Discerning the origins of the amplitude fluctuations in dynamic Raman NanoSpectroscopy

Jérémie Margueritat, ${ }^{\dagger, \text { II }}$ Alexandre Bouhelier, ${ }^{\dagger}$ Laurent Markey, ${ }^{\dagger}$ Gérard Colas des Francs,${ }^{\dagger}$ Alain Dereux, ${ }^{\dagger}$ Stéphanie Lau-Truong, ${ }^{\ddagger}$ Johan Grand,${ }^{\ddagger}$ Georges Lévi, ${ }^{\ddagger}$ Nordin Félidj, ${ }^{\ddagger}$ Jean Aubard, ${ }^{\ddagger}$ and Eric Finot ${ }^{*}, \dagger$
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne, 9 Avenue A. Savary, F-21078,Dijon, France
, and Interfaces, Traitements, Organisations et Dynamique des Systèmes, Université Paris7-Denis Diderot, UMR 7086 CNRS, Bâtiment Lavoisier, 15 rue Jean de Baïf, F-75205 Paris, France

E-mail: eric.finot@u-bourgogne.fr

[^0]
Assignment of Raman lines

Table 1: BT indicates Benzene Thiol; this molecule is chemisorbed dissociatively onto gold NPs and SERS spectra are related to benzenethiolate which is the species bound to gold via its sulfur atom (from ref [17]).Citrate species indicate either adsorbated citrate (I) or its main oxydation product namely, acetone dicarboxylic acid (II) (from ref [15]). s, m, w indicate relative intensities as strong, medium and weak, respectively

SERS Spectra from Fig.2c and Fig.4(Q) Raman shift $\left(\mathrm{cm}^{-1}\right)$	Relative Intensity	Possible species assignment
1700	m	Citrate species(II)
1620	m	Citrate species(II)
1580/1560	m	Citrate species ($\mathrm{I}+\mathrm{II}$)
1540	s	BT
1485	m-w	BT
1450	m-w	Citrate species $(\mathrm{I}+\mathrm{II})$
1410	m-w	Citratespecies (II)
1350	m-w	Citrate species($\mathrm{I}+\mathrm{II}$)
1300	m	Citrate species($\mathrm{I}+\mathrm{II}$)
1250	m-w	Citrate species($\mathrm{I}+\mathrm{II}$)
1200	m	Citrate species($\mathrm{I}+\mathrm{II}$)
1130	m-w	Citrate species($\mathrm{I}+\mathrm{II}$)
1095	m-s	BT
1020	m-w	BT
992	m-s	BT
950	m-s	Citrate species $(\mathrm{I}+\mathrm{II})$

Statistical treatment of spectra

The probability density functions $p_{v}\left(A_{v}\right)$ of the photon rates A_{v} were estimated experimentally for each wavenumber v. Histograms were built using a bin number n defined by the root of the number N of acquired spectra and bin sizes ΔA_{V} obtained by the intervals between the minimum $A_{\min , v}$ and the maximum $A_{\max , v}$ of the photon rates.

$$
\begin{equation*}
n=\sqrt{N} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta A_{v}=\frac{A_{\max , v}-A_{\min , v}}{n} \tag{2}
\end{equation*}
$$

$p_{v}\left(A_{v}\right)$ are defined by the number of events $n_{v}\left(A_{v}\right)$ having its photon rate A_{v} comprised in the interval between A_{ν} and $A_{\nu}+\Delta A_{\nu}$ and divided by n and ΔA_{ν}.

$$
\begin{equation*}
p_{v}\left(A_{v}\right)=\frac{n_{v}\left(A_{v}\right)}{\Delta A_{v} n} \tag{3}
\end{equation*}
$$

Hence, the integral of $p_{v}\left(A_{v}\right)$ over the entire range of photon rates A_{v} is equal to one. The variance $\sigma_{v}^{2}\left(A_{v}\right)$ is used to describe how far $A_{v}(i)$ lies from the mean $\left\langle A_{v}\right\rangle$

$$
\begin{gather*}
\left\langle A_{v}\right\rangle=\sum_{i=1}^{n} p_{v}(i) A_{v}(i) \tag{4}\\
\sigma_{v}^{2}=\sum_{i=1}^{n} p_{v}(i)\left(A_{v}(i)-\left\langle A_{v}\right\rangle\right)^{2} \tag{5}
\end{gather*}
$$

The relative standard deviation $R S D$ was used to express the chance occurence of the Raman line.

$$
\begin{equation*}
R S D_{v}=\frac{\sigma_{v}}{\left\langle A_{v}\right\rangle} \tag{6}
\end{equation*}
$$

Log Logistic distribution

The log logistic distribution is similar in shape to the log-normal distribution (geometric Brownian motion) but is used to describe heavier tails. The log-logistic distribution, sometimes known as the Fisk distribution, is encountered in a variety of fields (economy, biology, physics) to analyse life time data. The log-logistic distribution was applied successfully to describe a process that is the product of a number of variables of small amplitude, namely we attempt to describe the process as a coupling between the substrate properties (EM field or electron tunnelling) and the molecular Raman scattering. The two-parameters log logistic distribution is described by its theoretical power density function $p_{t h e o, v}\left(A_{v}\right)$.

$$
\begin{equation*}
p_{\text {theo }, v}\left(A_{v}\right)=\frac{\frac{\beta}{\alpha}\left(\frac{A_{v}}{\alpha}\right)^{\beta-1}}{\left(1+\left(\frac{A_{v}}{\alpha}\right)^{\beta}\right)^{2}} \tag{7}
\end{equation*}
$$

and its cumulative density function $F_{\text {theo }, v}\left(A_{v}\right)$

$$
\begin{equation*}
F_{\text {theo }, v}\left(A_{v}\right)=\sum_{j=1}^{A_{v}} p_{\text {theo }, v}(j) \Delta A_{v}=\frac{1}{\left(1+\frac{A_{v}}{\alpha}\right)^{-\beta}} \tag{8}
\end{equation*}
$$

α is a scale parameter that corresponds to the median of the distribution (i.e. the value of A_{v} having $\left.F\left(A_{v}\right)=0.5\right)$. Note that the median is less sensitive to the extreme values compared to the mean. α_{v} is obtained by the following relations:

$$
\begin{equation*}
\alpha_{v}=\frac{\sin b}{b}\left\langle A_{v}\right\rangle \tag{9}
\end{equation*}
$$

where b is obtained by solving the equation :

$$
\begin{equation*}
R S D_{v}^{2}=\frac{2 b}{\sin 2 b}-\frac{b^{2}}{\sin b} \tag{10}
\end{equation*}
$$

The shape parameter β_{v} can be deduced from b

$$
\begin{equation*}
\beta_{v}=\frac{\pi}{b} \tag{11}
\end{equation*}
$$

When β_{v} is high, α_{v} tends to $\left\langle I_{v}\right\rangle$. Note that α_{v} tends to the infinity when β_{v} approaches the value of 2 .

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Université de Bourgogne
 *Université Paris7-Denis Diderot
 ${ }^{I I}$ current address : LPCML-UMR 5620 CNRS / UCBL, 10 rue Ada Byron F-69622, Villeurbanne,France

