Synthesis and Biological Evaluation of Colchicine B-Ring Analogues Tethered with Halogenated Benzyl Moieties.

Laura Cosentino, Mariano Redondo-Horcajo, Ying Zhao, Ana Rita Santos, Kaniz F. Chowdury, Victoria Vinader, Qasem M. A. Abdallah, Hamdy Abdel-Rahman, Jérémie Fournier Dit Chabert, Steven D. Shnyder, Paul M. Loadman, Wei-shuo Fang, José Fernando Díaz, Isabel Barasoain, Philip A. Burns, Klaus Pors.

Supporting Information

- S2: Synthesis: Materials and Methods
- S11: Computational chemistry: Binding models of colchicinoids 1-11
- S19: Cell cycle study of colchicine and compound 7 using FACS
- S20 Stability study of compound 7 using mouse liver homogenate
- S21: Chemosensitivity of compound 7, colchicine and topotecan in the presence of Fumitremorgin C
- S22: HPLC chromatograms of colchicinoids 1-11

Synthesis: Materials and Methods

All chemicals were obtained from Aldrich (Poole, Dorset) and Lancaster (Morecambe, Lancashire). Anhydrous THF was from Aldrich. All other solvents were supplied by VWR. Silica for column chromatography: particle size 35-70 µm and thin layer chromatography plates (on aluminium) were supplied by VWR. Analytical thin-layer chromatography (TLC) was performed on plates precoated with silica gel 60 F254 (Merck). Visualisation of the plates was carried out using UV light (254 nm). Melting points were determined with a Stuart scientific SMP3 melting point apparatus. ¹H and ¹³C NMR spectra were measured on a Bruker Advance AM 400 (400 MHz) spectrometer. NMR spectra were processed using a Bruker XWIN NMR 3.5 program. Low resolution mass spectra (LRMS) were generated using a Micromass Quattro Ultima mass spectrometer. High resolution accurate mass measurements were obtained from EPSRC National Mass Spectrometry Service Centre, University of Wales, Swansea. HPLC analysis was performed on Agilent Technologies 1200 HPLC system with diode array detection, using C18 reversed phase columns (Agilent Eclipse XDB - analytical: 4.6 x 100 mm; preparative: 21.2 x 150 mm). The purity of all compounds was ≥95%.

Benzyl-N-aminocolchicine

To a stirring solution of *N*-deacetylcolchicine (150 mg, 0.419 mmol) in anhydrous THF (6 mL) under argon atmosphere were added benzyl bromide (0.107 g, 0.629 mmol) and NEt₃ (116 μ L, 0.839 mmol). The resulting solution was heated at 65°C for 16 h. The reaction mixture was then poured in saturated NaHCO₃ (20 mL) and extracted with CH₂Cl₂ (3 x 25 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under vacuum. The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a yellow oil (0.146 g, 70%). δ_{H} (400 MHz, CDCl₃): 1.65-1.72 (m, 1H, H6), 2.14-2.23 (m, 1H, H6'), 2.32-2.41 (m, 1H, H5), 2.44 (dd, 1H, *J* 6.8 and 13.4 Hz, H5'), 3.39 (d, 1H, *J* 13.0 Hz, H14), 3.44 (dd, 1H, *J* 6.8 and 11.3 Hz, H7), 3.52 (s, 3H, OCH₃), 3.71 (d, 1H, *J* 13.0 Hz, H14'), 3.88 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 6.50 (s, 1H, HAr), 6.79 (d, 1H, *J* 10.8 Hz, HAr), 7.13-7.18 (m, 1H, HAr), 7.20-7.22 (m, 5H, HAr), 7.90 (s, 1H, HAr), 61.2 (CH₃), 107.1 (CHAr), 111.8 (CHAr), 125.5 (CAr), 127.0 (CHAr), 128.1 (CHAr), 128.3 (CHAr), 132.4 (CHAr), 134.6 (CHAr), 135.2 (CAr), 137.0 (CAr), 139.8 (CAr), 141.1 (CAr), 150.7 (CAr), 151.0 (CAr), 153.2 (CAr), 163.9 (CAr), 179.8 (CO). m/z (AP+) 448 [M+H]⁺ (100%). HMRS calc. for C₂₇H₃₀₀5_{N1} 448.2118, found 448.2116 [M+H]⁺.

4-Bromobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (50 mg, 0.140 mmol), anhydrous THF (3 mL), 4-bromobenzyl bromide (52.4 mg, 0.210 mmol) and NEt₃ (39 µL, 0.280 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-coloured solid (52 mg, 71%). δ_{H} (400 MHz, CDCl₃): 1.70-1.77 (m, 1H, H6), 2.18-2.26 (m, 1H, H6'), 2.32-2.40 (m, 1H, H5), 2.45 (dd, 1H, *J* 6.3 and 13.0 Hz, H5'), 3.40-3.44 (m, 1H, H7), 3.43 (d, 1H, *J* 13.5 Hz, H14), 3.54 (s, 3H, OCH₃), 3.68 (d, 1H, *J* 13.5 Hz, H14'), 3.88 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 6.50 (s, 1H, HAr), 6.80 (d, 1H, *J* 10.8 Hz, HAr), 7.11 (d, 2H, *J* 8.4 Hz, HAr), 7.21 (d, 1H, *J* 10.8 Hz, HAr), 7.32 (d, 2H, *J* 8.4 Hz, HAr), 7.85 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.2 (C5), 38.4 (C6), 50.9 (C14), 56.0 (OCH₃), 56.3 (OCH₃), 59.9 (C7), 60.9 (OCH₃), 61.2 (OCH₃), 107.1 (CHAr), 111.9 (CHAr), 120.9 (CAr), 125.3 (CAr), 130.0 (CHAr), 131.4 (CHAr), 132.3 (CHAr), 134.9 (CHAr), 135.0 (CAr), 136.9 (CAr), 138.1 (CAr), 141.2 (CAr), 150.4 (CAr), 150.7 (CAr), 153.3 (CAr), 163.9 (CAr), 179.7 (C=O). m/z (ES+) 526 (100% $C_{27}H_{29}^{79}BrNO_5$), 528 (98% $C_{27}H_{29}^{81}BrNO_5$) [M+H]⁺. HMRS calc. for $C_{27}H_{29}O_5N_1Br_1$ 526.1224, found 526.1220 [M+H]⁺.

3-Fluorobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (35 mg, 0.098 mmol), anhydrous THF (3 mL), 3-fluorobenzyl bromide (27.8 mg, 0.147 mmol) and NEt₃ (27 μ L, 0.196 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-coloured solid (28 mg, 64%). $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.65-1.72 (m, 1H, H6), 2.15-2.24 (m, 1H, H6'), 2.32-2.41 (m, 1H, H5), 2.45 (dd, 1H, *J* 6.2 and 13.3 Hz, H5'), 3.38-3.42 (m, 1H, H7), 3.40 (d, 1H, *J* 13.6 Hz, H14), 3.52 (s, 3H, OCH₃), 3.71 (d, 1H, *J* 13.6 Hz, H14'), 3.88 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 6.50 (s, 1H, HAr), 6.79 (d, 1H, *J* 10.7 Hz, HAr), 6.84 (dt, 2H, *J* 2.0 and 8.4 Hz, HAr), 6.93 (dd, 1H, *J* 2.0 and 9.8 Hz, HAr), 6.98 (d, 1H, *J* 7.6 Hz, HAr), 7.16 (m, 1H, HAr), 7.21 (d, 1 H, *J* 10.7 Hz, HAr), 7.83 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.3 (C5), 38.8 (C6), 51.1 (C14), 56.0 (OCH₃), 56.3 (OCH₃), 59.8 (C7), 60.8 (OCH₃), 61.2 (OCH₃), 107.1 (CHAr), 111.8 (CHAr), 113.8 (d, *J* 21.1 Hz, CHAr), 114.8 (d, *J* 21.3 Hz, CHAr), 123.5 (d, *J* 2.8 Hz, CHAr), 125.4 (CAr), 129.8 (d, *J* 8.2 Hz, CHAr), 135.2 (CAr), 135.1 (CAr), 136.9 (CAr), 141.2 (CAr), 142.4 (d, *J* 6.9 Hz, CAr), 150.7 (CAr), 150.8 (CAr), 153.2 (CAr), 161.6 (CAr), 163.9 (CAr), 164.0 (CAr), 179.8 (C=O). m/z (AP+) 466 [M+H]⁺ (100%). HMRS calc. for C₂₇H₂₉O₅N₁F₁ 466.2024, found 466.2020 [M+H]⁺.

4-Chlorobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (35 mg, 0.098 mmol), anhydrous THF (3 mL), 4-chlorobenzyl bromide (30.2 mg, 0.147 mmol) and NEt₃ (27 μ L, 0.196 mmol). The crude oil was subjected to column chromatography on silica gel (Pet.

Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a yellow'ish coloured solid (19 mg, 40%). $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.66-1.73 (m, 1H, H6), 2.15-2.24 (m, 1H, H6'), 2.34-2.42 (m, 1H, H5), 2.46 (dd, 1H, *J* 6.2 and 13.3 Hz, H5'), 3.39 (d, 1H, *J* 13.3 Hz, H14), 3.42 (dd, 1H, *J* 5.8 and 11.3 Hz, H7), 3.55 (s, 3H, OCH₃), 3.68 (d, 1H, *J* 13.3 Hz, H14'), 3.90 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 4.00 (s, 3H, OCH₃), 6.52 (s, 1H, HAr), 6.81 (d, 1H, *J* 10.8 Hz, HAr), 7.15-7.21 (m, 4H, HAr), 7.23 (d, 1H, *J* 10.8 Hz, HAr), 7.86 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.3 (C5), 38.8 (C6), 51.0 (C14), 56.0 (OCH₃), 56.3 (OCH₃), 60.0 (C7), 60.8 (OCH₃), 61.3 (OCH₃), 107.1 (CHAr), 111.8 (CHAr), 125.5 (CAr), 128.4 (CHAr), 129.5 (CHAr), 132.3 (CHAr), 132.7 (CAr), 134.7 (CHAr), 135.1 (CAr), 137.0 (CAr), 138.2 (CAr), 141.2 (CAr), 150.7 (CAr), 150.8 (CAr), 153.3 (CAr), 163.9 (CAr), 179.8 (C=O). m/z 428 (100% C₂₇H₂₉³⁵CINO₅), 484 (32% C₂₇H₂₉³⁷CINO₅) [M+H]⁺. HMRS calc. for C₂₇H₂₉O₅N₁Cl₁ 482.1729, found 482.1722 [M+H]⁺.

4-lodobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (35 mg, 0.098 mmol), anhydrous THF (3 mL), 4-iodobenzyl bromide (43.7 mg, 0.147 mmol) and NEt₃ (27 μ L, 0.196 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-coloured solid (25 mg, 45%). δ_{H} (400 MHz, CDCl₃): 1.61-1.68 (m, 1H, H6), 2.10-2.19 (m, 1H, H6'), 2.27-2.35 (m, 1H, H5), 2.41 (dd, 1H, *J* 6.2 and 13.3 Hz, H5'), 3.32 (d, 1H, *J* 13.3 Hz, H14), 3.36 (dd, 1H, *J* 5.4 and 10.0 Hz, H7), 3.49 (s, 3H, OCH₃), 3.59 (d, 1H, *J* 13.3 Hz, H14'), 3.84 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.47 (s, 1H, HAr), 6.76 (d, 1 H, *J* 10.7 Hz, HAr), 6.93 (d, 2 H, *J* 8.2 Hz, HAr), 7.17 (d, 1 H, *J* 10.7 Hz, HAr), 7.47 (d, 2 H, *J* 8.2 Hz, HAr), 7.80 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.3 (C5), 38.7 (C6), 51.1 (C14), 56.1 (OCH₃), 56.3 (OCH₃), 59.9 (C7), 60.9 (OCH₃), 61.3 (OCH₃), 92.3 (CAr), 107.2 (CHAr), 111.9 (CHAr), 125.4 (CAr), 130.2 (CHAr), 132.3 (CHAr), 134.8 (CHAr), 135.0 (CAr), 137.0 (CAr), 137.3 (CHAr), 139.3 (CAr), 141.2 (CAr), 150.6 (CAr), 150.7 (CAr), 153.3 (CAr), 163.9 (CAr), 179.7 (C=O). m/z (AP+) 574 [M+H]⁺ (100%). HMRS calc. for C₂₇H₂₉O₅N₁I₁ 574.1085, found 574.1081 [M+H]⁺.

2,3-Di-fluorobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (50 mg, 0.140 mmol), anhydrous THF (3 mL), 2,3-di-fluorobenzyl bromide (43.5 mg, 0.210 mmol) and NEt₃ (39 µL, 0.280 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-coloured solid (39 mg, 58%). $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.61-1.68 (m, 1H, H6), 2.08-2.17 (m, 1H, H6'), 2.26-2.34 (m, 1H, H5), 2.38 (dd, 1H, *J* 6.2 and 13.4 Hz, H5'), 3.35 (dd, 1H, *J* 6.3 and 10.8 Hz, H7), 3.52 (d, 1H, *J* 13.6 Hz, H14), 3.53 (s, 3H, OCH₃), 3.65 (d, 1H, *J* 13.6 Hz, H14'), 3.81 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 6.43 (s, 1H, HAr), 6.74 (d, 1 H, *J* 10.7 Hz, HAr), 6.84-6.93 (m, 2 H, HAr), 6.97-7.00 (m, 1 H, HAr), 7.15 (d, 1 H, *J* 10.7 Hz, HAr), 7.82 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 29.2 (C5), 37.5 (C6), 43.4 (C14), 55.0

 (OCH_3) , 55.2 (OCH_3) , 58.7 (C7), 59.8 (OCH_3) , 60.1 (OCH_3) , 106.2 (CHAr), 110.8 (CHAr), 114.8 (d, J)17.1 Hz, CHAr), 122.9 (dd, J 4.6 and 6.7 Hz, CHAr), 124.0 (t, J 3.1 Hz, CHAr), 124.3 (CAr), 128.0 (d, J)11.7 Hz, CAr), 131.3 (CHAr), 133.7 (CHAr), 133.9 (CAr), 135.9 (CAr), 140.2 (CAr), 146.5 (d, J 12.6 Hz, CAr), 148.0 (d, J 13.0 Hz, CAr), 149.0 (d, J 12.7 Hz, CAr), 149.4 (CAr), 149.7 (CAr), 150.5 (d, J 12.9 Hz, CAr), 152.3 (CAr), 162.9 (CAr), 178.6 (CO). m/z (ES+) 484 $[M+H]^+$ (100%). HMRS calc. for $C_{27}H_{28}O_5N_1F_2$ 484.1930, found 484.1933 $[M+H]^+$.

3,4-Di-fluorobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (50 mg, 0.140 mmol), anhydrous THF (3 mL), 3,4-di-fluorobenzyl bromide (43.5 mg, 0.210 mmol) and NEt₃ (39 µL, 0.280 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a yellow'ish coloured solid (44 mg, 65%). $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.61-1.74 (m, 1H, H6), 2.17-2.26 (m, 1H, H6'), 2.34-2.42 (m, 1H, H5), 2.47 (dd, 1H, *J* 6.1 and 13.6 Hz, H5'), 3.37-3.42 (m, 2H, H7 and H14), 3.57 (s, 3H, OCH₃), 3.68 (d, 1H, *J* 13.5 Hz, H14'), 3.90 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 4.00 (s, 3H, OCH₃), 6.52 (s, 1H, HAr), 6.81 (d, 1 H, *J* 10.7 Hz, HAr), 6.93-7.10 (m, 3 H, HAr), 7.23 (d, 2 H, *J* 10.7 HAr), 7.80 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.2 (C5), 38.7 (C6), 50.6 (C14), 56.0 (OCH₃), 56.3 (OCH₃), 59.9 (C7), 60.8 (OCH₃), 61.2 (OCH₃), 107.1 (CHAr), 111.9 (CHAr), 116.9 (d, *J* 9.4 Hz, CHAr), 117.0 (d, *J* 9.4 Hz, CHAr) 123.9 (dd, *J* 3.5 and 6.0 Hz, CHAr), 125.3 (CAr), 132.0 (CHAr), 134.9 (CHAr), 135.0 (CAr), 136.6 (brs CAr), 136.9 (CAr), 141.1 (CAr), 148.1 (d, *J* 12.6 Hz, CAr), 148.9 (d, *J* 12.7 Hz, CAr), 150.5 (d, *J* 12.3 Hz, CAr), 150.6 (Car,) 151.3 (d, *J* 12.5 Hz, CAr), 153.3 (CAr), 163.9 (CAr), 179.7 (CO). m/z (ES+) 484 [M+H]⁺ (100%). HMRS calc. for C₂₇H₂₈O₅N₁F₂ 484.1930, found 484.1934 [M+H]⁺.

3,5-Di-fluorobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (50 mg, 0.140 mmol), anhydrous THF (3 mL), 3,5-di-fluorobenzyl bromide (43.5 mg, 0.210 mmol) and NEt₃ (39 µL, 0.280 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-to-yellow'ish coloured solid (46 mg, 68%). δ_{H} (400 MHz, MeOD): 1.58-1.64 (m, 1H, H6), 2.13-2.17 (m, 2H, H6' and H5), 2.41 (d, 1H, *J* 7.3 Hz, H5'), 3.21-3.26 (m, 1H, H7), 3.37 (d, 1H, *J* 14.3 Hz, H14), 3.39 (s, 3H, OCH₃), 3.57 (d, 1H, *J* 14.3 Hz, H14'), 3.72 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 6.56 (s, 1H, HAr), 6.56-6.62 (m, 1H, HAr), 6.71-6.75 (m, 2H, HAr), 7.07 (d, 1H, *J* 10.9 Hz, HAr), 7.25 (d, 1 H, *J* 10.9 Hz, HAr), 7.84 (s, 1H, HAr). ¹³C (101 MHz, MeOD): 31.0 (C5), 39.5 (C6), 51.6 (C14), 56.6 (OCH₃), 57.0 (OCH₃), 60.8 (C7), 61.5 (OCH₃), 61.6 (OCH₃), 102.9 (t, *J* 25.8 Hz, CHAr), 108.6 (CHAr), 111.9 (d, *J* 12.0 Hz, CHAr), 111.9 (d, *J* 25.1 Hz, CHAr), 115.0 (CHAr), 126.4 (CAr), 132.9 (CHAr), 136.7 (CAr), 137.6 (CHAr), 139.5 (CAr), 142.4 (CAr), 146.1 (t, *J* 8.6 Hz, CAr), 151.8 (CAr), 154.3 (CAr), 155.0 (CAr), 163.2 (d, *J* 12.8 Hz, CAr),

165.3 (CAr), 165.6 (d, *J* 12.8 Hz, CAr), 181.0 (C=O). m/z (ES+) 484 $[M+H]^+$ (100%). HMRS calc. for $C_{27}H_{28}O_5N_1F_2$ 484.1930, found 484.1933 $[M+H]^+$.

3,4,5-Tri-fluorobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (50 mg, 0.140 mmol), anhydrous THF (3 mL), 3,4,5-tri-fluorobenzyl bromide (47.3 mg, 0.210 mmol) and NEt₃ (39 µL, 0.280 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-coloured solid (42 mg, 60%). δ_{H} (400 MHz, CDCl₃): 1.66-1.73 (m, 1H, H6), 2.18-2.26 (m, 1H, H6'), 2.31-2.39 (m, 1H, H5), 2.45 (dd, 1H, *J* 6.2 and 13.3 Hz, H5'), 3.35-3.39 (m, 1H, H7), 3.36 (d, 1H, *J* 13.3 Hz, H14), 3.55 (s, 3H, OCH₃), 3.66 (d, 1H, *J* 13.3 Hz, H14'), 3.87 (s, 6H, OCH₃), 3.98 (s, 3H, OCH₃), 6.50 (s, 1H, HAr), 6.80 (d, 1 H, *J* 10.7 Hz, HAr), 6.86 (d, 1H, *J* 7.1 Hz, HAr), 6.88 (d, 1H, *J* 7.1 Hz, HAr), 7.21 (d, 1 H, *J* 10.7 Hz, HAr), 7.74 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.2 (C5), 38.6 (C6), 50.4 (C14), 56.0 (OCH₃), 56.3 (OCH₃), 59.9 (C7), 60.8 (OCH₃), 61.2 (OCH₃), 107.2 (CHAr), 111.7 (d, *J* 21.3 Hz, CHAr), 111.7 (d, *J* 10.3 Hz, CHAr), 111.9 (CHAr), 125.2 (CAr), 131.9 (CHAr), 134.9 (CAr), 135.0 (CHAr), 135.9-136.0 (m, CAr), 136.9 (CAr), 137.3 (t, *J* 15.4 Hz, CAr), 139.8 Hz, CAr), 141.2 (CAr), 149.7 (dd, *J* 3.8 and 9.8 Hz, CAr), 150.4 (CAr), 150.6 (CAr), 152.2 (dd, *J* 3.8 and 9.8 Hz, CAr), 153.4 (CAr), 163.9 (CAr), 179.6 (C=O). m/z (ES+) 502 [M+H]⁺ (100%). HMRS calc. for C₂₇H₂₈O₅N₁F₃ 502.1836, found 502.1840 [M+H]⁺.

4-Nitrobenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (35 mg, 0.098 mmol), anhydrous THF (3 mL), 4-nitrobenzyl bromide (31.8 mg, 0.147 mmol) and NEt₃ (27 μ L, 0.196 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the titled compound as a yellow'ish solid (23 mg, 48%). δ_{H} (400 MHz, CDCl₃): 1.65-1.72 (m, 1H, H6), 2.14-2.24 (m, 1H, H6'), 2.28-2.36 (m, 1H, H5), 2.42 (dd, 1H, *J* 6.1 and 13.1 Hz, H5'), 3.42 (dd, 1H, *J* 6.2 and 10.9 Hz, H5'), 3.55 (s, 3H, OCH₃), 3.55 (d, 1H, *J* 14.2 Hz, H14), 3.79 (d, 1H, *J* 14.2 Hz, H14'), 3.86 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 3.97 (s, 3H, OCH₃), 6.50 (s, 1H, HAr), 6.80 (d, 1 H, *J* 10.7 Hz, HAr), 7.21 (d, 1H, *J* 10.7 Hz, HAr), 7.42 (d, 2 H, *J* 8.7 Hz, HAr), 7.82 (s, 1H, HAr), 8.05 (d, 2 H, *J* 8.7 Hz, HAr). ¹³C (101 MHz, CDCl₃): 30.2 (CH₂), 38.6 (CH₂), 51.0 (CH₂), 56.0 (OCH₃), 56.3 (OCH₃), 60.3 (CH), 60.9 (OCH₃), 61.2 (OCH₃), 107.2 (CHAr), 112.0 (CHAr), 123.5 (CHAr), 125.2 (CAr), 128.8 (CHAr), 132.0 (CHAr), 134.9 (CAr), 135.0 (CHAr), 136.9 (CAr), 141.2 (CAr), 147.0 (CAr), 147.2 (CAr), 150.4 (CAr), 150.6 (CAr), 153.4 (CAr), 164.0 (CAr), 179.6 (C=O). m/z (ES+) 492 [M]⁺ (100%). HMRS calc. for C₂₇H₂₉O₇N₂ 493.1969, found 493.1969 [M+H]⁺.

4-Methoxybenzyl-N-aminocolchicine

The method follows that of Benzyl-*N*-aminocolchicine. Reagents and solvent used: *N*-deacetylcolchicine (50 mg, 0.140 mmol), anhydrous THF (3 mL), 4-methoxybenzyl bromide (42.2 mg, 0.210 mmol) and

NEt₃ (39 µL, 0.280 mmol). The crude oil was subjected to column chromatography on silica gel (Pet. Ether/EtOAc 1:1 \rightarrow EtOAc) to give the title compound as a straw-coloured solid (46 mg, 69%). $\delta_{\rm H}$ (400 MHz, CDCl₃): 1.61-1.72 (m, 1H, H6), 2.14-2.23 (m, 1H, H6'), 2.33-2.41 (m, 1H, H5), 2.45 (dd, 1H, *J* 6.1 and 13.4 Hz, H5'), 3.33 (d, 1H, *J* 12.6 Hz, H14), 3.43 (dd, 1H, *J* 6.3 and 10.9 Hz, H7), 3.55 (s, 3H, OCH₃), 3.63 (d, 1H, *J* 12.6 Hz, H14'), 3.75 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 6.51 (s, 1H, HAr), 6.76 (d, 2H, *J* 8.6 Hz, HAr), 6.80 (d, 1H, *J* 10.8 Hz, HAr), 7.14 (d, 2H, *J* 8.6 Hz, HAr), 7.22 (d, 1H, *J* 10.8 Hz, HAr), 7.90 (s, 1H, HAr). ¹³C (101 MHz, CDCl₃): 30.4 (C5), 38.8 (C6), 51.2 (C14), 55.2 (OCH₃), 56.0 (OCH₃), 56.3 (OCH₃), 60.0 (C7), 60.9 (OCH₃), 61.3 (OCH₃), 107.1 (CHAr), 111.8 (CHAr), 113.7 (CHAr), 125.6 (CAr), 129.3 (CHAr), 131.9 (CAr), 132.4 (CHAr), 134.6 (CHAr), 135.2 (CAr), 137.0 (CAr), 141.2 (CAr), 150.7 (CAr), 151.0 (CAr), 153.2 (CAr), 158.6 (CAr), 163.9 (CAr), 179.8 (C=O). m/z (AP+) 478 [M+H]⁺ (100%). HMRS calc. for C₂₈H₃₂O₆N₁ 478.2224, found 478.2218 [M+H]⁺.

Computational chemistry: Binding models of colchicinoids 1-11

The X-ray crystal structure of bovine α , β -tubulin complexed with *N*-deacetyl-*N*-(2-mercaptoacetyl)colchicine was obtained from the protein database (PDB code 1SA0, 3.58Å) as previously described (Ravelli, R. B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. *Nature* **2004**, 428, 198-202.). MOE software was employed to generate binding models for compounds 1-11, which were minimized in energy prior to calculating their binding affinities. All the colchicine models revealed how the benzyl fragment occupied the chemical space available in the binding domain as demonstrated in Figures S1-S11 below. Figure S1 Benzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S2 4-Bromobenzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S3 4-Chlorobenzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S4 4-lodobenzyl-*N*-aminocolchicine docked into the colchicine binding domain

Figure S5 3-Bromobenzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S6 3,4,5-Tri-fluorobenzyl-*N*-aminocolchicine docked into the colchicine binding domain

Figure S7 2,3-Di-fluorobenzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S9 3,5-Di-fluorobenzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S10 Nitrobenzyl-N-aminocolchicine docked into the colchicine binding domain

Figure S11 4-Methoxybenzyl-*N*-aminocolchicine docked into the colchicine binding domain

Figure S12 Cell cycle study of colchicine and compound 7 using FACS

Cell cycle study HT29 cells at 70 % confluency were trypsinised and transferred into 6 well-plates (5 x 105 cells/well) and allowed to adhere overnight at 37 °C in a humidified incubator prior to the treatment. Cells were then exposed to compound **7** or colchicine at 40 nM for 24 or 48 hours. Cells were collected, permeabilized in ice-cold methanol (90%) for 30 min. Next, cells were washed in PBS and their phase in the cell cycle was deter-mined from their DNA content. Briefly, cells were treated with 250 µl propidiumiodide (200 µg/mL; PI; Sigma-Aldrich) containing RNAse A (200 µg/mL) for 30 min on ice in the dark. Finally, ice-cold PBS (250 µL) was added and a minimum of 10,000 stained cells were acquired on a FACScan (Becton Dickinson) and analyzed with the Cell-Quest software.

Stability of compound 7 using mouse liver homogenates: The liver was excised from mice and was flash-frozen in liquid N2 immediately after rinsing in phosphate buffered saline solution (PBS) and weighing. Liver homogenate (1 g) was prepared with an addition of PBS (4 mL) and homogenized on ice with a tissue homogenizer (Ultra Turrax). Compound **7** stock solution (5 μ L, 20 mM) was added into 1 mL of liver homogenate to give a final concentration of 100 μ M. The homogenate was gently shaken with inversed mixing prior to incubation at 37°C. Aliquotes (100 μ L) for LCMS analysis was taken at t = 0, 20, 40, 60 and 120 minutes and reactions quenched with the addition of acetonitrile (600 μ L). After centrifugation, the supernatant was collected and analysed using LC/MS. Detection was performed on a Waters Alliance system using a photodiode array detector, and a Micromass ZMD Mass Spectrometer connected in series. Compound **7** was separated on a RPB reversed-phase high-performance liquid chromatography column (HiChrom) using a mobile phase of methanol/water/0.1% formic acid, with a gradient from 22.5% to 50% methanol over 30 minutes at 1.2 mL/min. Compound **7** was quantified using absorption measurements at 330 nm and detected as singularly charged ion (m/z 485.2). Figure S12 show no breakdown of compound **7** after 2 hours incubation.

Figure S14 Chemosensitivity of compound 7, colchicine and topotecan in the presence of Fumitremorgin C

Chemosensitivity study in the presence/absence of Fumitremorgin C: The A549 cell line was cultured in RPMI 1640 cell culture medium supplemented with 1 mM sodium pyruvate, 2 mM L-glutamine and 10% fetal bovine serum (all from Sigma). 1 × 10⁴ cells/ml were inoculated into each well of a 96-well plate and incubated overnight at 37 °C in a humidified atmosphere containing 5% CO₂. Compound 7, colchicine and topotecan were dissolved in DMSO and diluted in complete cell culture medium to give a broad range of concentrations (0.001-10 µM), such that the final DMSO concentration was not greater than 0.1%. Medium was removed from each well and replaced with compound or control solutions. After 96 h incubation, the MTT assay was performed to assess chemosensitivity. The IC₅₀ values were found to be 8 nM, 23 nM and 58 nM for compound 7, colchicine and topotecan respectively (the mean derived from 3 separate experiments). To evaluate the effect of including the ABCG2 inhibitor, Fumitremorgin C, A459 cells were incubated with the IC₅₀ dose for each compound in the presence or absence of Fumitremorgin C (10 µM). After 96 h incubation, the MTT assay was performed again to assess if the potency of each compound was enhanced in the presence of the Fumitremorgin C. Figure S13 reveals that only the cytotoxicity of topotecan is enhanced (reduction in the cell survival from 50 to ~40%), indicating that neither compound 7 nor colchicine are affected by the ABCG2 transporter function in this short-term assay. Results illustrated as histogram bars shown in Figure S13 are the mean of three independent experiments.

HPLC Chromatograms of Compounds 1-11

Single Runs: KLAUS	Ready/Reprocess Data Mode	
Integration 🏘 Calibration 💹 Signal 🔣 Purify 🍇 Spectrum		
The protect Short The Content of the		
DAD1 C, SIg=300,8 Rem/00,100 (C1CHEM32/10A1A0CLA0SURP_020812_1.0)	9 .c.	
	5 <u>10</u> 12 5 15 17 5 1	
File Information	# Time Area Height Width Area% Symmetry 1 7.472 27.9 4.2 0.1111 0.022 0.946	
File Path C:\CHEM32\1\DATA\KLAUS\	2 8.362 10.1 1.8 0.0957 0.241 0.857	
Date 02-Aug-12, 15:48:15	3 8.836 5.5 1.4 0.0649 0.131 0.719	
Sample Info	<u>4 9.142 41234 557 0.1153 98.158 0.545</u> 5 9.927 28.4 5.1 0.0927 0.676 0.835	
Barcode	6 11.883 5.5 1.5 0.061 0.132 0.929	
Operator KLAUS		
Analysis Time 20.387 min		
Sampling Rate 0.0067 min (0.402 sec), 3059 datapoints		
isdy Start		16:11
	Time Area Height Width Area% Symmet	try

Benzyl-N-aminocolchicine: Purity = 98.2%

#	Time	Area	Height	Width	Area%	Symmetry
1	7.473	27.9	4.2	0.1111	0.663	0.846
2	8.362	10.1	1.8	0.0957	0.241	0.857
3	8.836	5.5	1.4	0.0649	0.131	0.719
4	9.142	4129.4	597	0.1153	98.158	0.545
5	9.927	28.4	5.1	0.0927	0.675	0.835
6	11.883	5.5	1.5	0.061	0.132	0.929

4-Bromobenzyl-*N*-aminocolchicine: Purity = 94.2%

3-Fluorobenzyl-*N*-aminocolchicine: Purity = 97.9%

#	Time	Area	Height	Width	Area%	Symmetry
1	9.453	23.2	4.7	0.0822	0.067	0.665
2	10.269	101.2	17.1	0.0983	0.293	0.658
3	10.702	33793.9	2144.9	0.2626	97.940	0.43
4	11.923	184.6	17.7	0.1736	0.535	0.253
5	12.733	68.8	11	0.1046	0.199	0.689
6	15.003	238.5	19.3	0.2062	0.691	0.49
7	17.564	94.7	10.5	0.1505	0.274	0.701

4-Chlorobenzyl-*N*-aminocolchicine: Purity = 96.7%

#	Time	Area	Height	Width	Area%	Symmetry
1	10.001	564.9	51.1	0.1844	96.661	1.581
2	10.639	6.5	7.8E-1	0.1395	1.120	0.874
3	16.798	13	1.2	0.1807	2.220	1.721

4-lodobenzyl-*N*-aminocolchicine: Purity = 96.7%

trument 1 (offline 2): Data Analysis Graphics Integration Calibration Report	Spectra Batch View Abort Help						
Is 🤖 🔯 (SNAPSHOT.D	Methods 🦓 🛃 KA	NIZ.M	• 🗐 🕑				
ngle Runs: KLAU5		Readu	Paproses Data Mada				
Integration	ional III Purity 🧑 Spectrum	neauy/	neprocess Data Mode				
Report: Short	igned in tunit a pectrum	1 C. Sig=A\SNAPSHOT.E					
DAD1 C. Sin=360 8. Ret=700.100							
mAU -					¢, 31		
800					R B		
700 -							
600 -							
-							
500 -							
400 -							
300							
200					90		
					1		
100 -		5 628 8 .	A SHARE AND	8 . P	400 S		
•_^		Chart From	Hoghes Hes		a fail		
l	r			- (e) e i e	20		min
Ĭ.							
File Information		_	# Time A	rea Height	Width Area% Sym	metry	
LC-File SNAPSHOT.D File Path C:\CHEM32\1\DATA\		-	1 9.813 8 2 11.035 2	13.3 12.5 10.6 3.5	0.1111 0.935 0. 0.0971 0.231 0.	674 818	
Date 02-Aug-12, 12:12:42 Sample KC5		_	3 12.003 4 12.525 1	7.9 2.6 5.7 2.8	0.0496 0.088 0.0941 0.177 0	0 .79	
Sample Info Barcode		_	5 13.205 8 6 17.698 6	12.3 12.1 19.9 8.8	0.1129 0.924 0. 0.1321 0.785 0.	706 748	
Operator KLAUS Method KANIZ.M		_	7 19.92 1 8 20.317 86	8.4 2.9 08.2 814.3	0.1044 0.207 1. 0.1762 96.653 0.	329 888	
Analysis Time 27.927 min Sampling Rate 0.0067 min (0.402 sec), 41	90 datapoints						
							101
t 😁 🕼 😲 🍎 🏤 Instrument 1	(online): M	offline 🦉 untitled - F	-ant				.
				\downarrow \downarrow			
	#	Time	Area	Height	Width	Area%	Summetru
	#	Time 9.813	Area 83.3	Height 12.5	Width 0.1111	Area%	Symmetry 0.674
	#	Time 9.813 11.035	Area 83.3 20.6	Height 12.5 3.5	Width 0.1111 0.0971	Area%	Symmetry 0.674 0.818
	# 1 2 3	Time 9.813 11.035 12.003	Area 83.3 20.6 7.9	Height 12.5 3.5 2.6	Width 0.1111 0.0971 0.0496	Area% 0.935 0.231 0.088	Symmetry 0.674 0.818 0
	# 1 2 3 4	Time 9.813 11.035 12.003 12.525	Area 83.3 20.6 7.9 15.7	Height 12.5 3.5 2.6 2.8	Width 0.1111 0.0971 0.0496 0.0941	Area% 0.935 0.231 0.088 0.177	Symmetry 0.674 0.818 0 0.79
	# 1 2 3 4 5	Time 9.813 11.035 12.003 12.525 13.205	Area 83.3 20.6 7.9 15.7 82.3	Height 12.5 3.5 2.6 2.8 12.1	Width 0.1111 0.0971 0.0496 0.0941 0.1129	Area% 0.935 0.231 0.088 0.177 0.924	Symmetry 0.674 0.818 0 0.79 0.796
	# 1 2 3 4 5 6	Time 9.813 11.035 12.003 12.525 13.205 17.698	Area 83.3 20.6 7.9 15.7 82.3 69.9	Height 12.5 3.5 2.6 2.8 12.1 8.8	Width 0.1111 0.0971 0.0496 0.0941 0.1129 0.1321	Area% 0.935 0.231 0.088 0.177 0.924 0.785	Symmetry 0.674 0.818 0 0.79 0.706 0.748
	# 1 2 3 4 5 6 7	Time 9.813 11.035 12.003 12.525 13.205 17.698 19.92	Area 83.3 20.6 7.9 15.7 82.3 69.9 18.4	Height 12.5 3.5 2.6 2.8 12.1 8.8 2.9	Width 0.1111 0.0971 0.0496 0.0941 0.1129 0.1321 0.1044	Area% 0.935 0.231 0.088 0.177 0.924 0.785 0.207	Symmetry 0.674 0.818 0 0.79 0.706 0.748 1.329

2,3-Di-fluorobenzyl-N-aminocolchicine: Purity = 95.8%

#	Time	Area	Height	Width	Area%	Symmetry
1	10.09	2071.3	207.4	0.1365	95.837	1.324
2	10.633	22.4	2	0.1538	1.038	0.948
3	11.316	19.6	2.3	0.1174	0.908	1.256
4	11.566	47.9	6.7	0.1058	2.217	0.854

3,4-Di-fluorobenzyl-*N*-aminocolchicine: Purity = 96.0%

#	Time	Area	Height	Width	Area%	Symmetry
1	7.45	27.4	3.8	0.119	8.897	0.959
2	9.613	2937	427.3	0.1145	96.025	0.544
3	10.54	8	1.6	0.0841	0.262	0.674
4	11.039	16.9	2.1	0.1349	0.552	1.387
5	11.427	9.1	1.5	0.0988	0.298	0.59
6	20.32	60.2	6.6	0.1517	1.967	0.922

3,5-Di-fluorobenzyl-*N*-aminocolchicine: Purity = 100%

Single Runs: KL	AUS						-42				
	N 🕨 🕨 🛛 🖗			2 🕹 🔛 🔽	Ready/Reproce	ss Data Mode					
<u> I</u> ntegrati	ion 🎂 Calibration	🔝 Signal 🚺	Purify 💩 S	pectrum							
a 🗱 🖬	Report: Short	L <u>à</u> Là	s 🖪 🖏]	3) DAD1 C, Sig=A\SM	NAPSHOT.D) 💌 🛃	0 🕹 💊 🖉	2 🖄 州 🖻	<u>1</u>			
	0AD1 C, Sig=360,8 Ref=7	00,100 (C:\CHEM32\	INDATAISNAPSH	0T.D)							PIP
mAU -	8 49										<u>11</u> FER
700 -	Assa										\$
600 -											T
500 -											Eng
400 -											
300											2
200 -	1 1										INTLE
100 million	f 4										1
100 -	1 1										Christer Contraction
1.1.1											
0	~									_	
-	r	2.5	5	7.5	10	12.5	r	15	17.5	20	min
			÷	1.17				17			
	File Information				-	T: 4	100000000	1.2° IU	1		
LC	File SNAPSHOT.D				1	1.206 17007.5	723.7	0.3917	100.000 1.222		
File P	ath C:\CHEM32\1\DAT	A				· · · · · · · · · · · · · · · · · · ·					
Sam	ate 03+Aug-12, 15:09:20 nole KC9)									
Sample	Info										
Barco	ode										
Meth	nod KANIZ.M										
Analysis T	ime 21.96 min										
Sampling R	ate 0.0067 min (0.402 s	ec), 3295 datapoint:	1								
ady Integra	ation done.										
Start 🧑 🞯	🕑 🦽 🥁 Instru	ument 1 (online): M	Instrur	nent 1 (offline 🖸	KC_COMP		4				15:37
							\checkmark				

#	Time	Area	Height	Width	Area%	Symmetry
1	1.206	17007.5	723.7	0.3917	100.000	1.222
					\sim	

3,4,5-Tri-fluorobenzyl-*N*-aminocolchicine: Purity = 96.7%

4-Nitrobenzyl-*N*-aminocolchicine: Purity = 97.1%

Single Runs: KLAUS	Beady/Reprocess Data M	lode				
Integration 🕐 Calibration 🛄 Signal 🛄 Purity 🗞 Spectrum						
🗽 🕼 🥻 Report: Short 📄 🚵 🚄 🚷 🗍 3) DAD1 C, S	5ig=KP_030812_7.D) 🝸 🛃 🚯 🔍		<u>M 🔼 </u>			
DAD1 C, Sig=380,8 Ref=700,100 (C/CHEM32/11/DATA/KLAUS/KP_030812_7.	D)					T
mAU 800 700 - 600 - 600 - 300 - 100 -	The second	5.0 ¹⁰ 8				
0	And And And	,				E
0 25 5 7.5	10 12.5	15	17.5	20	22.5 min	
			M			
LCFile KP_030812_7.0 File Path CVDEHM32110ATAKKLAUS\ Date 034ug12_17.3526 Sample KC11 Sample Info Barcode Dperator KAUS Method KAUS Method KAUS Sampling Rate 0.0067 min [0.402 sec]. 3751 datapoints	# Time 1 8.394 2 10.171 3 10.716 4 12.609 5 13.84 6 14.497	Area H 156.7 6674 22.8 6.4 7.9 5.5	leight Width 17 0.1541 18.9 0.1358 2.9 0.1322 1.2 0.0886 1.3 0.0989 3.1E-1 0.1003	Area2 Symmetry 2.280 1.685 97.100 0.564 0.332 0.524 0.094 0.834 0.115 0.738 0.080 0.662		
adu.						
Start 🧑 🕑 🧿 🥡 🥻 Instrument 1 (online): M 🛛 🐺 Instrument 1 (offlin	ne			N	.	18:11
	# Time	Area	Height	Width Ar	ea% Symmetry	
	1 8.384	156.7 6674	17 818.9	0.1541 2.	280 1.685	
	3 10.716	22.8	2.9	0.1322	232 0.524	
	4 12.609	6.4	1.2	0.0886 0.	094 0.834	
	6 14.497	5.5	9.1E-1	0.1003 0.	080 0.662	

4-Methoxybenzyl-*N*-aminocolchicine: Purity = 96.9%

	Ready/	Reprocess Data Mode				
📑 Integration 😵 Calibration 📶 Signal 🛄 Purify 💩 Spectrum						
🔓 🕼 🔣 Report: Short 📄 🚵 🛃 🚷 🕽 DADI C, Sig=k	(P_030812_1.D	» • 🛃 🙉 🗞 📐				
DAD1 C, Sig=360,8 Ref=700,100 (C1CHEM3211\DATAKLAUS\KP_030812_1.D)						- 7
mAU max mAU 800 - 700 - 600 - 600 - 600 - 600 - 600 - 100 - 800 - 200 - 100 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 - 100 - 800 -	18.281 		<i>Ş</i> 9			
						_
0 2.5 5 7.5	ter e i	10 12.5		17.5	20 m	nin
0 2.5 5 7.5 (4)		10 12.5		17.5	20 m	iin
0 2.6 5 7.5 Ite Information LC-File KP_030812_1 D 1 File Path CVCHEM32110DATAKLAUS1 0 0 Date 03Aug-12, 10:5217 0 0 Sample KC12 0 0 0 Barcode 0 0 0 0 0 Operator KAUS Method KANIZ M Aralysis 0 0 Sampling Rate 0.0067 min 0.420 sec). 3425 datapoints 0 0		10 12.6 # Time Area 1 3.76 120.7 2 5.976 8525.6 3 6.853 26 4 8.281 11.4 5 9.54 22.7 7 10.714 7.5 8 11.866 5.1 9 12.385 26.5	Height Width 9.4 0.2145 825.9 0.172 4 0.0957 2 0.0937 3.2 0.1193 8.1 0.1103 1.2 0.0048 1.1 4 3.39 6	Area? Symmetry 1.371 2.038 96.885 0.545 0.258 0.37 0.130 0.887 0.258 0.827 0.616 0.752 0.065 0.666 0.059 1.073 0.301 0.889	20 m	in F
0 2.6 6 7.5 File Information LC-File KP_030812_1.D 1.0 File Path C:VEHEM3211/DATAKKAUSV. 0.00 0.00 Date 03:Aug-12, 10:5217 5.3 5.3 5.3 Sample KC12 5.3 5.4 5.3 <		10 12.6 # Time Area 1 3.76 120.7 2 5.976 8526.6 3 6.853 26 4 8.281 11.4 5 9.54 22.7 7 10.714 7.5 8 11.886 5.1 9 12.385 26.5	Height Width 9.4 0.2145 2 0.0537 2 0.0537 3.2 0.1103 8.1 0.1109 1.2 0.1048 1.1 4 3.3 6	Area Symmetry 1.371 2.038 96.885 0.545 0.236 0.37 0.130 0.887 0.516 0.752 0.085 0.666 0.056 1.073 0.301 0.889	20 m	in
0 2.5 5 7.5 * File Information	#	10 12.6 # Time Area 1 3.76 120.7 2 5.976 8528 3 6.863 26 4 8.281 11.4 5 9.54 22.7 7 10.714 75 9 12.385 26.5	16 Height Width 9.4 0.2145 8.25.9 0.172 4 0.1095 2 0.0937 3.2 0.1139 8.1 0.1109 1.2 0.1148 1.1 4 3.3 4 8.1 0.1109 1.2 0.1048 1.1 4 3.9 4 8.1 0.1109 1.2 0.1048 1.1 4 3.9 4 8.1 0.1109 1.2 0.1048 1.1 4 1.1 4	Area? Symmetry 1.371 2.098 96.885 0.545 0.296 0.97 0.539 0.627 0.616 0.752 0.065 0.6683 0.301 0.883	20 m	
0 2.5 5 7.5 Image: state sta	# 1 2	10 12.6 # Time Area 1 3.76 120.7 2 5.976 8525.8 3 6.853 26 4 8.281 114 5 9.54 22.7 7 10.714 7.5 8 9.947 54.2 7 10.714 7.5 9 12.385 26.5 Time Area 3.76 3.76 120. 5.976 8522	Height Width 9.4 0.2145 825.9 0.172 4 0.1095 2 0.0397 3.2 0.1133 8.1 0.1109 1.2 0.148 1.1 0.148 3.3 8.1 4.3.9 0.48 7 9.4 8 825.9	Area Symmetry 1.371 2.098 96.685 0.545 0.256 0.97 0.130 0.887 0.616 0.752 0.065 0.666 0.058 1.073 0.301 0.883	20 m 20 m	
0 25 5 7.5 I File Information ILCFIle KP 030812,1.0	# 1 2 3	10 12.6 # Time Area 1 3.76 120.7 2 5.976 85256 3 6.6853 26 4 8.281 114 5 9.54 22.7 7 10.714 75 8 11.866 5.1 9 12.385 26.5 Time Area 3.76 120 5.976 8525 6.853 26	Height Width 9.4 0.2145 8.25.9 0.172 4 0.1055 2 0.0937 3.2 0.1193 8.1 0.1103 1.2 0.1048 1.1 4 3.9 8 7 9.4 6 825.9 4 4	Area2 Symmetry 1.371 2.038 38.685 0.545 0.258 0.37 0.130 0.687 0.258 0.827 0.616 0.752 0.686 0.666 0.058 1.073 0.301 0.889 Width 0.2145 0.172 \$ 0.172 \$ 0.1095 \$	20 m Arcea2 Symmetry 1.371 2.098 96.885 1.545 8.298 0.97	
0 25 5 7.5 I File Information ILCFIle (FP (030812,1.0)	# 1 2 3 4 4	10 12.6 # Time Area 1 3.76 120.7 2 5.976 8526 3 6.853 26 4 8.281 11.4 5 9.54 22.7 7 10.714 7.5 8 11.866 5.1 9 12.385 26.5 Time Area 3.76 120.0 5.976 8525 6.853 26 8.281 11.4	Height Width 94 0.2145 825.9 0.172 4 0.095 2 0.0937 3.2 0.1103 1.2 0.1049 1.1 4 3.3 8 1.1 4 3.3 8 3.3 8 1.1 4 3.3 8 4 2 7 9.4 4 2 7 2.0	17.5 Area2 Symmetry 1.371 2.038 96.085 0.545 0.256 0.37 0.130 0.0887 0.258 0.827 0.616 0.752 0.065 0.666 0.065 0.666 0.069 1.073 0.301 0.889 Width Ø 0.2145 0.172 0.10955 0.0937 0.1102 0.1102	20 m Area2 Symmetry 1.371 2.098 96.885 0.545 6.296 0.97 0.130 0.887 0.350 0.027	
0 2.5 5 7.5 I File Information ILCFile (KP 030812,1.D File Path C:CPHEM3211/DATA/KLAUS\ Date 033-4ugr1,0105,117 Sample (K12 Sample Hol Sample Hol Barcode Operator KLAUS Method KANIZ M Analysis Time 22,827 min Sampling Rate 0.0067 min (0.402 sec), 3425 delapoints Sampling Rate 0.0067 min (0.402 sec), 3425 delapoints	# 1 2 3 4 5 8	10 12.6 # Time Area 1 3.76 120.7 2 5.976 8528.6 3 6.853 26 4 8.281 11.4 5 9.54 22.7 7 10.714 75 8 11.86 51 9 12.385 26.5 Time Are 3.76 120 5.976 8525 6.853 26 8.281 11.9 9.12.385 265	Height Width Height Width 8 825.9 0.172 4 0.0937 3.2 0.1937 3.2 0.1939 3.2 0.1193 8.1 0.1109 1.2 0.1048 1.1 4 4 3.3 6 7 9.4 4 4 4 7 9.4 4 4 4 7 3.2 8.1 1 1	17.5 Area? Symmetry 1.371 2.038 96.085 0.545 0.256 0.37 0.258 0.827 0.616 0.752 0.065 0.666 0.666 0.687 0.301 0.889 Width 0.2145 0.172 9 0.1095 0.0937 0.1193 0.1193	20 m Area? Symmetry 1.371 2.098 96.885 0.545 6.290 0.97 0.130 0.887 0.258 0.827 0.516 0.752	in jy
0 2.5 5 7.5 I File Information ILCFile (KP, 030912,1.0 File 7ah CVFHM321/DATAKLAUS\ Date 033Augr2, 10 5217 Sample (K12 Sample (K12 Sample (K12 Sample K12 Sample Info Baccode Operator Operator Analysis Time 22.827 min Sampling Fiele 0.0067 min (0.402 sec), 3425 delapoints	# 1 2 3 4 5 6 7	10 12.6 # Time Area 1 3.76 120.7 2 5.976 8526 3 6.853 26 4 8.281 11.4 5 9.54 22.7 7 10.714 75 8 11.866 5.1 3 12.385 26.5 Time Are 3.76 120 5.976 8525 6.853 26.5 Time Are 3.76 120 5.976 8525 6.853 26 8.281 11. 9.54 22.7 9.947 54. 22.9, 947 54. 10.714 7.5	Height Width Height Width 2 0.2145 2 0.0937 3.2 0.1133 8.1 0.1109 1.2 0.0037 3.2 0.1133 8.1 0.1104 1.1 4 3.3 8 0.11 4 3.3 8 1.1 4 4 3.9 8 825.9 4 4 2 8.1 3.2 8.1	Nr.s Area2 Symmetry 1.371 2.038 96.085 0.545 0.256 0.377 0.258 0.827 0.616 0.752 0.065 0.666 0.058 1.073 0.301 0.869 Width 0.2145 0.172 9 0.1095 0.0937 0.1193 0.1109 0.1048 0.1048	20 m Acca2 Symmetry 1.371 2.098 36.885 0.545 8-296 0.37 0.130 0.887 0.258 0.827 0.616 0.752 0.085 0.666	in jy
0 2.5 6 7.5 Image: state of the state	# 1 2 3 4 5 6 7 8	10 12.6 # Time Area 1 3.76 120.7 2 5.976 8526 3 6.853 26 4 8.281 11.4 5 9.54 22.7 7 10.714 75 8 11.886 51 9 12.385 26.5	Height Width Height 0.2145 825.9 0.1725 2 0.0937 3.2 0.1133 8.1 0.11095 1.2 0.1048 1.1 4 3.8 0.2145 8.8 0.1133 8.8 0.114 3.9 8 4 0.0937 3.8 825.9 4 4 2 8.1 3.8 825.9 4 2 7 3.2 2 8.1 3.2 8.1	17.5 Area2 Symmetry 1.371 2.093 96.885 0.545 0.256 0.37 0.528 0.827 0.516 0.752 0.085 0.682 0.058 1.073 0.301 0.669 0.058 1.073 0.301 0.669 Vidth 4 0.2145 0.172 5 0.1095 0.0937 0.1095 0.0937 0.1103 0.1103 0.11048 0.0784	20 m Acea? Symmetry 1.371 2.098 36.885 2.545 6.296 0.97 0.130 0.887 0.258 0.827 0.616 0.752 0.085 0.666 0.058 1.073	in