ethyl acetate in hexane) to give the title compound ($1.18 \mathrm{~g}, 85 \%$): colorless oil, TLC $\mathrm{R}_{f}=0.3\left(10 \%\right.$ ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}$ $-25\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $v_{\max } 3088,1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95-5.86(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3)$, $5.25(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=17 \mathrm{~Hz}, \mathrm{HC}=\times 3)$, $5.11-5.06(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 4.09-4.01\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CO}-\mathrm{allyl} \times 2.5\right), 3.96-3.88$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-4, \mathrm{H}_{2} \mathrm{C}-5, \mathrm{H}_{2} \mathrm{CO}-\mathrm{allyl} \times 0.5\right), 3.76(1 \mathrm{H}, \mathrm{dd}, J=3,4.5 \mathrm{~Hz}, \mathrm{HC}-3 '), 3.50\left(1 \mathrm{H}, \mathrm{ddd}, J=3,6,7 \mathrm{~Hz}, \mathrm{HC}-7^{\prime}\right)$, $3.21(1 \mathrm{H}, \mathrm{dd}, J=5,7 \mathrm{~Hz}, \mathrm{HC}-5 '), 1.91\left(1 \mathrm{H}, \mathrm{ddq}, J=4.5,5,7 \mathrm{~Hz}, \mathrm{HC}-4{ }^{\prime}\right), 1.87\left(1 \mathrm{H}, \mathrm{dq}, J=3,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 1.81$ (1 H , ddq, $J=3,7,7 \mathrm{~Hz}, \mathrm{HC}^{\prime}$ '), 1.76, $1.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-1^{\prime \prime}, \mathrm{HC}-8^{\prime}\right), 1.46\left(1 \mathrm{H}, \mathrm{ddq}, J=7,14,7.5 \mathrm{~Hz}, \mathrm{HC}-8^{\prime}\right), 1.01$ (3, d, $\left.J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right), 0.99$ ($3, \mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4^{\prime}$), 0.94 ($3, \mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6^{\prime}$), $0.89\left(3, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9^{\prime}\right)$, $0.86\left(3, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1(\mathrm{~d}, \mathrm{CH}=), 136.0(\mathrm{~d}, \mathrm{CH}=), 135.9(\mathrm{~d}, \mathrm{CH}=)$, $\left.115.9\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.5\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.3\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 114.2(\mathrm{~s}, \mathrm{C}-2), 84.2\left(\mathrm{~d}, \mathrm{C}-5{ }^{\prime}\right), 80.5(\mathrm{~d}, \mathrm{C}-7)^{\prime}\right), 77.3\left(\mathrm{~d}, \mathrm{C}-3 \mathrm{~B}^{\prime}\right), 72.8(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{O}$), $\left.72.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 71.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 65.6(\mathrm{t}, \mathrm{C}-4), 65.1(\mathrm{t}, \mathrm{C}-5), 44.6\left(\mathrm{~d}, \mathrm{C}-2{ }^{\prime}\right), 41.8(\mathrm{~d}, \mathrm{C}-4)^{\prime}\right), 38.6(\mathrm{~d}, \mathrm{C}-6$ '), 27.2 (t, C-1'), 25.0 (t, C-8'), 12.8 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4^{\prime}$), 11.3 ($\left.\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6^{\prime}\right), 10.4$ ($\left.\mathrm{q}, \mathrm{C}-9^{\prime}\right), 10.1$ ($\left.\mathrm{q}, \mathrm{C}-1^{\prime}\right), 7.5$ ($\left.\mathrm{q}, \mathrm{C}-2^{\prime \prime}\right)$), LRMS (CI, NH_{3}) , m/z (relative intensity): 425 ([M+1] ${ }^{+}, 5$), 367 (4), 237 (26), 141 (3), 101 (100), 99 (12), 57 (4); HRMS (CI, NH_{3}), m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5}+\mathrm{H}$: 425.3267 ; found: 425.3259.
(4S,5R,6S,7S,8S,9R)-5,7,9-Tris(allyloxy)-4,6,8-trimethylundecan-3-one (16). $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($150 \mathrm{mg}, 0.55 \mathrm{mmol}$)

16 was added to a stirred solution of $\mathbf{1 5}(603 \mathrm{mg}, 1.42 \mathrm{mmol})$ in THF $(8.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$. After 19 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed sequentially with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the title compound (538 mg , quantitative) that was homogeneous by TLC and ${ }^{1} \mathrm{H}$ NMR: colorless oil, $\mathrm{TLC}_{f}=0.3$ (10% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}-4\left(c 2.2, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $\nu_{\text {max }} 3087,1711,1646$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93-5.83(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 5.26-5.21$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 5.10-5.07(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 4.12-3.96\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CO} \times 2.5\right)$, $3.86\left(1 \mathrm{H}\right.$, dddd, $\left.J=1.5,1.5,5,12.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CO} \times 0.5\right), 3.76(1 \mathrm{H}, \mathrm{dd}, J=3,6.5 \mathrm{~Hz}, \mathrm{HC}-5), 3.50(1 \mathrm{H}, \mathrm{ddd}, J=3,5.5,8$ $\mathrm{Hz}, \mathrm{HC}-9), 3.16(1 \mathrm{H}, \mathrm{dd}, J=4,7.5 \mathrm{~Hz}, \mathrm{HC}-7), 2.84(1 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-4), 2.53(1 \mathrm{H}, \mathrm{dq}, J=18,7.5 \mathrm{~Hz}, \mathrm{HC}-$ 2), $2.46(!\mathrm{H}, \mathrm{dq}, J=18,7.5 \mathrm{~Hz}, \mathrm{HC}-2), 1.76(1 \mathrm{H}, \mathrm{ddq}, J=3,7,7 \mathrm{~Hz}, \mathrm{HC}-8), 1.73-1.63(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-6, \mathrm{HC}-10), 1.44$ $(1 \mathrm{H}, \mathrm{ddq}, J=8,14,7.5 \mathrm{~Hz}, \mathrm{HC}-10), 1.13\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 1.00(3 \mathrm{H}, \mathrm{d}, J=$ $\left.7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-11\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $214.3(\mathrm{~s}, \mathrm{C}-3), 136.0(\mathrm{~d}, \mathrm{CH}=), 135.8(\mathrm{~d}, \mathrm{CH}=), 135.5(\mathrm{~d}, \mathrm{CH}=), 116.1\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.7\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.5\left(\mathrm{t}, \mathrm{CH}_{2}=\right)$, 85.0 (d, C-7), 80.3 (d, C-9), $80.0(\mathrm{~d}, \mathrm{C}-5), 73.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 72.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 70.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 50.2(\mathrm{~d}, \mathrm{C}-4), 38.9(\mathrm{~d}, \mathrm{C}-6$ or C-8), 38.8 ($\mathrm{d}, \mathrm{C}-6$ or C-8), $35.8(\mathrm{t}, \mathrm{C}-2), 24.7(\mathrm{t}, \mathrm{C}-10), 13.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 13.1\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right), 11.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right)$, 10.5 (q, C-11), 7.9 (q, C-1); LRMS (CI, NH_{3}), m / z (relative intensity): 381 ($[\mathrm{M}+1]^{+}, 100$), 323 (39), 265 (33), 237 (34), 195 (47), 155 (17), 101 (18), 99 (32), 57 (10); HRMS (CI, NH_{3}), m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4}+\mathrm{H}: 381.3005$; found: 381.2997.
($3 R, 4 S, 5 S, 6 S, 7 R, 8 S, 10 R, 11 S, 12 E, 14 E)-3,5,7-T r i s(a l l y l o x y)-11-h y d r o x y-4,6,8,10,12,14-h e x a m e t h y l h e p t a d e c a-$

17

12,14-dien-9-one (17). (c-Hex $)_{2} \mathrm{BCl}(1 \mathrm{M}$ in hexane, 1.6 $\mathrm{mL}, 1.6 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{~mL}, 0.17 \mathrm{~g}, 1.7 \mathrm{mmol})$ were added sequentially via syringe to a stirred solution of $16(200 \mathrm{mg}, 0.53 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. After 1 h , the reaction mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$ and a solution of the aldehyde $7(145 \mathrm{mg}, 1.05 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added dropwise via syringe. After 18 h, the reaction was quenched by sequential addition of $\mathrm{MeOH}(5 \mathrm{~mL})$, phosphate buffer ($\mathrm{pH} 7 ; 10 \mathrm{~mL}$), and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL})$ with vigorous stirring. The reaction vessel was transferred to an ice bath and after 15 min , was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to give the title compound ($220 \mathrm{mg}, 80 \%$) : colorless oil, TLC $\mathrm{R}_{f}=0.5$ (15% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}+14\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $v_{\text {max }} 3444,3087,1707,1646 \mathrm{~cm} ; \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.94-5.86(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 5.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}-13), 5.32(1 \mathrm{H}, \mathrm{dd}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-15), 5.28-5.22(3 \mathrm{H}, \mathrm{m}$, $\mathrm{HC}=\times 3), 5.10-5.07(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 4.13-3.99\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CO} \times 2.5, \mathrm{HC}-11\right), 3.91-3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CO} \times 0.5, \mathrm{HC}-7\right)$, $3.53(1 \mathrm{H}, \mathrm{ddd}, J=2.5,5.5,8 \mathrm{~Hz}, \mathrm{HC}-3), 3.19(1 \mathrm{H}, \mathrm{dd}, J=4,7.5 \mathrm{~Hz}, \mathrm{HC}-5), 3.04(1 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-8), 2.92$ $(1 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.14(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{HO}), 2.09\left(2 \mathrm{H}\right.$, ap qn, $\left.J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}-16\right), 1.88-1.79$ ($2 \mathrm{H}, \mathrm{m}$, HC-4, HC-6), $1.75\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-12\right), 1.72\left(3 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{H}_{3} \mathrm{CC}-14\right), 1.72-1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2), 1.46(1 \mathrm{H}, \mathrm{ddq}, J=8$, $14,7.5 \mathrm{~Hz}, \mathrm{HC}-2), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.99\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-\right.$ 17), $0.93\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.8(\mathrm{~s}, \mathrm{C}-9), 136.1$ ($\mathrm{d}, \mathrm{CH}=$), 135.9 ($\mathrm{d}, \mathrm{CH}=$), $135.7(\mathrm{~d}, \mathrm{CH}=), 133.8(\mathrm{~s}, \mathrm{C}-12 \mathrm{or} \mathrm{C}-14), 133.2$ (d $\times 2, \mathrm{C}-13, \mathrm{C}-15$), $131.5(\mathrm{~s}, \mathrm{C}-12$ or $\mathrm{C}-14), 116.0\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.8\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.5\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 85.1(\mathrm{~d}, \mathrm{C}-5), 81.2(\mathrm{~d}$, $\mathrm{C}-11), 80.4$ (d, C-3), 79.2 (d, C-7), $73.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right.$), $73.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 70.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 50.8$ (d, C-8), 49.0 (d, C-10), 39.4 (d, C-6), 38.9 (d, C-4), 24.7 (t, C-2), 21.6 (t, C-16), 16.9 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14$), 14.8 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-10$), 14.3 ($\mathrm{q}, \mathrm{C}-17$), 13.8 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6$), $12.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right), 12.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right), 11.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right), 10.5(\mathrm{q}, \mathrm{C}-1)$; LRMS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right), \mathrm{m} / \mathrm{z}$ (relative intensity): $536\left([\mathrm{M}+18]^{+}, 1\right), 519\left([\mathrm{M}+1]^{+}, 3\right), 501(12), 381(100), 351(16), 323(25), 265(43), 237(56), 195(15)$, 109 (82); HRMS (CI, NH_{3}), m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{5}+\mathrm{NH}_{4}$: 536.4315; found: 536.4335.
($3 R, 4 S, 5 S, 6 S, 7 R, 8 S, 10 R, 11 S, 12 E, 14 E)$-3,5,7-Tris(allyloxy)-4,6,8,10,12,14-hexamethyl-9-oxoheptadeca-12,14-

18 dien-11-yl Acetate (18). $\mathrm{Ac}_{2} \mathrm{O}(100 \mu \mathrm{~L}, 108 \mathrm{mg}, 1.05$ mmol), ${ }^{i} \operatorname{Pr}_{2} \mathrm{EtN}(0.27 \mathrm{~mL}, 0.20 \mathrm{~g}, 1.6 \mathrm{mmol})$, and DMAP $(10 \mathrm{mg}, 0.08 \mathrm{mmol})$ were added sequentially to a stirred solution of $\mathbf{1 7}(136 \mathrm{mg}, 0.262 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After 18 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated aq NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (10% ethyl acetate in hexane) to give the title compound (146 mg , quantitative): colorless oil, TLC $\mathrm{R}_{f}=0.7$ (15% ethyl acetate in hexane) ; $[\alpha]_{\mathrm{D}}+4\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $\nu_{\text {max }} 3086,1745,1711 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}-5), 5.94-5.84(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 5.33(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-3), 5.28-5.21(4 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3$, $\mathrm{HC}-11)$, $5.11-5.08(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3), 4.14-3.96\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CO} \times 2.5\right), 3.87\left(1 \mathrm{H}\right.$, dddd, $J=1.5,1.5,5,12.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CO}$ $\times 0.5), 3.84(1 \mathrm{H}, \mathrm{dd}, J=3.5,6 \mathrm{~Hz}, \mathrm{HC}-7), 3.53(1 \mathrm{H}, \mathrm{ddd}, J=3,5.5,8 \mathrm{~Hz}, \mathrm{HC}-3), 3.19(1 \mathrm{H}, \mathrm{dd}, J=4,8 \mathrm{~Hz}, \mathrm{HC}-5)$, $3.10(1 \mathrm{H}, \mathrm{dq}, J=10.5,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.97(1 \mathrm{H}, \mathrm{dq}, J=6,7 \mathrm{~Hz}, \mathrm{HC}-8), 2.11-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-16\right), 1.91(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3} \mathrm{CCO}\right), 1.84(1 \mathrm{H}$, ddq, $J=3,8,7 \mathrm{~Hz}, \mathrm{HC}-4), 1.71(1 \mathrm{H}, \mathrm{ddq}, J=3.5,4,7 \mathrm{~Hz}, \mathrm{HC}-6), 1.74-1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2)$, $1.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-12, \mathrm{H}_{3} \mathrm{CC}-14\right), 1.46(1 \mathrm{H}, \mathrm{ddq}, J=8,14,7.5 \mathrm{~Hz}, \mathrm{HC}-2), 1.19\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.07(3 \mathrm{H}$, $\left.\mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-17\right), 0.96\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-1\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right)$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.3$ (s, C-9), 169.5 (s, O=CO), 136.0 (d, $\mathrm{CH}=$), $135.8(\mathrm{~d}, \mathrm{CH}=), 135.7(\mathrm{~d}, \mathrm{C}-13)$, $135.5(\mathrm{~d}, \mathrm{CH}=), 133.8(\mathrm{~d}, \mathrm{C}-3), 131.4$ ($\mathrm{s}, \mathrm{C}-12$ or $\mathrm{C}-14$), 129.6 ($\mathrm{s}, \mathrm{C}-12$ or C-14), $116.0\left(\mathrm{t}, \mathrm{CH}_{2}=\right.$), $115.7\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 115.6\left(\mathrm{t}, \mathrm{CH}_{2}=\right), 85.0(\mathrm{~d}, \mathrm{C}-5), 82.0(\mathrm{~d}, \mathrm{C}-11), 80.4$ (d, C-3), $79.0(\mathrm{~d}, \mathrm{C}-7)$,
$73.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 72.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 70.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 50.3(\mathrm{~d}, \mathrm{C}-8), 46.8(\mathrm{~d}, \mathrm{C}-10), 39.5(\mathrm{~d}, \mathrm{C}-6), 38.8(\mathrm{~d}, \mathrm{C}-4), 24.5(\mathrm{t}, \mathrm{C}-$ 2), $21.6(\mathrm{t}, \mathrm{C}-16), 21.4\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 16.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14\right), 14.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-10\right), 14.2(\mathrm{q}, \mathrm{C}-17), 13.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 13.3$ (q, $\left.\mathrm{CH}_{3} \mathrm{C}-12\right), 12.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right), 10.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right), 10.5(\mathrm{q}, \mathrm{C}-1)$; LRMS (CI, NH_{3}), m / z (relative intensity): 578 ([M+18] ${ }^{+}, 17$), $561\left([\mathrm{M}+1]^{+}, 3\right), 535$ (18), 501 (27), 443 (22), 351 (55), 295 (15), 237 (100), 99 (58); HRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ calcd for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{6}+\mathrm{NH}_{4}$: 578.4415 ; found: 578.4408 .
(2R,3S,5S,6S)-2-Ethyl-2-methoxy-3,5-dimethyl-6-((R)-3-oxopentan-2-yl)dihydro-2H-pyran-4(3H)-one (20). A

20 solution of $\mathbf{1 6}(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in methanol $(1.3 \mathrm{~mL})$ was added via syringe to a dry Schlenk flask containing a magnetic stir bar and Ru(IV) catalyst 19 (0.3 mg , $0.6 \mu \mathrm{~mol}$) under argon. Stirring was initiated and after 10 min , the mixture was diluted with ethyl acetate and washed with distilled water ($\times 3$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give the crude product (8 mg) whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated a single compound without any allyl groups. The crude product was taken up in DMSO (1 mL) and IBX ($15 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to the stirred solution at ambient temperature. After 2 h , the mixture was diluted with ethyl acetate, and washed sequentially with NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (15% ethyl acetate in hexane) to give the title compound ($5.1 \mathrm{mg}, 72 \%$): white solid, TLC $\mathrm{R}_{f}=0.3$ (15% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}-118\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\text {max }} 1722,1703 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.55(1 \mathrm{H}, \mathrm{dd}, J=3,10.5 \mathrm{~Hz}, \mathrm{HC}-6), 3.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CO}\right), 2.77\left(1 \mathrm{H}, \mathrm{dq}, J=3,7 \mathrm{~Hz}, \mathrm{HC}-1{ }^{\prime \prime}\right), 2.66(1 \mathrm{H}, \mathrm{dq}, J=18.5,7$ $\mathrm{Hz}, \mathrm{HC}-4 "), 2.63(1 \mathrm{H}, \mathrm{dq}, J=1,6.5 \mathrm{~Hz}, \mathrm{HC}-3), 2.55\left(1 \mathrm{H}, \mathrm{dq}, J=18.5,7 \mathrm{~Hz}, \mathrm{HC}-4{ }^{\prime \prime}\right), 2.45(1 \mathrm{H}, \mathrm{ddq}, J=1,10.5,6.5$ $\mathrm{Hz}, \mathrm{HC}-5), 1.95\left(1 \mathrm{H}, \mathrm{dq}, J=13.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 1.56\left(1 \mathrm{H}, \mathrm{dq}, J=13.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 1.34(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-1^{\prime \prime}\right), 1.05\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-5^{\prime \prime}\right), 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-5\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-3\right), 0.98$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2\right.$) ; ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.3$ ($\mathrm{s}, \mathrm{C}-4$ or C-3"), 208.8 (s, C-4 or C-3"), 106.2 (s, C-2), 78.5 (d, C-6), 49.4 (d, C-3), 49.0 (d, C-2"), $47.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{O}\right.$), 47.2 (d, C-5), 35.0 (t, C-4"), 26.4 (t, C-1'), 14.4 (q, C-1"), 9.9 (q, C-5"), 8.9 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 8.4 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 7.7 ($\mathrm{q}, \mathrm{C}-2^{\prime}$); LRMS (EI), m / z (relative intensity): $270\left([\mathrm{M}]^{+}, 1\right), 185$ (13), 182 (20), 153 (53), 126 (42), 108 (15), 100 (100), 69 (25), 57 (75); HRMS (EI), m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}: 270.1831$; found: 270.1839 .
$(2 R, 3 S, 4 E, 6 E)-2-((1 R, 3 R, 4 S, 5 R, 6 R)-3-E t h y l-4,6,8-t r i m e t h y l-2,9-d i o x a b i c y c l o[3.3 .1] n o n-7-e n-1-y l)-4,6-$
dimethylnona-4,6-dien-3-ol (21a). A solution of $\mathbf{1 7}$ (11 mg, 0.017

21a mmol) in methanol (8 mL) was added via syringe to a dry Schlenk flask containing $\mathrm{Ru}(\mathrm{IV})$ catalyst 190 ($0.4 \mathrm{mg}, 0.8 \mu \mathrm{~mol}$) under argon. The stirred reaction mixture was kept at $30^{\circ} \mathrm{C}$. After 20 min , the reaction mixture was diluted with ethyl acetate, washed sequentially with distilled water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give the title compound ($5 \mathrm{mg}, 79 \%$): colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.7$ (40% ethyl acetate in hexane); IR (DRIFT) $v_{\text {max }} 3479 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.90\left(1 \mathrm{H}, \mathrm{br}\right.$ s, HC-5), $5.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5 \mathrm{~Hz}, \mathrm{HC}-7{ }^{\prime}\right), 5.31(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{HC}-7), 5.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 4.44$ ($1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{HC}-3$), $3.95(1 \mathrm{H}, \mathrm{ddd}, J=3,5.5,8 \mathrm{~Hz}, \mathrm{HC}-3 '), 3.67$ (1 H , br s, HC-5'), 2.11-2.02 (3H, m, HC-2, $\left.\mathrm{H}_{2} \mathrm{C}-8\right), 1.98(, \mathrm{br} \mathrm{dq}, J=5,7 \mathrm{~Hz}, \mathrm{HC}-6 '), 1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-6\right), 1.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-8^{\prime}\right), 1.53$ ($\left.1 \mathrm{H}, \mathrm{ddq}, J=8,13,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime \prime}\right)$, 1.41-1.31 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-1^{\prime \prime}, ~ \mathrm{HC}-4 '\right), 1.15$ ($3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4^{\prime}$), 1.09 (3 H , d, $\left.J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6 '\right), 0.98\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right), 0.65\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right)$;
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.0$ (s, C-4), 132.6 (d, C-5), 132.02 (d, C-7), 131.93 ($\mathrm{s}, \mathrm{C}-6$), 131.1 (d, C-7'), 129.9 ($\mathrm{s}, \mathrm{C}-8^{\prime}$), 101.3 ($\mathrm{s}, \mathrm{C}-9{ }^{\prime}$), 79.94 (d, C-3 or C-5'), 79.86 (d, C-3 or C-5'), 72.1 (d, C-3'), 40.5 (d, C-2), 36.6 (d, C$\left.4^{\prime}\right), 34.7$ (d, C-6'), 25.7 (t, C-1"), $21.6(\mathrm{t}, \mathrm{C}-8), 20.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right.$ '), 18.2 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8$ '), $17.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right), 14.4$ ($\mathrm{q}, \mathrm{C}-9$), 13.1 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ '), 12.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$), 12.2 ($\mathrm{q}, \mathrm{C}-1$), 10.0 ($\mathrm{q}, \mathrm{C}-2$ "); LRMS (EI), m / z (relative intensity): 362 ([M] ${ }^{+}$, 4), 224 (37), 139 (35), 137 (100), 122 (10), 109 (24), 69 (14), 57 (16); HRMS (EI), m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3}$: 362.2821 ; found: 362.2825 .
$(2 R, 3 S, 4 E, 6 E)-2-((1 R, 3 R, 4 S, 5 R, 6 R)-3-E t h y l-4,6,8-t r i m e t h y l-2,9-d i o x a b i c y c l o[3.3 .1] n o n-7-e n-1-y l)-4,6-$
dimethylnona-4,6-dien-3-yl Acetate (21b). A solution of $\mathbf{1 8}$ (12 mg,

21b 0.021 mmol) in methanol (10 mL) was added via syringe to a dry Schlenk flask containing $\mathrm{Ru}(\mathrm{IV})$ catalyst $19(0.3 \mathrm{mg}, 0.6 \mu \mathrm{~mol})$ under argon. The stirred reaction mixture was kept at $30^{\circ} \mathrm{C}$. After 20 min , the reaction mixture was diluted with ethyl acetate, washed sequentially with distilled water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give the titled compound ($6.2 \mathrm{mg}, 72 \%$): colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.5$ (40% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}-52$ (c 0.1, CHCl_{3}); IR (DRIFT) $v_{\max } 1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.98(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}-5), 5.74(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{HC}-3), 5.72(1 \mathrm{H}, \mathrm{dq}, J=$ $5,1.5 \mathrm{~Hz}, \mathrm{HC}-7$ '), $5.33(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-7), 3.78(1 \mathrm{H}, \mathrm{ddd}, J=3,5.5,8 \mathrm{~Hz}, \mathrm{HC}-3$ '), 3.61 (1 H , br s, HC$\left.5^{\prime}\right), 2.25(1 \mathrm{H}, \mathrm{dq}, J=8.5,7 \mathrm{~Hz}, \mathrm{HC}-2), 2.07\left(2 \mathrm{H}, \mathrm{ap} \mathrm{dq}, J=7,7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}-8\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right), 1.95-1.90(1 \mathrm{H}$, $\mathrm{m}, \mathrm{HC}-6$ '), $1.75\left(3 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.72\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-6\right), 1.59$ (3 H , dd, $J=1.5,1.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8$ '), 1.45$1.36\left(1 \mathrm{H}, \mathrm{ddq}, J=8,13,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime \prime}\right), 1.30-1.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-1^{\prime \prime}, \mathrm{HC}-4^{\prime}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4^{\prime}\right), 1.05$ $\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6^{\prime}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9\right), 0.82\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right), 0.7(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-1\right) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 169.9$ (s, CO), 133.8 (d, C-5), 133.0 (d, C-7), 131.9 (s, C-4 or C-6), 131.7 ($\mathrm{s}, \mathrm{C}-4$ or C-6), 130.9 (d, C-7'), 130.4 ($\left.\mathrm{s}, \mathrm{C}-8^{\prime}\right), 99.5$ ($\mathrm{s}, \mathrm{C}-9$ '), 80.0 (d, C-5'), 79.5 (d, C-3), 71.2 (d, C-3'), 39.5 (d, C2), 36.7 ($\left.\mathrm{d}, \mathrm{C}-4{ }^{\prime}\right), 35.0\left(\mathrm{~d}, \mathrm{C}^{\prime} 6^{\prime}\right), 25.6\left(\mathrm{t}, \mathrm{C}-1{ }^{\prime}\right), 21.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 21.6(\mathrm{t}, \mathrm{C}-8), 20.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6\right.$ '), 18.5 ($\left.\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8^{\prime}\right)$, 16.9 ($\mathrm{q}, \mathrm{CCH}_{3} \mathrm{C}-6$), 14.3 ($\mathrm{q}, \mathrm{C}-9$), $13.8\left(\mathrm{q}, \mathrm{CCH}_{3} \mathrm{C}-4\right), 13.3\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4{ }^{\prime}\right), 12.1$ ($\left.\mathrm{q}, \mathrm{C}-1\right), 10.1$ ($\left.\mathrm{q}, \mathrm{C}-2^{\prime \prime}\right)$; LRMS (EI), m / z (relative intensity): $404\left([\mathrm{M}]^{+}, 9\right), 344(23), 228(13), 207(14), 149(28), 137(100), 121$ (60), 109 (33), 93 (16), 69 (29); HRMS (EI), m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{4}$: 404.2927; found: 404.2918..
($3 R, 4 S, 5 S, 6 S, 7 R, 8 S, 10 R, 11 S, 12 E, 14 E)-3,5,7-T r i s($ allyloxy $)-9-c y a n o-4,6,8,10,12,14-h e x a m e t h y l-9-((t r i m e t h y l-~$

22 silyl)oxy)heptadeca-12,14-dien-11-yl Acetate (22). The solid complex KCN•18-crown-6 ($87 \mathrm{mg}, 0.26$ mmol) was added to a stirred solution of $\mathbf{1 8}(96 \mathrm{mg}$, $0.171 \mathrm{mmol})$ in TMSCN $(1 \mathrm{~mL})$ at ambient temperature under argon. After 12 h , the solvent was removed under vacuum and the residue was fractionated by FCC (10% ethyl acetate in hexane) to give the title compound as a ca. 1.4:1 mixture of diastereomers ($95 \mathrm{mg}, 84 \%$): colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.9$ (10% ethyl acetate in hexane); IR (DRIFT) $v_{\text {max }} 3079,1743,1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.03-5.86(4 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3, \mathrm{HC}-13), 5.33-5.22(4 \mathrm{H}, \mathrm{m}, \mathrm{HC}=3, \mathrm{HC}-15), 5.14-5.06(4 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\times 3$, $\mathrm{HC}-11), 4.26-3.85\left(6.6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C} \times 3, \mathrm{HC}-7 \times 0.6\right), 3.77(0.4 \mathrm{H}$, br dd, $J=3,3 \mathrm{~Hz}, \mathrm{HC}-7), 3.46(0.6 \mathrm{H}, \mathrm{ddd}, J=4,5.5$, $7 \mathrm{~Hz}, \mathrm{HC}-3), 3.36(0.4 \mathrm{H}$, ddd, $J=4,6,7 \mathrm{~Hz}, \mathrm{HC}-3), 3.22(1 \mathrm{H}$, ap t, $J=6 \mathrm{~Hz}, \mathrm{HC}-5), 2.50(0.6 \mathrm{H}, \mathrm{dq}, J=9.5,7 \mathrm{~Hz}$, HC-10), $2.43(0.4 \mathrm{H}, \mathrm{dq}, J=9.5,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.12-2.00\left(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}-8, \mathrm{H}_{2} \mathrm{C}-16\right), 2.08\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right), 2.02(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}_{3} \mathrm{CCO}$), 1.90-1.75 (2H, m, HC-4, HC-6), 1.72 (s) and 1.71 (s) ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-12, \mathrm{H}_{3} \mathrm{C}-14$), 1.71-1.41 (2H, m, $\left.\mathrm{H}_{2} \mathrm{C}-2\right)$, $1.19\left(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.15\left(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.02\left(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-10\right), 1.01-0.86(9 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \times 3\right), 0.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3} \mathrm{C}-10\right), 0.31\left(5.4 \mathrm{H}, \mathrm{s}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CSi} \times 3\right), 0.28\left(3.6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CSi} \times 3\right) ;{ }^{13} \mathbf{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta\left(*\right.$ major isomer) $170.5^{*}(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 169.6(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 135.9(\mathrm{~d}, \mathrm{CH}=), 135.83(\mathrm{~d}, \mathrm{CH}=), 135.77(\mathrm{~d}, \mathrm{CH}=)$, $135.7(\mathrm{~d} \times 2, \mathrm{CH}=), 135.5(\mathrm{~d}, \mathrm{CH}=), 135.2^{*}(\mathrm{~d})$ and $133.8^{*}(\mathrm{~d}), 135.1(\mathrm{~d})$ and $133.6(\mathrm{~d}), 131.3$ (s) and 130.7 (s), $131.2^{*}(\mathrm{~s})$ and $130.6^{*}(\mathrm{~s}), 120.9^{*}(\mathrm{~s}, \mathrm{CN}), 120.8(\mathrm{~s}, \mathrm{CN}), 116.1\left(\mathrm{t} \times 2, \mathrm{CH}_{2}=\right), 115.9\left(\mathrm{t} \times 2, \mathrm{CH}_{2}=\right), 115.6\left(\mathrm{t}, \mathrm{CH}_{2}=\right)$, 115.4 ($\mathrm{t}, \mathrm{CH}_{2}=$), 84.42 ($\mathrm{d}, \mathrm{C}-5$), 84.37 (d, C-5), 80.7 (d, C-3 or C-11), $80.64 *(\mathrm{~d}, \mathrm{C}-11), 80.56$ (d, C-3 or C-11), $80.5^{*}(\mathrm{~d}, \mathrm{C}-3), 77.5^{*}\left(\mathrm{~s}, \mathrm{C}-9\right.$; confirmed by DEPT), 76.2 (d, C-7), $75.8^{*}(\mathrm{~d}, \mathrm{C}-7), 73.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 73.2^{*}\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right)$, $73.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 72.4^{*}\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 71.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 70.6^{*}\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 47.3(\mathrm{~d}, \mathrm{C}-8), 46.4^{*}(\mathrm{~d}, \mathrm{C}-8), 42.6(\mathrm{~d}, \mathrm{C}-4), 42.2^{*}$ (d $\times 2, \mathrm{C}-4, \mathrm{C}-10), 40.5(\mathrm{~d}, \mathrm{C}-10), 38.63(\mathrm{~d}, \mathrm{C}-6), 38.56^{*}(\mathrm{~d}, \mathrm{C}-6), 25.1(\mathrm{t}, \mathrm{C}-2), 24.7 *(\mathrm{t}, \mathrm{C}-2), 21.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $21.62^{*}(\mathrm{t} \times 2, \mathrm{C}-16), 21.57^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 16.7^{*}\left(\mathrm{q} \times 2, \mathrm{CH}_{3} \mathrm{C}-14\right), 14.2^{*}(\mathrm{q} \times 2, \mathrm{C}-17), 13.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right), 13.4^{*}(\mathrm{q}$, $\left.\mathrm{CH}_{3} \mathrm{C}-10\right), 13.3^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right), 12.4$ (q), 12.0 (q), $11.7^{*}(\mathrm{q}), 10.94$ (q), 10.89 (q), 10.85 (q), 10.3^{*} (q, C-1), 10.1 (q, $\mathrm{C}-1), 2.1^{*}\left(\mathrm{q} \times 6, \mathrm{CH}_{3} \mathrm{Si}\right) ;$ HRMS (ESI), m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{65} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}$: 682.4479; found: 682.4486.
($3 R, 4 S, 5 S, 6 S, 7 R, 8 S, 10 R, 11 S, 12 E, 14 E)-9-C y a n o-3,5,7-t r i h y d r o x y-4,6,8,10,12,14-h e x a m e t h y l-9-((t r i m e t h y l s i l y l)-$

23 oxy)heptadeca-12,14-dien-11-yl Acetate (23). A solution of $22(81 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added via syringe to a dry Schlenk flask containing a magnetic stir bar and the $\mathrm{Ru}(\mathrm{IV})$ catalyst $\mathbf{1 9}(1.2 \mathrm{mg}, 1.1 \mu \mathrm{~mol})$ under argon. The reaction mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 20 min, and then additional $\mathrm{Ru}(\mathrm{IV})$ catalyst $19(1.2 \mathrm{mg}, 1.1$ $\mu \mathrm{mol}$) was added. After 20 min , the mixture was diluted with ethyl acetate and washed sequentially with water ($\times 3$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (40% ethyl acetate in hexane) to give the title compound as a $1.1: 1$ mixture of diastereomers $(44 \mathrm{mg}, 67 \%)$: colorless oil, TLC $\mathrm{R}_{f}=0.3$ (40% ethyl acetate in hexane); IR (DRIFT) $v_{\max } 3439,1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93(0.6 \mathrm{H}$, br s, HC-13), $5.90(0.4 \mathrm{H}$, br $\mathrm{s}, \mathrm{HC}-13), 5.35-5.31(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-15), 5.20(0.4 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{HC}-11), 5.11(0.6 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{HC}-11), 4.40(0.4 \mathrm{H}$, br s, HC-7), 4.33 (0.6 H , br s, HC-7), 4.30-4.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{HOC}-5$), $3.88-3.84(1 \mathrm{H}, \mathrm{m}, J=7 \mathrm{~Hz}, \mathrm{HC}-3)$, 3.61-3.57 (1 H , $\mathrm{m}, \mathrm{HC}-5), 3.20(0.4 \mathrm{H}$, br s, HOC-3), $3.07(0.4 \mathrm{H}$, br s, HOC-7), $2.99(1.2 \mathrm{H}$, br s, HOC-3, HOC-7), 2.52 (0.4 H , dq, J $=9,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.36(0.6 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.14-2.01\left(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}-8, \mathrm{H}_{2} \mathrm{C}-16\right), 2.07\left(1.8 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right)$, $2.03\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right), 1.94-1.76(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-4, \mathrm{HC}-6), 1.73-1.71\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CC}-12, \mathrm{H}_{3} \mathrm{CC}-14\right), 1.60-1.50(1 \mathrm{H}, \mathrm{m}$, HC-2), 1.49-1.38 (1H, m, HC-2), $1.22\left(1.2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.16\left(1.8 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.08$ (1.2H, d, $\left.\mathrm{H}_{3} \mathrm{CC}-8\right), 1.00-0.92\left(10.8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{C} \times 3.6\right), 0.89\left(1.8 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right), 0.88\left(1.2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C} \times 0.4\right)$, $0.31\left(9, \mathrm{~s}, \mathrm{H}_{3} \mathrm{C}-\mathrm{Si} \times 3\right), 0.28\left(9, \mathrm{~s}, \mathrm{H}_{3} \mathrm{C}-\mathrm{Si} \times 3\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta\left(*\right.$ major isomer) $170.1^{*}(\mathrm{~s}, \mathrm{CO}), 169.7$ (s, CO) , $135.45^{*}(\mathrm{~d}, \mathrm{C}-13), 135.40$ (d, C13), 134.03 ($\mathrm{d}, \mathrm{C} 15$), 133.95^{*} (d, C-15), 131.19* ($\mathrm{s}, \mathrm{C}-12$ or C-14), 131.18 (s, C-12 or C-14), 130.35 ($\mathrm{s}, \mathrm{C}-12$ or C-14), 130.33^{*} (s, C-12 or C-14), 121.1 (s, CN), 121.0^{*} (s, CN), 80.8* (d, C11), 80.5 (d, C-11), 80.2 (d, C-5), 79.9* (d, C-5), 79.6 ($\mathrm{d}, \mathrm{C}-9$), 78.9^{*} ($\mathrm{s}, \mathrm{C}-9$), 74.5^{*} (d, C-3), 73.8 (d, C-3), 71.2^{*} (d, C-7), 71.0 (d, C-7), 44.8* (d, C-8), 44.1 (d, C-8), 41.4* (d, C-10), 41.3* (d, C-4), 41.2 (d $\times 2, \mathrm{C}-4, \mathrm{C}-10$), 38.0* (d, C-6), 37.4 (d, C-6), 27.3 (t, C-2), 26.9* (t, C-2), 21.62* ($\mathrm{t} \times 2, \mathrm{C}-16$), $21.61^{*}\left(\mathrm{q} \times 2, \mathrm{CH}_{3} \mathrm{CO}\right), 16.76\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14\right)$, $16.73^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14\right), 14.2^{*}\left(\mathrm{q} \times 3, \mathrm{C}-17, \mathrm{CH}_{3} \mathrm{C}-10\right), 13.7^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right), 13.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right), 13.0^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-10\right)$, 12.3 (q), $12.2^{*}(\mathrm{q}), 11.7^{*}(\mathrm{q}), 11.6$ (q), $11.2\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right), 10.9^{*}(\mathrm{q}), 10.8$ (q), 10.1* (q, $\mathrm{CH}_{3} \mathrm{C}-8$), $1.98^{*}(\mathrm{q} \times 3$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 1.93\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{Si}\right)$; LRMS (EI), m / z (relative intensity): 539 ($\left.[\mathrm{M}]^{+}, 2\right), 479$ (3), 334 (10), 334 (10), 276 (8), 167 (22), 149 (100), 139 (56), 121 (37), 69 (40); HRMS (EI), m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{NO}_{6} \mathrm{Si}$: 539.3642; found: 539.3637.
($3 R, 4 S, 5 S, 6 S, 7 R, 8 S, 10 R, 11 S, 12 E, 14 E)-3,5,7-T r i h y d r o x y-4,6,8,10,12,14-h e x a m e t h y l-9-o x o h e p t a d e c a-12,14-$

24
dien-11-yl Acetate (24). Pyridine ($48 \mu \mathrm{~L}, 47 \mathrm{mg}, 0.6$ $\mathrm{mmol})$, HF•pyridine $(32 \mu \mathrm{~L})$, and water $(2 \mu \mathrm{~L})$ were added sequentially to a stirred solution of $\mathbf{2 3}(10.6 \mathrm{mg}$, $19.6 \mu \mathrm{~mol})$ in THF $(0.6 \mathrm{~mL})$. After 24 h , the reaction mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO_{3}, saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting crude product (cyanohydrin) was taken up in a 1:1 (v / v) mixture of water and MeOH and heated to $60{ }^{\circ} \mathrm{C}$. After 3 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC to give the title compound as a 3:1 mixture of keto and hemiacetal forms, respectively ($6.3 \mathrm{mg}, 73 \%$): colorless oil, $\mathrm{TLC}_{f}=0.2$ (40% ethyl acetate in hexane); IR (DRIFT) $v_{\max } 3398$, $1743,1711 \mathrm{~cm}^{-1} ;$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91(0.75 \mathrm{H}, \mathrm{s}, \mathrm{HC}-13), 5.90(0.25 \mathrm{H}, \mathrm{s}, \mathrm{HC}-13), 5.33(0.75 \mathrm{H}, \mathrm{dd}, J$ $=7,7 \mathrm{~Hz}, \mathrm{HC}-15), 5.32(0.25 \mathrm{H}, \mathrm{dd}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-15), 5.19(0.75 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{HC}-11), 5.18(0.25 \mathrm{H}, \mathrm{d}, J=$ $9.5 \mathrm{~Hz}, \mathrm{HC}-11), 4.54(0.75 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 4.20(0.75 \mathrm{H}$, br d, $J=8.5 \mathrm{~Hz}, \mathrm{HC}-7), 3.91-3.85(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{HC}-3), 3.78$ $(0.75 \mathrm{H}$, ddd, $J=2.5,6,7 \mathrm{~Hz}, \mathrm{HC}-3), 3.67-3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-5), 3.28(0.25 \mathrm{H}, \mathrm{dd}, J=9.5 \mathrm{~Hz}, \mathrm{HC}-7), 3.06(0.75 \mathrm{H}, \mathrm{dq}$, $J=10.5,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.90(0.75 \mathrm{H}, \mathrm{dq}, J=8.5,7 \mathrm{~Hz}, \mathrm{HC}-8), 2.86(0.75 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 2.40(0.25 \mathrm{H}, \mathrm{br} \mathrm{d}, J=1 \mathrm{~Hz}$, HO), 2.32 (0.25 , dq, $J=9.5,7 \mathrm{~Hz}, \mathrm{HC}-10$), $2.10-2.03\left(2.75 \mathrm{H}, \mathrm{m}, \mathrm{HC}-4, \mathrm{H}_{2} \mathrm{C}-16\right), 2.03\left(0.75 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right), 1.93$ $\left(2.25 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right), 1.85-1.80(0.25 \mathrm{H}, \mathrm{m}, \mathrm{HC}-4), 1.74-1.66\left(6.75 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CC}-12, \mathrm{H}_{3} \mathrm{CC}-14, \mathrm{HC}-8\right), 1.65-1.57$
$(0.75 \mathrm{H}, \mathrm{s}, \mathrm{HC}-2, \mathrm{HC}-4, \mathrm{HC}-6), 1.54-1.47\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2} \mathrm{C}-2\right), 1.39-1.32(0.25 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2), 1.27(2.25 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-8\right), 1.14\left(0.75 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-4\right), 1.04\left(2.25 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-6\right), 1.02-0.89\left(9.75 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{C} \times 3.25\right), 0.87$ $\left(0.75 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right), 0.83\left(2.25 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (* major isomer) 216.0* (s, C-9), 169.8 (s, COO), $169.5^{*}(\mathrm{~s}, \mathrm{COO}), 135.9^{*}(\mathrm{~d}, \mathrm{C}-13), 135.1$ (d, C-13), $134.0^{*}(\mathrm{~d}, \mathrm{C}-15), 133.7$ (d, C15), 131.3* ($\mathrm{s}, \mathrm{C}-12$ or C-14), 130.6 ($\mathrm{s}, \mathrm{C}-12$ or C-14), 129.1* ($\mathrm{s} \times 2, \mathrm{C}-12$ or C-14), 100.9 ($\mathrm{s}, \mathrm{C}-9$), 82.8^{*} (d, C-11), 81.7 (d, C-11), 80.1^{*} (d, C-5), 78.9 (d, C-5), 76.9* (d, C-3), 75.8 (d, C-7), 71.34^{*} (d, C-7), 71.26 (d, C-3), 50.8* (d, C-8), 47.5^{*} (d, C-10), 44.1 (d), 42.4 (d, C-10), 40.6 (d), $39.4^{*}(\mathrm{~d}, \mathrm{C}-4), 36.3^{*}$ (d, C-6), 35.4 (d), 27.7 (t, C-2), 25.2* ($\mathrm{t}, \mathrm{C}-2$), 21.64* ($\mathrm{t} \times 2, \mathrm{C}-16$), $21.61\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 21.3^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 16.77^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14\right), 16.75\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14\right), 14.9^{*}$ $\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-10\right), 14.4(\mathrm{q}), 14.3^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right.$ or $\left.\mathrm{C}-17\right), 14.2^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right.$ or $\left.\mathrm{C}-17\right), 13.5(\mathrm{q} \times 2), 13.2^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right)$, 13.0 (q), 12.4 (q), 12.3* (q, $\mathrm{CH}_{3} \mathrm{C}-4$ or $\mathrm{CH}_{3} \mathrm{C}-6$), $12.0^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right.$ or $\left.\mathrm{CH}_{3} \mathrm{C}-6\right), 11.3$ (q), 11.2* (q, C-1), 11.1 (q), 10.8 (q); LRMS (EI), m / z (relative intensity): 422 ([M-18] ${ }^{+}, 0.5$), 362 (4), 235 (10), 195 (17), 149 (62), 138 (68), 121 (121), 109 (46), 69 (42); HRMS (ESI), m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{6}+\mathrm{Na}$: 463.3030; found: 463.3043.
($4 R, 5 S, 6 S, 8 R, 10 R, 11 S, 12 E, 14 E)-9-C y a n o-5-h y d r o x y-4,6,8,10,12,14-h e x a m e t h y l-3,5-d i o x o-9-((t r i m e t h y l s i l y l)-~$

S5 oxy)heptadeca-12,14-dien-11-yl Acetate (S5). Oxalyl chloride ($140 \mu \mathrm{~L}, 201 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added to a stirred solution of DMSO ($0.23 \mathrm{~mL}, 25 \mathrm{mg}, 3.2 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 30 min , a solution of $23(44 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{ml})$ was added dropwise via syringe to the above Swern reagent. After $2 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}(0.66 \mathrm{~mL}, 480 \mathrm{mg}, 4.7 \mathrm{mmol})$ was added to the reaction mixture. After 30 min , the reaction mixture was transferred to a $-50{ }^{\circ} \mathrm{C}$ bath. After 30 min , the mixture was diluted with ethyl acetate, washed with saturated aq NaHCO_{3} solution ($\times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give the title compound as a $1.2: 1$ mixture of diastereomers ($27.5 \mathrm{mg}, 63 \%$): colorless oil, TLC $\mathrm{R}_{f}=0.5$ (40% ethyl acetate in hexane); IR (DRIFT) $\boldsymbol{v}_{\text {max }} 3472,1741,1717,1702 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.90(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}-13), 5.35-5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-15), 5.14(0.5 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{HC}-11), 5.07(0.5 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{HC}-$ $11), 3.71(0.5 \mathrm{H}$, ddd, $J=5,7,7 \mathrm{~Hz}, \mathrm{HC}-5), 3.66(10.5 \mathrm{H}$, ddd, $J=3,8.5,9.5 \mathrm{~Hz}, \mathrm{HC}-5), 3.60(0.5 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}$, $\mathrm{OH}), 3.43(0.5 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{HC}-8), 3.25(0.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{OH}), 3.17(0.5 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{HC}-8), 2.89-2.80(1 \mathrm{H}$, $\mathrm{m}, \mathrm{HC}-4$ or HC-6), $2.78-2.67(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-4$ or HC-6), $2.66-2.55(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2), 2.53(0.5 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{HC}-$ 10), 2.51-2.40 (1H, m, HC-2), $2.37(0.5 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{HC}-10), 2.16$ (s) and $2.06(\mathrm{~s})\left(3 \mathrm{H}, \mathrm{H}_{3} \mathrm{CCO}\right), 2.10-2.03$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-16\right), 1.73-1.68\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CC}-12, \mathrm{H}_{3} \mathrm{CC}-14\right), 1.38\left(1.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 1.27(1.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CC}-8\right), 1.26\left(1.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-6\right), 1.21\left(1.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-6\right), 1.16$ (1.5H, d, $J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4$ or $\left.\mathrm{H}_{3} \mathrm{CC}-6\right), 1.08\left(1.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right), 1.06\left(1.5 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 1.04(1.5 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4$ or $\left.\mathrm{H}_{3} \mathrm{CC}-6\right), 1.03\left(1.5 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 0.98\left(1.5 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-17\right), 0.97(1.5 \mathrm{H}, \mathrm{t}, J=7.5$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{C}-17\right), 0.80\left(1.5 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right), 0.28(\mathrm{~s})$ and $0.24(\mathrm{~s})\left(,, \mathrm{H}_{3} \mathrm{CSi} \times 3\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 217.8 (s), 216.5 (s), 213.9 (s), 213.7 (s), 170.6 (s), 169.6 (s), 135.5 (d), 135.0 (d), 134.0 (d), 133.6 (d), 131.3 (s), 131.2 (s), 130.8 (s), 130.3 (s), 119.7 (s), 119.4 (s), 80.6 (d), 80.4 (d), 78.1 (d), 77.9 (s), 77.0 (d), 74.7 (s), 55.1 (d), 50.8 (d), 50.3 (d), 49.3 (d), 47.9 (d), 46.1 (d), 41.7 (d), 41.4 (d), 36.4 (t), 35.9 (t), 21.8 (q), 21.63 (t), 21.61 (t), 21.57 (q), $16.8(\mathrm{q} \times 2), 15.5(\mathrm{q}), 15.0(\mathrm{q}), 14.9(\mathrm{q}), 14.22(\mathrm{q}), 14.20(\mathrm{q} \times 2), 14.16(\mathrm{q}), 13.7(\mathrm{q}), 13.5(\mathrm{q}), 13.4(\mathrm{q}), 12.7(\mathrm{q})$, $11.2(\mathrm{q}), 7.7(\mathrm{q}), 7.6(\mathrm{q}), 2.1(\mathrm{q} \times 3), 1.8(\mathrm{q} \times 3)$; HRMS $(\mathrm{ESI}), m / z$ calcd for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}$: 558.3221; found: 558.3226.

$4 R, 5 S, 6 S, 8 R, 10 R, 11 S, 12 E, 14 E)-9-c y a n o-5-h y d r o x y-4,6,8,10,12,14-h e x a m e t h y l-3,5-d i o x o-9-((t r i m e t h y l s i l y l)-$

25 oxy)heptadeca-12,14-dien-11-yl Acetate (25). Pyridine (96 $\mu \mathrm{L}, 94 \mathrm{mg}, 1.2 \mathrm{mmol})$, HF-pyridine $(70 \mu \mathrm{~L})$, and water $(4 \mu \mathrm{~L})$ were added sequentially to a solution of $\mathbf{S 5}(27.5 \mathrm{mg}, 51.3$ $\mu \mathrm{mol})$ in THF $(1.2 \mathrm{~mL})$. After 24 h , the reaction mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO_{3}, saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The
organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the crude product (29.2 mg) as a $1.2: 1$ mixture cyanohydrin diastereomers. The above crude was taken up in ethyl acetate (1 mL) and silica gel $60(100 \mathrm{mg})$ was added. The resulting suspension was stirred for 2 h and then filtered. The combined filtrate and ethyl acetate washings were concentrated to give the title compound as a mixture of ring-chain and keto-enol tautomers (20.3 mg , 91%): colorless oil, $\mathrm{TLC}_{f}=0.4$ (40% ethyl acetate in hexane); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (partial data) 16.97 $(0.16 \mathrm{H}, \mathrm{s}, \mathrm{HO}-\mathrm{enol}), 6.04-5.89(1 \mathrm{H}$, several s, HC-13), $5.34(1 \mathrm{H}, \mathrm{bt}, \mathrm{HC}-15), 5.28-5.15(1 \mathrm{H}$, several d, $J=5-6 \mathrm{~Hz}$, HC-11), 4.99 (0.05 , s, HO-hemiacetal), $4.02(\mathrm{q})$ and $4.01(\mathrm{q})(0.7 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (partial data) 199.1 (s, CO) \& 193.6 (s, CO) \& 105.0 ($\mathrm{s}, \mathrm{C}-8$) (enol form), 169.6 (s, CO) \& 169.5 (s, CO) \& 169.35 ($\mathrm{s}, \mathrm{CO})$ (acetate carbonyls), 82.3 (d, C-11) \& 82.1 (d, C-11) \& 81.9 (d, C-11), 61.8 (d, C-8) \& 59.8 (d, C-8) (2 keto diastereomers); LRMS (CI, NH_{3}), m / z (relative intensity): 454 ($[\mathrm{M}+18]^{+}, 17$), 378 (26), 377 (100), 359 (54), 263 (58), 195 (37), 149 (30), 115 (13), 109 (11); HRMS (CI, NH_{3}), m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{6}+\mathrm{NH}_{4}$: 454.3169; found: 454.3161 .

11- \boldsymbol{O}-Acetylmuamvatin (26). Pyridine ($48 \mu \mathrm{~L}, 47 \mathrm{mg}, 0.6 \mathrm{mmol}$), HF•pyridine ($32 \mu \mathrm{~L}$), and water ($2 \mu \mathrm{~L}$) was

26 added sequentially to a solution of $25(10 \mathrm{mg}, 23 \mu \mathrm{~mol})$ in THF $(0.6$ $\mathrm{mL})$. After 10 days, the reaction mixture was diluted with ethyl acetate and washed sequentially with saturated solution of NaHCO_{3} $(\times 3)$, saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(\times 3)$, and brine (5 ml). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give recovered 25 ($5.1 \mathrm{mg}, 51 \%$) and the title compound ($4.8 \mathrm{mg}, 48 \%$). The recovered 25 was resubjected to the above reaction conditions to give $\mathbf{2 5}(2.4 \mathrm{mg}, 24 \%)$ and additional title compound ($2.1 \mathrm{mg}, 21 \%$): colorless oil, TLC $\mathrm{R}_{f}=0.6$ (40% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}+40\left(c 0.2, \mathrm{CHCl}_{3}\right)$; IR (DRIFT) $v_{\max } 3435,1737$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}-13), 5.53(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{HC}-11), 5.33(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7$, $7.5 \mathrm{~Hz}, \mathrm{HC}-15), 3.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}-5), 2.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 2.21(1 \mathrm{H}, \mathrm{dq}, J=8.5,7.5 \mathrm{~Hz}, \mathrm{HC}-10), 2.10-2.04$ (3H, $\left.\mathrm{m}, \mathrm{HC}-8, \mathrm{H}_{2} \mathrm{C}-16\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CCO}\right), 1.89(1 \mathrm{H}, \mathrm{dq}, J=1,7 \mathrm{~Hz}, \mathrm{HC}-6), 1.72\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-12, \mathrm{H}_{3} \mathrm{C}-14\right)$, 1.63$1.54(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2, \mathrm{HC}-4), 1.47(1 \mathrm{H}, \mathrm{dq}, J=14,7.5 \mathrm{~Hz}, \mathrm{HC}-2), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 1.09(3 \mathrm{H}, \mathrm{d}, J=7$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-17\right), 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right)$, $0.78\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9(\mathrm{~s}, \mathrm{CO}), 134.0(\mathrm{~d}, \mathrm{C}-13), 133.2$ (d, C-15), 131.7 ($\mathrm{s}, \mathrm{C}-12$ or C-14), 131.6 ($\mathrm{s}, \mathrm{C}-12$ or C-14), 103.4 ($\mathrm{s}, \mathrm{C}-9$), 102.5 ($\mathrm{s}, \mathrm{C}-3$), 97.7 ($\mathrm{s}, \mathrm{C}-7$), 79.6 (d, C-11), 78.9 (d, C-5), 43.4 (d, C-6), 39.9 (d, C-10), 38.0 (d, C-4), 35.0 (d, C-8), 30.0 (t, C-2), 21.8 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}$), 21.6 (t, C-16), 16.9 (q, $\left.\mathrm{CH}_{3} \mathrm{C}-14\right), 14.3(\mathrm{q}, \mathrm{C}-17), 14.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right)$, $13.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right.$ or $\left.\mathrm{CH}_{3} \mathrm{C}-6\right), 13.4\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4\right.$ or $\left.\mathrm{CH}_{3} \mathrm{C}-6\right), 10.5(\mathrm{q}$, $\mathrm{CH}_{3} \mathrm{C}-10$), 7.2 (q, $\left.\mathrm{CH}_{3} \mathrm{C}-8\right), 6.1$ (q, C-1); LRMS (EI), m / z (relative intensity): 436 ($[\mathrm{M}]^{+}, 4$), 419 (3), 376 (10), 195 (29), 176 (20), 153 (18), 149 (100), 139 (50), 121 (87), 57 (55); HRMS (EI), m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{6}$: 436.2825; found: 436.2816 .

Muamvatin (1). DIBAL-H (1 M in toluene; $50 \mu \mathrm{~L}, 50 \mu \mathrm{~mol}$) was added to a stirred solution of ?? ($6.8 \mathrm{mg}, 15$

1 $\mu \mathrm{mol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 2 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and washed with aq Rochelle's salt (1.4 M). The aqueous layer was back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give the titled compound ($5.6 \mathrm{mg}, 91 \%$): colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.5$ (40% ethyl acetate in hexane); $[\alpha]_{\mathrm{D}}+60\left(c 0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}-13), 5.31(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-15), 4.40(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{HC}-11)$, $4.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HOC}-11), 3.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HC}-5), 2.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HOC}-7), 2.13-2.05\left(3 \mathrm{H}, \mathrm{m}, \mathrm{HC}-8, \mathrm{H}_{2} \mathrm{C}-16\right), 2.00-$ $1.92(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-6, \mathrm{HC}-10), 1.76\left(3 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{H}_{3} \mathrm{CC}-12\right), 1.72\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-14\right), 1.70-1.65(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-4, \mathrm{HC}-2)$, 1.59-1.51 ($1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2$), $1.18\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right), 1.03(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CC}-8\right), 0.98\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-17\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 0.72\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-10\right) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.7$ ($\mathrm{s}, \mathrm{C}-12$), 132.9 (d, C-13), 132.3 (d, C-15), 131.7 ($\mathrm{s}, \mathrm{C}-14$), 105.4 (s, C-9), 103.2
($\mathrm{s}, \mathrm{C}-3$), 97.7 ($\mathrm{s}, \mathrm{C}-7$), 79.6 (d, C-11), 78.8 (d, C-5), 43.1 (d, C-6), 40.9 (d, C-10), 37.8 (d, C-4), 35.2 (d, C-8), 30.1 (t, C-2), 21.6 (t, C-16), 16.9 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-14$), 14.4 ($\mathrm{q}, \mathrm{C}-17$), 13.45 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ or $\mathrm{CH}_{3} \mathrm{C}-6$), 13.41 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ or $\left.\mathrm{CH}_{3} \mathrm{C}-6\right), 12.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12\right), 10.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-10\right), 6.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-8\right), 6.1$ ($\mathrm{q}, \mathrm{C}-1$); LRMS (EI), m / z (relative intensity): 394 ([M] ${ }^{+}, 4$), 376 (10), 294 (11), 256 (31), 238 (29), 183 (39), 153 (41), 109 (48), 86 (28), 57 (100); HRMS (EI), m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{5}$: 394.2719; found: 394.2715.

Table S1. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of natural $\mathbf{1}$ and synthetic $\mathbf{1}$.

Natural ${ }^{\text {a }}$			Assignment	Synthetic		
δ_{H}	multiplicity	$J(\mathrm{~Hz})$		δ_{H}	multiplicity	$J(\mathrm{~Hz})$
0.96	t	7.46	$\mathrm{H}_{3} \mathrm{C}-1$	0.95	t	7.5
1.56	dq	14.34, 7.46	HC-2	1.59-1.51	m	
1.69	dq	14.34, 7.46	HC-2	1.70-1.65	2 Hm	
1.69	q	6.93	HC-4			
1.18	d	7.93	$\mathrm{H}_{3} \mathrm{CC}-4$	1.18	d	7
3.88	br s		HC-5	3.88	br s	
1.15	d	7.03	$\mathrm{H}_{3} \mathrm{CC}-6$	1.14	d	7
1.97	q	7.03	HC-6	2.00-1.92	2 Hm	
1.97	dq	9.02, 7.18	HC-10			
			HOC-7	2.59	br s	
2.10	dq	7.19, 7.52	$\mathrm{H}_{2} \mathrm{C}-16$	2.13-2.05	2 Hm	
2.10	q	6.74	HC-8			
1.03	d	6.74	$\mathrm{H}_{3} \mathrm{CC}-8$	1.03	d	7
0.73	d	7.18	$\mathrm{H}_{3} \mathrm{CC}-10$	0.72	t	7
4.40	d	9.02	HC-11	4.40	d	9
			HOC-11	4.38	br s	
1.76	s		$\mathrm{H}_{3} \mathrm{CC}-12$	1.76	br s	
5.87	br s		HC-13	5.87	s	
1.72	s		$\mathrm{H}_{3} \mathrm{CC}-14$	1.72	brs	
5.32	br t	7.19	HC-15	5.31	br t	7
0.98	t	7.52	$\mathrm{H}_{3} \mathrm{C}-17$	0.98	t	7.5

${ }^{a}$ Data and assignments according to Ireland et al. (ref. 11); numbering according to Paterson et al. (ref 12).

[^2]

Table S2. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of natural $\mathbf{1}$ and synthetic $\mathbf{1}$.

Natural ${ }^{\text {a }}$	Assignment	Synthetic	
$\delta_{\text {C }}$		$\delta_{\text {C }}$	$\Delta \delta_{\mathrm{C}}{ }^{\text {b }}$
5.8	C-1	6.1	0.3
29.9	C-2	30.1	0.2
102.1	C-3	103.2	0.1
37.7	C-4	37.8	0.1
78.7	C-5	78.8	0.1
43.0	C-6	43.1	0.1
97.5	C-7	97.7	0.1
35.0	C-8	35.2	0.2
105.2	C-9	105.4	0.2
40.7	C-10	40.9	0.2
79.4	C-11	79.6	0.2
134.6	C-12	134.7	0.3
132.7	C-13	132.9	0.2
131.6	C-14	131.7	0.1
132.1	C-15	132.3	0.2
21.4	C-16	21.6	0.2
14.1	C-17	14.4	0.3
16.7	$\mathrm{CH}_{3} \mathrm{C}-14$	16.9	0.2
12.3	$\mathrm{CH}_{3} \mathrm{C}-12$	12.5	0.2
10.4	$\mathrm{CH}_{3} \mathrm{C} 10$	10.6	0.2
6.6	$\mathrm{CH}_{3} \mathrm{C}-8$	6.9	0.3

${ }^{a}$ Data and assignments according to Ireland et al. (ref. 11); numbering according to Paterson et al. (ref 12).
${ }^{b} \delta_{\mathrm{C}}$ (synthetic) - δ_{C} (natural). The consistent $\Delta \delta_{\mathrm{C}}$ of ca. 0.2 is presumably due to a different reference standard; we used $\delta_{C}\left(\mathrm{CDCl}_{3}\right)=77.23$ while Ireland et. al likely used $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)=77.0$.

Structure Determination for Triol 14

Triol 14 was converted into an inseparable 7:3 mixture of $\mathbf{S 6 a}$ and $\mathbf{S 6 b}$, respectively. The ${ }^{13} \mathbf{C}$ NMR spectrum for the mixture clearly indicated that each acetonide was derived from a 1,3-anti diol (acetonide Me's at $\delta 25.4$ \& 23.7 for S6a and $\delta 25.3 \& 23.6$ for $\mathbf{S 6 b}){ }^{13}$ thereby establishing a 3,5-anti-,5,7-anti relative configuration for 14. In the major isomer S6a, the ${ }^{1} \mathrm{H}$ NMR spectra indicated ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ coupling constants of 4.5 and 8 Hz for HC-6',-HC-5'' and HC-5',-HC-4', respectively, indicating 4 '", 5 '"-anti-5', 6 ' - syn relative configuration in S6a and therefore a 5,6-anti-6,7-syn relative configuration in $\mathbf{1 4}$. The $2,3-$ syn-3,4-syn relative configuration in $\mathbf{1 4}$ is determined by the structure of $\mathbf{9}$. Thus the relative and absolute configurations of $\mathbf{1 2}, \mathbf{1 3}, \mathbf{S 2}, \mathbf{S 3}$, and $\mathbf{1 4}$ are established as indicated.

Figure S1. Determination of the relative configuration of $\mathbf{1 4}$ by conversion to acetonides S6a and S6b.
(2S,3R,4R)-2-(2-Ethyl-1,3-dioxolan-2-yl)-4-[(4R,5S,6R)-6-ethyl-2,2,5-trimethyl-1,3-dioxan-4-yl]pentan-3-ol (S6a) and (2S,3R)-2-[(4S,5S,6R)-6-((S)-1-(2-Ethyl-1,3-dioxolan-2-yl)ethyl]-2,2,5-trimethyl-1,3-dioxan-4-

and
 yl)pentan-3-ol (S6b). p-TsOH• $\mathrm{H}_{2} \mathrm{O}(2.5$ $\mathrm{mg}, 0.01 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{1 4}(10 \mathrm{mg}, 0.033 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(1 \quad \mathrm{~mL})$ and 2,2dimethoxypropane (0.5 mL). After 5 min, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated aq NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (20% ethyl acetate in hexane) to give an inseparable 7:3 mixture of S6a and $\mathbf{S 6 b}$, respectively ($8 \mathrm{mg}, 70 \%$): colorless oil, TLC $\mathrm{R}_{f}=0.6(20 \%$ ethyl acetate in hexane); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta\left(*\right.$ major isomer) $4.31\left(0.7 \mathrm{H}\right.$, ddd, $\left.J=1,3.5,5 \mathrm{~Hz},{ }^{*} \mathrm{HC}-3\right), 4.08(0.3 \mathrm{H}$, dd, J $\left.=4.5,7.5 \mathrm{~Hz}, \mathrm{HC}-6^{\prime}\right)$, 4.05-4.01 ($0.3 \mathrm{H}, \mathrm{m}, \mathrm{HC}-3$), $3.73\left(0.7 \mathrm{H}\right.$, ddd, $\left.J=4.5,4.5,9 \mathrm{~Hz}, * H C-6{ }^{\prime \prime}\left[{ }^{3} J_{\mathrm{HC}-5^{\prime \prime}}=4.5 \mathrm{~Hz}\right]\right)$,
 $=1 \mathrm{~Hz}, * \mathrm{HOC}-3), 3.11(0.3 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{HOC}-3), 2.17(0.7 \mathrm{H}, \mathrm{dq}, J=5,7 \mathrm{~Hz}, * \mathrm{HC}-2), 2.14-2.04(1.3 \mathrm{H}, \mathrm{m}, * \mathrm{HC}-$ $\left.4, \mathrm{HC}-1^{\prime \prime}, \mathrm{HC}-5^{\prime}\right), 1.91\left(0.7 \mathrm{H}, \mathrm{ddq}, J=4.5,8,7 \mathrm{~Hz}, * \mathrm{HC}-5^{"}\left[{ }^{3} J_{\mathrm{HC}-6^{\prime \prime}}=4.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HC}-4^{\prime \prime}}=8 \mathrm{~Hz}\right]\right), 1.85(0.7 \mathrm{H}, \mathrm{dq}, J=14$, $7.5 \mathrm{~Hz}, * \mathrm{HC}-1$ "'), 1.81-1.60 (2H, m, *HC-1"', H2C-1"", HC-4), 1.56 ($0.3 \mathrm{H}, \mathrm{ddq}, J=2,5,4,7 \mathrm{~Hz}, \mathrm{HC}-2$), 1.44 (0.7 H , ddq, $\left.J=9,13.5,7.5 \mathrm{~Hz}, * \mathrm{HC}-1 "{ }^{\prime \prime}\right), 1.39\left(2.1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz},{ }^{*} \mathrm{H}_{3} \mathrm{C}-1\right), 1.37-1.30(0.3 \mathrm{H}, \mathrm{m}, \mathrm{HC}-4), 1.29(2.1 \mathrm{H}, \mathrm{s}$, * $\left.{ }_{3} \mathrm{C}-2^{\prime \prime}\right), 1.27\left(2.1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz},{ }^{*} \mathrm{H}_{3} \mathrm{C}-5\right), 1.26\left(0.9 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-2^{\prime}\right), 1.23\left(2.1 \mathrm{H}, \mathrm{s}, * \mathrm{H}_{3} \mathrm{C}-2\right.$ " $), 1.23(0.9 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right), 1.22\left(0.9 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-2 '\right), 1.15\left(0.7 \mathrm{H}, \mathrm{ddq}, J=4.5,13.5,7.5 \mathrm{~Hz},{ }^{*} \mathrm{HC}-1{ }^{\prime \prime \prime}\right.$), 1.06 ($0.9 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-5$), $1.06(0.9 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{HC}-2), 0.98\left(2.1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, *^{*} \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime}\right), 0.97\left(0.9 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-5 '\right), 0.93(0.9 \mathrm{H}, \mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime \prime}\right), 0.88\left(2.1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, * \mathrm{H}_{3} \mathrm{C}-2^{\prime \prime \prime}\right), 0.81\left(2.1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, * \mathrm{H}_{3} \mathrm{CC}-5 "\right) ;{ }^{2}$ C NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (* major isomer) $114.4^{*}(\mathrm{~s}), 113.8(\mathrm{~s}), 101.2$ (s), $100.9^{*}(\mathrm{~s}), 81.0$ (d), 80.2^{*} (d), 73.7 (d), 71.5* (d), $70.8^{*}(\mathrm{~d}), 69.3(\mathrm{~d}), 65.3(\mathrm{t}), 65.23^{*}(\mathrm{t}), 65.21^{*}(\mathrm{t}), 65.0(\mathrm{t}), 42.4^{*}(\mathrm{~d}), 40.0^{*}(\mathrm{~d}), 39.8(\mathrm{~d}), 39.2(\mathrm{~d}), 39.0(\mathrm{~d}), 37.0^{*}$ (d), 27.4 (t$), 26.78^{*}(\mathrm{t}), 26.73(\mathrm{t}), 25.4^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2^{\prime \prime}\right), 25.3\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2^{\prime}\right), 23.8^{*}(\mathrm{t}), 23.7^{*}\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2^{\prime \prime}\right), 23.6$ (q , $\left.\mathrm{CH}_{3} \mathrm{C}-2^{\prime}\right), 13.6(\mathrm{q}), 12.4(\mathrm{q}), 12.3^{*}(\mathrm{q}), 12.29^{*}(\mathrm{q}), 12.0(\mathrm{q}), 11.2(\mathrm{q}), 10.8^{*}(\mathrm{q} \times 2), 7.6^{*}(\mathrm{q}), 7.4(\mathrm{q}) ;$ HRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{5}+\mathrm{Na}$: 367.2454 ; found: 367.2443 (ESI).

[^3]

象象象

of keto and hemiacetal forms)
(ca. a 3:1 mixture
of keto and hemiacetal forms)

S6b (minor)

[^0]: ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
 ${ }^{2}$ Reynolds, W. F.; Enríquez, R. G. J. Nat. Prod. 2002, 65, 221-244.
 ${ }^{3}$ The multiplicity of ${ }^{13} \mathrm{C}$ NMR signals refers to the number of attached H's (i.e., $\mathrm{s}=\mathrm{C}, \mathrm{d}=\mathrm{CH}, \mathrm{t}=\mathrm{CH}_{2}, \mathrm{q}=\mathrm{CH}_{3}$)
 ${ }^{4}$ Ward, D. E.; Jheengut, V.; Beye, G. E.; Gillis, H. M.; Karagiannis, A.; Becerril-Jimenez, F. Synlett 2011, 508-512.
 ${ }^{5}$ Dahmann, G.; Hoffmann, R. W. Liebigs Ann. Chem. 1994, 837-845.
 ${ }^{6}$ Tanaka, S.; Saburi, H.; Kitamura, M. Adv. Synth. Catal. 2006, 348, 375-378.
 ${ }^{7}$ Mozingo, R. Org. Synth. 1941, 21, 15-17 (Coll. Vol. III 1955, 181-183).

[^1]: ${ }^{8}$ Ward, D. E.; Jheengut, V.; Beye, G. E. J. Org. Chem. 2006, 71, 8989-8992.
 ${ }^{9}$ Ward, D. E.; Sales, M.; Man, C. C.; Shen, J.; Sasmal, P. K.; Guo, C. J. Org. Chem. 2002, 67, 1618-1629.
 ${ }^{10}$ Ward, D. E.; Becerril-Jimenez, F.; Zahedi, M. M. J. Org. Chem. 2009, 74, 4447-4454.

[^2]: ${ }^{11}$ Roll, D. M.; Biskupiak, J. E.; Mayne, C. L.; Ireland, C. M. J. Am. Chem. Soc. 1986, 108, 6680-6682.
 ${ }^{12}$ Paterson, I.; Perkins, M. V. J. Am. Chem. Soc. 1993, 115, 1608-1610.

[^3]: ${ }^{13}$ Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511-3515.

