Supplementary material.

Figure S1

Example of another deformation of the experimental electron density in the lone pairs plane of a phenol group found in(±)-8'-benzhydryl-ideneamino-1,1'-binaphthyl-2-ol (Farrugia, L. J.; Kocovský, P.; Senn, H. M.; Vyskocil, S. *Acta Crystallogr.* 2009. B65, 757-769.)

Contours $\pm 0.05e/Å^3$. positive: solid blue lines. Negative: dashed red lines.

Figure S2: Diagram describing the α and β angles obtainment for carbonyl. P is the projection of Hd on the XYC=O plane containing the two lone pairs. Q is the projection of H on the C=O line.

Distances and angles used from the Cambridge Structural Database:

- OH_d = distance (O...Hd)
- PH_d = distance(Hd , COH plane)
- (CO, OH_d) angle

Derived geometric data.

 $OP = (OH_d^2 - pH_d^2)^{1/2}$

- $OQ = cos(CO,OH_d) * OH_d$
- $\alpha = arccosine$ ($OQ \slash OP$)
- $\beta = arcsine (PH_d / OH_d)$

Figure S3:

Diagram describing the α and β angles obtainment for hydroxyl group C-O-H.

R is the projection of H_d on the COH plane.

Q is the projection on the inner bisecting line.

P is the projection on the COH bisecting plane containing the two electron lone pairs.

Distances and angles used from the Cambridge Structural Database:

- angles COH_d COH
- distances OH_d CH_d CO
- distance to COH plane: $PQ = RH_d$

Derived geometric data:

OR = $(OH_d^2 - RH_d^2)^{1/2}$ as $ORH_d = 90^\circ$ CR = $(CH_d^2 - RH_d^2)^{1/2}$ as $CRH_d = 90^\circ$

Al-Kashi Theorem: COP = arcosine (CO*CO + OR*OR - CR*CR) / (CO*OR)COQ = 180 - COH / 2 as OQ is bisecting triangle COH.

COR + ROQ = COQ addition of angles

Then ROQ = COQ - COR = 180 - COH / 2 - COR

QR = OR * sin(ROQ), $QR = PH_d$ is the distance to the electron lone pairs plane $OQ = (OR^2 - QR^2)^{1/2}$ as $OQR=90^{\circ}$

 $\beta = \arcsin (PHd / OH_d)$ $\alpha = \arctan (PQ / OQ)$