Supplementary material.

Figure S1

Example of another deformation of the experimental electron density in the lone pairs plane of a phenol group found $\mathrm{in}(\pm)-8^{\prime}-$ benzhydryl-ideneamino-1,1'-binaphthyl-2-ol (Farrugia, L. J.; Kocovský, P.; Senn, H. M.; Vyskocil, S. Acta Crystallogr. 2009. B65, 757-769.)

Contours $\pm 0.05 \mathrm{e} / \AA^{3}$. positive: solid blue lines. Negative: dashed red lines.

Figure S2: Diagram describing the α and β angles obtainment for carbonyl. P is the projection of Hd on the $\mathrm{XYC=O}$ plane containing the two lone pairs. Q is the projection of H on the $\mathrm{C}=\mathrm{O}$ line.

Distances and angles used from the Cambridge Structural Database:

- $\mathrm{OH}_{\mathrm{d}}=$ distance $(\mathrm{O} \ldots \mathrm{Hd})$
- $\mathrm{PH}_{\mathrm{d}}=$ distance $(\mathrm{Hd}, \mathrm{COH}$ plane)
- ($\mathrm{CO}, \mathrm{OH}_{\mathrm{d}}$) angle

Derived geometric data.
$\mathrm{OP}=\left(\mathrm{OH}_{\mathrm{d}}{ }^{2}-\mathrm{pH}_{\mathrm{d}}{ }^{2}\right)^{1 / 2}$
$\mathrm{OQ}=\cos \left(\mathrm{CO}, \mathrm{OH}_{\mathrm{d}}\right) * \mathrm{OH}_{\mathrm{d}}$
$\alpha=\operatorname{arccosine}(\mathrm{OQ} / \mathrm{OP}$)
$\beta=\operatorname{arcsine}\left(\mathrm{PH}_{\mathrm{d}} / \mathrm{OH}_{\mathrm{d}}\right)$

Figure S3:

Diagram describing the α and β angles obtainment for hydroxyl group C-O-H.

R is the projection of H_{d} on the COH plane.
Q is the projection on the inner bisecting line.
P is the projection on the COH bisecting plane containing the two electron lone pairs.

Distances and angles used from the Cambridge Structural Database:

- angles $\mathrm{COH}_{\mathrm{d}} \mathrm{COH}$
- distances $\mathrm{OH}_{\mathrm{d}} \mathrm{CH}_{\mathrm{d}} \mathrm{CO}$
- distance to COH plane: $\mathrm{PQ}=\mathrm{RH}_{\mathrm{d}}$

Derived geometric data:

$\mathrm{OR}=\left(\mathrm{OH}_{\mathrm{d}}{ }^{2}-\mathrm{RH}_{\mathrm{d}}{ }^{2}\right)^{1 / 2}$ as $\mathrm{ORH}_{\mathrm{d}}=90^{\circ}$
$\mathrm{CR}=\left(\mathrm{CH}_{\mathrm{d}}{ }^{2}-\mathrm{RH}_{\mathrm{d}}{ }^{2}\right)^{1 / 2}$ as $\mathrm{CRH}_{\mathrm{d}}=90^{\circ}$
Al-Kashi Theorem: COP = arcosine ($\mathrm{CO} * \mathrm{CO}+\mathrm{OR} * \mathrm{OR}-\mathrm{CR} * \mathrm{CR}) /(\mathrm{CO} * \mathrm{OR})$
$\mathrm{COQ}=180-\mathrm{COH} / 2$ as OQ is bisecting triangle COH .
$\mathrm{COR}+\mathrm{ROQ}=\mathrm{COQ} \quad$ addition of angles
Then $\mathrm{ROQ}=\mathrm{COQ}-\mathrm{COR}=180-\mathrm{COH} / 2-\mathrm{COR}$
$\mathrm{QR}=\mathrm{OR} * \sin (\mathrm{ROQ}), \mathrm{QR}=\mathrm{PH}_{\mathrm{d}}$ is the distance to the electron lone pairs plane
$\mathrm{OQ}=\left(\mathrm{OR}^{2}-\mathrm{QR}^{2}\right)^{1 / 2} \quad$ as $\mathrm{OQR}=90^{\circ}$
$\beta=\operatorname{arcsine}\left(\mathrm{PHd} / \mathrm{OH}_{\mathrm{d}}\right) \quad \alpha=\arctan (\mathrm{PQ} / \mathrm{OQ})$

