Discerning the origins of the amplitude fluctuations in dynamic Raman NanoSpectroscopy

Jérémie Margueritat,^{†,¶} Alexandre Bouhelier,[†] Laurent Markey,[†] Gérard Colas des Francs,[†] Alain Dereux,[†] Stéphanie Lau-Truong,[‡] Johan Grand,[‡] Georges Lévi,[‡] Nordin Félidj,[‡] Jean Aubard,[‡] and Eric Finot^{*,†}

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue A. Savary, F-21078,Dijon, France

, and Interfaces, Traitements, Organisations et Dynamique des Systèmes, Université Paris7-Denis Diderot, UMR 7086 CNRS, Bâtiment Lavoisier, 15 rue Jean de Baïf, F-75205 Paris, France

E-mail: eric.finot@u-bourgogne.fr

 $[\]ensuremath{^*\mathrm{To}}$ whom correspondence should be addressed

[†]Université de Bourgogne

[‡]Université Paris7-Denis Diderot

[¶]current address : LPCML-UMR 5620 CNRS / UCBL, 10 rue Ada Byron F-69622, Villeurbanne,France

Assignment of Raman lines

Table 1: BT indicates *Benzene Thiol*; this molecule is chemisorbed dissociatively onto gold NPs and SERS spectra are related to benzenethiolate which is the species bound to gold via its sulfur atom (from ref [17]).*Citrate species* indicate either adsorbated citrate (I) or its main oxydation product namely, acetone dicarboxylic acid (II) (from ref [15]). s, m, w indicate relative intensities as strong, medium and weak, respectively

SERS Spectra	Relative	Possible
from Fig.2c	Intensity	species
and Fig.4(Q)		assignment
Raman shift (cm^{-1})		
1700	m	Citrate species(II)
1620	m	Citrate species(II)
1580/1560	m	Citrate species(I+II)
1540	S	BT
1485	m-w	BT
1450	m-w	Citrate species(I+II)
1410	m-w	Citratespecies (II)
1350	m-w	Citrate species(I+II)
1300	m	Citrate species(I+II)
1250	m-w	Citrate species(I+II)
1200	m	<i>Citrate species</i> (I+II)
1130	m-w	<i>Citrate species</i> (I+II)
1095	m-s	BT
1020	m-w	BT
992	m-s	BT
950	m-s	Citrate species(I+II)

Statistical treatment of spectra

The probability density functions $p_v(A_v)$ of the photon rates A_v were estimated experimentally for each wavenumber v. Histograms were built using a bin number n defined by the root of the number N of acquired spectra and bin sizes ΔA_v obtained by the intervals between the minimum $A_{min,v}$ and the maximum $A_{max,v}$ of the photon rates.

$$n_{=}\sqrt{N} \tag{1}$$

$$\Delta A_{\nu} = \frac{A_{max,\nu} - A_{min,\nu}}{n} \tag{2}$$

 $p_v(A_v)$ are defined by the number of events $n_v(A_v)$ having its photon rate A_v comprised in the interval between A_v and $A_v + \Delta A_v$ and divided by n and ΔA_v .

$$p_{\nu}(A_{\nu}) = \frac{n_{\nu}(A_{\nu})}{\Delta A_{\nu}n} \tag{3}$$

Hence, the integral of $p_v(A_v)$ over the entire range of photon rates A_v is equal to one. The variance $\sigma_v^2(A_v)$ is used to describe how far $A_v(i)$ lies from the mean $\langle A_v \rangle$

$$\langle A_{\nu} \rangle = \sum_{i=1}^{n} p_{\nu}(i) A_{\nu}(i) \tag{4}$$

$$\sigma_{\nu}^2 = \sum_{i=1}^n p_{\nu}(i) (A_{\nu}(i) - \langle A_{\nu} \rangle)^2$$
(5)

The relative standard deviation RSD was used to express the chance occurence of the Raman line.

$$RSD_{\nu} = \frac{\sigma_{\nu}}{\langle A_{\nu} \rangle} \tag{6}$$

Log Logistic distribution

The log logistic distribution is similar in shape to the log-normal distribution (geometric Brownian motion) but is used to describe heavier tails. The log-logistic distribution, sometimes known as the Fisk distribution, is encountered in a variety of fields (economy, biology, physics) to analyse life time data. The log-logistic distribution was applied successfully to describe a process that is the product of a number of variables of small amplitude, namely we attempt to describe the process as a coupling between the substrate properties (EM field or electron tunnelling) and the molecular Raman scattering. The two-parameters log logistic distribution is described by its theoretical power density function $p_{theo,v}(A_v)$.

$$p_{theo,\nu}(A_{\nu}) = \frac{\frac{\beta}{\alpha} (\frac{A_{\nu}}{\alpha})^{\beta-1}}{(1 + (\frac{A_{\nu}}{\alpha})^{\beta})^2}$$
(7)

and its cumulative density function $F_{theo,v}(A_v)$

$$F_{theo,\nu}(A_{\nu}) = \sum_{j=1}^{A_{\nu}} p_{theo,\nu}(j) \Delta A_{\nu} = \frac{1}{(1 + \frac{A_{\nu}}{\alpha})^{-\beta}}$$
(8)

 α is a scale parameter that corresponds to the median of the distribution (i.e. the value of A_v having $F(A_v)=0.5$). Note that the median is less sensitive to the extreme values compared to the mean. α_v is obtained by the following relations :

$$\alpha_{\nu} = \frac{\sin b}{b} \langle A_{\nu} \rangle \tag{9}$$

where b is obtained by solving the equation :

$$RSD_v^2 = \frac{2b}{\sin 2b} - \frac{b^2}{\sin b} \tag{10}$$

The shape parameter β_v can be deduced from b

$$\beta_{\nu} = \frac{\pi}{b} \tag{11}$$

When β_v is high, α_v tends to $\langle I_v \rangle$. Note that α_v tends to the infinity when β_v approaches the value of 2.