Supporting Information

Straightforward Synthesis of a Double-Lasso Macrocycle from a non-Symmetrical [c2]-Daisy Chain

Camille Romuald, Guillaume Cazals, Christine Enjalbal and Frédéric Coutrot*
Supramolecular Machines and Architecture Team, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS
- UM1 - UM2, Université Montpellier 2, Place Eugène Bataillon, case courrier 1706, F-34095 Montpellier Cedex 5, France
frederic.coutrot@univ-montp2.fr, http://www.glycorotaxane.fr

A. General methods 2
B. Synthesis of the diazido pseudo [c2]Daisy chain 3 2

1) Preparation of the 1-azido-12-bromododecane 9 2
2) Preparation of the 1-phthalimido-12-azidododecane $\mathbf{1 0}$ 3
3) Preparation of the 12-azidododecan-1-amine 11 3
4) Preparation of the crown ether 1 4
5) Preparation of the compound 2 4
6) Preparation of the compound 3 5
C. Synthesis of the dialkyne pseudo [c2]Daisy chain 5 5
7) Preparation of the tridec-2-yn-1-ol 12 5
8) Preparation of the tridec-12-yn-1-ol 13 6
9) Preparation of the 13-bromotridec-1-yne 14 6
10) Preparation of the phthalimide 15 7
11) Preparation of the tridec-12-yn-1-amine $\mathbf{1 6}$ 7
12) Preparation of the compound 4 8
13) Preparation of the compound 5 8
D. Procedure for the protonation of a stoichiometric mixture of the amines 2 and 4 in order to obtain a statistical distribution of the pseudo rotaxane dimers 3,5 and 6/6, 9
E. Kinetic study of exchange using matrix-assisted laser desorption/ionization time of flight (MALDI- TOF) mass spectrometry (MS) on a stoichiometric mixture of compounds 3 and 5 10
F. Synthesis of the molecular lassoes 7 11
G. Synthesis of the uncomplexed compound $7 \mathbf{u}$ 12
14) Preparation of the compound 17 12
15) Preparation of the compound $\mathbf{1 8}$ 12
16) Preparation of the compound 19 13
17) Preparation of the uncomplexed compound $7 \mathbf{u}$ 13
NMR Spectra 15

A. General methods

All reactions were achieved under an atmosphere of argon unless otherwise indicated. All reagents were purchased from Aldrich and were used as received without further purification. Dichloromethane was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and was degassed by bubbling Ar for 20 min . Analytical thin-layer chromatography (TLC) was performed on Merck silicagel 60 F254 plates. Compounds were visualized by dipping the plates in an ethanolic solution of ninhydrine or KMNO_{4}, followed by heating. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker DRX-400 spectrometer (respectively at 400.13 MHz and 100.62 MHz). Chemical shifts of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are given by using $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ or DMSO as references ($7.27 \mathrm{ppm}, 1.94 \mathrm{ppm}$ and 2.50 ppm respectively for ${ }^{1} \mathrm{H}$ spectra and $77.00 \mathrm{ppm}, 118.26 \mathrm{ppm}$ and 39.52 ppm respectively for ${ }^{13} \mathrm{C}$ spectra). Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), quint (quintuplet), m (multiplet).

Low and high-resolution ESI mass spectra were recorded on a Q-Tof I mass spectrometer (Waters, Milford, CA) fitted with an electrospray ion source. Data were acquired and processed with the Masslynx software. The mass spectrometer was calibrated in the positive ion mode using 1% phosphoric acid in water/acetonitrile solution $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 50 / 50\right.$, v/v). Data were acquired by the Tof analyzer at 1 acquisition/s from $\mathrm{m} / \mathrm{z} 100$ to $\mathrm{m} / \mathrm{z} 3000$ with a resolution of 5000 . Depending on the sample, 50 acquisitions were summed to produce the final spectrum. Samples were dissolved in a mixture $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(50 / 50, \mathrm{v} / \mathrm{v})$ and infused into the ESI source at a flow rate of $10 \mu \mathrm{l} / \mathrm{min}$. Voltages were set at +3.0 kV for the capillary and adjusted for the sampling cone. The source was heated at $100^{\circ} \mathrm{C}$. Nitrogen constituted both nebulizing and desolvation gas. The latter was heated at $120^{\circ} \mathrm{C}$.
MALDI mass spectra were recorded on an Ultraflex III TOF/TOF instrument (Bruker Daltonics, Wissembourg, France). A pulsed Nd:YAG laser at a wavelength of 355 nm was operated at a frequency of 100 Hz with a delayed extraction time of 30 ns . The source was operated in the positive mode. Data were acquired with the Flex Control software and processed with the Flex Analysis software. A solution of the HCCA matrix in water/acetonitrile ($50 / 50, \mathrm{v} / \mathrm{v}$) at a concentration of $10 \mathrm{mg} / \mathrm{ml}$ was mixed with the sample in equal amount and $1 \mu \mathrm{l}$ of this solution was deposited onto the MALDI target according to the dried droplet procedure. After evaporation of the solvent, the MALDI target was introduced into the mass spectrometer ion source. External calibration was performed with the commercial peptide mixture (Calibration peptide standard 2, Bruker Daltonics, Wissembourg, France). MS data were acquired under the following MS conditions. An acceleration voltage of 25.0 kV (IS1) was applied for a final acceleration of 21.85 kV (IS2). The reflectron mode was used for the Tof analyzer (voltages of 26.3 kV and 13.8 kV). Mass spectra were acquired from 500 laser shots, the laser fluence being adjusted for each studied sample. Ions were detected over a mass range from m/z 400 to 3000 or 4000 .

B. Synthesis of the diazido pseudo [c2]Daisy chain 3

1) Preparation of the 1-azido-12-bromododecane 9

To a solution of 1,12 -dibromododecane ($3.07 \mathrm{~g}, 9.356 \mathrm{mmol}$, 1.5 equiv) in 15 mL of DMF at $60^{\circ} \mathrm{C}$, was added by portions $\mathrm{NaN}_{3}(450 \mathrm{mg}, 6.237 \mathrm{mmol}, 1$ equiv) during 30 min . The mixture was stirred for 4,5 hours at $60^{\circ} \mathrm{C}$. The solvent was then removed under vacuo, and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{NaOH} 1 \mathrm{M}(30 \mathrm{~mL})$ were added.

The two layers were stirred then separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated. The crude was purified by chromatography on a silicagel column (solvent gradient elution: Petroleum ether, then $\mathrm{Et}_{2} \mathrm{O} /$ Petroleum ether $3 / 97$) to give the product ($869 \mathrm{mg}, 48 \%$) as a yellow oil.
$\mathbf{R}_{\boldsymbol{f}}$ (petroleum ether /AcOEt 9:1) 0.74
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=3.42\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 12-H 11}=7.0 \mathrm{~Hz}, \mathrm{H}_{12}\right), 3.26\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 1-H 2}=7.0\right.$ $\mathrm{Hz}, \mathrm{H}_{1}$), 1.86 (quint, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 11-H 10}={ }^{3} \mathrm{~J}_{H 11-H 12}=7.0 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.65-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.49-1.23\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{4}\right.$ $\mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}$).
JMOD ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=51.4\left(\mathrm{C}_{1}\right), 33.9\left(\mathrm{C}_{12}\right), 32.8\left(\mathrm{C}_{11}\right), 29.4 \& 29.4 \& 29.3$ \& $29.1 \& 28.8 \& 28.7 \& 26.6\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$.

2) Preparation of the 1-phthalimido-12-azidododecane 10

Potassium phthalimide ($832 \mathrm{mg}, 4.491 \mathrm{mmol}, 1.5$ equiv) was added to a solution of the 1 -azido-12bromododecane 9 ($869 \mathrm{mg}, 2.994 \mathrm{mmol}, 1$ equiv) in 20 mL of DMF. After stirring for 5 h at $70^{\circ} \mathrm{C}$, the solvent was removed in vacuo. The solid residue was suspended in dichloromethane and filtered through a layer of silica gel. The filtrate was evaporated to give the desired product $(965 \mathrm{mg})$ in 90% yield as a yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.87-7.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 7.74-7.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{16}\right), 3.68(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{H I 2-H I I}=7.3 \mathrm{~Hz}, \mathrm{H}_{12}\right), 3.26\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 1-H 2}=7.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 1.72-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 1.63-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.41-$ $1.22\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=167.8\left(\mathrm{C}_{13}\right), 133.4\left(\mathrm{C}_{16}\right), 131.8\left(\mathrm{C}_{14}\right), 122.6\left(\mathrm{C}_{15}\right)$, $51.0\left(\mathrm{C}_{1}\right), 37.6\left(\mathrm{C}_{12}\right), 29.1 \& 29.1 \& 29.1 \& 28.8 \& 28.8 \& 28.5 \& 28.2 \& 26.5 \& 26.3\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}\right.$ $\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11}$).
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}: 357.2$, found : 357.2

3) Preparation of the 12 -azidododecan-1-amine 11

11

Hydrazine monohydrate ($474 \mathrm{mg}, 9.475 \mathrm{mmol}, 3.5$ equiv) was added to a solution of the phthalimide 10 (965 $\mathrm{mg}, 2.707 \mathrm{mmol}, 1$ equiv) in 40 mL of ethanol. The mixture was stirred at reflux for 4 h , and then cooled to room temperature. An aqueous solution of $\mathrm{KOH} 1 \mathrm{~N}(50 \mathrm{~mL})$ was added and the solvent was removed in vacuo. The solution was extracted with dichloromethane $(2 \times 50 \mathrm{~mL})$; then, the organic layers were combined, dried over MgSO_{4} and concentrated to yield the desired product ($563 \mathrm{mg}, 92 \%$).
$\mathbf{R}_{\boldsymbol{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right) 0.1$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=3.26\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 12-H I I}=7.0 \mathrm{~Hz}, \mathrm{H}_{12}\right), 2.68\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H I-H 2}=7.0\right.$ $\mathrm{Hz}, \mathrm{H}_{1}$), 1.64-1.56 (m, 2H, H_{11}), 1.48-1.24 (m, 18H, H2 H3 $\left.\mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}\right)$.
JMOD ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=50.6\left(\mathrm{C}_{12}\right), 41.5\left(\mathrm{C}_{1}\right), 33.1\left(\mathrm{C}_{11}\right), 28.9 \& 28.8 \& 28.8$ $\& 28.7 \& 28.4 \& 28.1 \& 26.2 \& 26.0\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{4}\right]^{+}: 227.2$, found : 227.2

4) Preparation of the crown ether 1

This compound has been synthesized according to the procedure described by S. J. Cantrill, G. J. Youn, J. F. Stoddart. ${ }^{[1]}$
\mathbf{R}_{f} (AcOEt) 0.3
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=9.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.43\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 7-\mathrm{H} 6}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 7-H 3}=1.9\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 3-H 7}=1.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 6.94\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{H 6-H 7}=8.2 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.90-6.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{15} \mathrm{H}_{16} \mathrm{H}_{17}\right.$ H_{18}), 4.24-4.20 (m, 4H, $\mathrm{H}_{8} \mathrm{H}_{25}$), 4.17-4.15 (m, 4H, H13 H20), 3.98-3.92 (m, 8H, H9 H $\mathrm{H}_{12} \mathrm{H}_{21} \mathrm{H}_{24}$), 3.86-3.84 (m, $8 \mathrm{H}, \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{22} \mathrm{H}_{23}$).
JMOD ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}, \mathbf{2 9 8 K}\right): ~ \delta(\mathrm{ppm})=190.9\left(\mathrm{C}_{1}\right), 154.3 \& 149.1 \& 148.8\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{14} \mathrm{C}_{19}\right)$, $130.2\left(\mathrm{C}_{2}\right), 126.9\left(\mathrm{C}_{7}\right), 121.4 \& 113.9\left(\mathrm{C}_{15} \mathrm{C}_{16} \mathrm{C}_{17} \mathrm{C}_{18}\right), 111.8\left(\mathrm{C}_{6}\right), 110.9\left(\mathrm{C}_{3}\right), 71.5 \& 71.4 \& 71.3 \& 69.7 \&$ $69.5 \& 69.4 \& 69.4 \& 69.3\left(\mathrm{CH}_{2} \mathrm{O}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{Na}^{+}$: 499.52, found: 499.27

5) Preparation of the compound 2

A solution of the crown ether aldehyde $1(1.18 \mathrm{~g}, 2.49 \mathrm{mmol}, 1$ equiv) and the 12 -azidododecan-1-amine 11 ($563 \mathrm{mg}, 2.49 \mathrm{mmol}, 1$ equiv) in 100 mL of toluene was heated under reflux for 30 h using a Dean-Stark apparatus. The solvent was then evaporated to give a yellow oil. The mixture was diluted with MeOH (70 mL), and then NaBH_{4} ($471 \mathrm{mg}, 12.45 \mathrm{mmol}$, 5 equiv) was added portionwise at $5^{\circ} \mathrm{C}$. Stirring was maintained at room temperature for a further 5 h . Then, an aqueous solution of $\mathrm{HCl} 5 \mathrm{M}(100 \mathrm{~mL})$ was added to the reaction mixture. Methanol was evaporated, and the residue was diluted with dichloromethane (100 mL) and washed with an aqueous solution of $\mathrm{NaOH} 5 \mathrm{M}(120 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with dichloromethane ($3 \times 100 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4} and concentrated. The crude (1.78 g) was directly engaged in the following reaction.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right) 0.1$
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.93-6.83\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right)$, 4.20-4.10 (m, $8 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}$), 3.96-3.89 (m, $8 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}$), $3.84\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right), 3.70(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{1}\right), 3.26\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 14-\mathrm{HI}}=7.0 \mathrm{~Hz}, \mathrm{H}_{14}\right), 2.60\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 3-H 4}=7.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 1.65-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 1.55-1.45$ (m, 2H, H_{4}), 1.41-1.21 (m, 16H, $\mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12}$).
$\left.{ }^{[1}\right]$ S. J. Cantrill, G. J. Youn, J. F. Stoddart, J. Org. Chem. 2001, 66, 6857-6872.

JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=148.7 \& 148.6 \& 147.6\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 133.3\left(\mathrm{C}_{\mathrm{C}}\right)$, $121.1 \& 120.6 \& 113.8 \& 113.8 \& 113.7 \& 113.7\left(C_{B} C_{D} C_{E} C_{N} C_{O} C_{P} C_{Q}\right)$, $71.1 \& 69.6 \& 69.1\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right)$, $53.4\left(\mathrm{C}_{1}\right), 51.2\left(\mathrm{C}_{14}\right), 49.1\left(\mathrm{C}_{3}\right), 29.7 \& 29.3 \& 29.3 \& 29.3 \& 29.2 \& 29.2\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}\right)$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{8}\right]^{+}: 687.4$, found : 687.4

6) Preparation of the compound 3

A solution of HCl 2 M in diethyl ether $(12.5 \mathrm{~mL}, 25 \mathrm{mmol}, 10$ equiv) was added to the amine $2(1.70 \mathrm{~g}, 2.49$ mmol, 1 equiv). The mixture was stirred for 30 min , and then diethyl ether was evaporated to give a solid. To a solution of the previous solid in milliQ water $(10 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{PF}_{6}(1.22 \mathrm{~g}, 7.47 \mathrm{mmol}, 3$ equiv $)$ and dichloromethane (10 mL). The biphasic solution was stirred vigorously for 30 min ; then, the two layers were separated and the aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The organic layers were then combined, dried over MgSO_{4} and concentrated. The crude was purified by chromatography on a silicagel column (gradient solvent elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Acetone $1 / 0$ to $9 / 1$) to yield the compound $3(1.45 \mathrm{~g}, 70 \%$ over the two steps).
$\mathbf{R}_{\boldsymbol{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right) 0.57$
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.92\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H D-H E}=8.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{D}}\right), 6.87-6.69\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}}\right.$ $\mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}$), $6.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right), 4.53-4.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{1}\right), 4.52-3.56\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.56-3.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.27\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{H 14-\mathrm{H} 13}=7.0 \mathrm{~Hz}, \mathrm{H}_{14}\right), 1.74-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4}\right), 1.61\left(\mathrm{tt}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H 12}={ }^{3} \mathrm{~J}_{H 13-\mathrm{Hl4}}=7.0 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.44-$ $1.14\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=147.5 \& 147.4 \& 146.1 \& 146.0\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right)$, $124.7\left(\mathrm{C}_{\mathrm{C}}\right), 122.8\left(\mathrm{C}_{\mathrm{D}}\right), 120.9 \& 120.8 \& 112.6 \& 112.6 \& 111.6 \& 111.6\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right), 72.1 \& 71.7$ \& $70.1 \& 70.7 \& 70.6 \& 70.5 \& 70.2 \& 70.1\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 52.0\left(\mathrm{C}_{1}\right), 51.3\left(\mathrm{C}_{14}\right), 48.8\left(\mathrm{C}_{3}\right), 29.3 \& 29.3 \&$ $29.3 \& 29.3 \& 29.0 \& 28.9 \& 28.7 \& 26.6\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}\right)$
MS (MALDI): $\left[\mathrm{M}-1 \mathrm{H}-2 \mathrm{PF}_{6}\right]^{+}$calculated for $\left[\mathrm{C}_{74} \mathrm{H}_{117} \mathrm{~N}_{8} \mathrm{O}_{16}\right]^{+}: 1373.86$, found : 1373.9

C. Synthesis of the dialkyne pseudo [c2]Daisy chain 5

1) Preparation of the tridec-2-yn-1-ol 12

To a stirred solution of 1 -dodecyne ($5 \mathrm{~g}, 30.064 \mathrm{mmol}$, 1 equiv) in anhydrous THF at $5^{\circ} \mathrm{C}$ was added, under Argon, n - BuLi ($20.7 \mathrm{~mL}, 33.077 \mathrm{mmol}, 1.6 \mathrm{M}$ in THF, 1.1 equiv). After 30 min at $5^{\circ} \mathrm{C}$, paraformaldehyde ($1.08 \mathrm{~g}, 36.077 \mathrm{mmol}, 1.2$ equiv) was added by portions. The solution was further stirred during 1 h at $5^{\circ} \mathrm{C}$, then during one night at room temperature. The reaction mixture was quenched with 120 mL of $1: 1$ water/saturated water with $\mathrm{NH}_{4} \mathrm{Cl}$. The biphasic solution was separated and the aqueous layer extracted twice
with 100 mL of ethyl acetate. The organic layers were then combined, dried over MgSO_{4} and concentrated to afford compound $\mathbf{1 2}$ in a quantitative yield (5.90 g) as a yellow solid.
\mathbf{R}_{f} (petroleum ether /AcOEt 9:1) 0.21
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=4.25\left(\mathrm{t}, 2 \mathrm{H},{ }^{5} \mathbf{J}_{H 4-H I}=2.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.21\left(\mathrm{tt}, 2 \mathrm{H},{ }^{5} \mathrm{~J}_{H 4-H I}=2.0\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{H 4-H 5}=7.2 \mathrm{~Hz}, \mathrm{H}_{4}\right), 1.55-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 1.42-1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 1.33-1.20\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11}\right.$ $\left.\mathrm{H}_{12}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H I 2}=6.9 \mathrm{~Hz}, \mathrm{H}_{13}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$, 298K $): \delta(\mathrm{ppm})=86.6 \& 78.2\left(\mathrm{C}_{2} \mathrm{C}_{3}\right), 51.4\left(\mathrm{C}_{1}\right), 31.9 \& 29.6 \& 29.5$ \& $29.3 \& 29.1 \& 28.9 \& 28.6 \& 22.7\left(\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 18.7\left(\mathrm{C}_{4}\right), 14.1\left(\mathrm{C}_{13}\right)$.

2) Preparation of the tridec-12-yn-1-ol 13

To dry ethylene-1,2-diamine (80 mL) at $0-5^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaH}(11.90 \mathrm{~g}, 0.297 \mathrm{~mol}, 10$ equiv, 60% in oil). The mixture was allowed to warm slowly at $60^{\circ} \mathrm{C}$ and stirred for 3 h to give a deep blue mixture. Then, it was cooled to $45^{\circ} \mathrm{C}$ before adding portionwise the tridec-2-yn-1-ol $\mathbf{1 2}(5.84 \mathrm{~g}, 29.749 \mathrm{mmol}, 1$ equiv). The solution was stirred at $60^{\circ} \mathrm{C}$ for one night before being cooled to $0^{\circ} \mathrm{C} .100 \mathrm{~mL}$ of diethyl ether and 100 mL of water were introduced slowly; then HCl 12 M was added until pH 1 . Aqueous layer was extracted with diethyl ether $(4 \times 100 \mathrm{~mL})$. The organic layers were combined, dried and concentrated. The crude oil was purified by chromatography on a silicagel column (solvent elution: petroleum ether/AcOEt $1 / 1$) to give the desired product ($3.56 \mathrm{~g}, 61 \%$) as a yellow solid.
\mathbf{R}_{f} (petroleum ether /AcOEt 1:1) 0.71
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=3.63\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H I-H 2}=6.6 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.18\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HIl-HlO}}=7.1\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{H I l-H 13}=2.6 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 13-H I l}=2.6 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.62-1.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{10}\right), 1.43-1.23(\mathrm{~m}, 14 \mathrm{H}$, $\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9}$).
JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=84.4\left(\mathrm{C}_{12}\right), 68.0\left(\mathrm{C}_{13}\right), 62.2\left(\mathrm{C}_{1}\right), 32.4\left(\mathrm{C}_{2}\right) 29.4$ \& 29.3 \& $29.3 \& 29.2 \& 28.9 \& 28.5 \& 28.2\left(\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$, $25.6\left(\mathrm{C}_{11}\right)$.

3) Preparation of the 13-bromotridec-1-yne 14

To a solution of the tridec-12-ynol $13(2.40 \mathrm{~g}, 12.226 \mathrm{mmol}, 1$ equiv) in 40 mL of dry dichloromethane were added the tetrabromomethane $(8.11 \mathrm{~g}, 24.451 \mathrm{mmol}, 2$ equiv $)$ and the triphenylphosphine $(6.41 \mathrm{~g}, 24.451$ $\mathrm{mmol}, 2$ equiv). The mixture was stirred at room temperature for 1 h ; then, the solvent was removed under reduced pressure. A solution of petroleum ether / ethyl acetate ($9: 1$) was added and the resulted precipitate was filtered and washed abundantly. The filtrate was evaporated and the crude was purified by chromatography on a silicagel column (elution: petroleum ether/AcOEt 9/1) to give the brominated product $\mathbf{1 4}$ ($3.07 \mathrm{~g}, 97 \%$) as a yellow oil.
\mathbf{R}_{f} (petroleum ether /AcOEt 97:3) 0.50
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=3.42\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HI}-\mathrm{H} 2}=6.9 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.19\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HIl-HIO}}=7.1\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{H I l-H 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.95\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 13-H I I}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.90-1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}\right), 1.57-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right)$, 1.48-1.23 (m, 14H, $\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9}$).

JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=84.4\left(\mathrm{C}_{12}\right), 68.0\left(\mathrm{C}_{13}\right), 33.7\left(\mathrm{C}_{1}\right), 32.7 \& 29.3 \& 29.3$ \& $29.3 \& 29.0 \& 28.6 \& 28.6 \& 28.4 \& 28.0\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right), 18.3\left(\mathrm{C}_{11}\right)$.

4) Preparation of the phthalimide 15

Potassium phthalimide ($3.40 \mathrm{~g}, 18.34 \mathrm{mmol}, 1.5$ equiv) was added to a solution of the 13-bromotridec-1-yne $14\left(3.17 \mathrm{~g}, 12.230 \mathrm{mmol}, 1\right.$ equiv) in 60 mL of DMF. After stirring for 4 h at $70^{\circ} \mathrm{C}$, the solvent was removed in vacuo. The solid residue was suspended in dichloromethane and filtered through a layer of silica gel. The filtrate was evaporated to give the desired product $(3.98 \mathrm{~g})$ in a quantitative yield as a yellow solid.
\mathbf{R}_{f} (Petroleum ether/AcOEt 75/25) 0.50
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.87-7.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{16}\right), 7.73-7.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 3.67(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{H l-H 2}=7.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.17\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 1 l-H I O}=7.8 \mathrm{~Hz},,^{4} \mathrm{~J}_{H I l-\mathrm{Hl3}}=2.6 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 13-H I l}=2.6 \mathrm{~Hz}\right.$, H_{13}), 1.72-1.62 (m, 2H, H2), 1.56-1.47 (m, 2H, H_{10}), 1.42-1.22 (m, 14H, $\left.\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z , ~ 2 9 8 K}\right): \delta(\mathrm{ppm})=168.0\left(\mathrm{C}_{14}\right), 133.5\left(\mathrm{C}_{17}\right), 131.9\left(\mathrm{C}_{15}\right), 122.8\left(\mathrm{C}_{16}\right)$, $84.4\left(\mathrm{C}_{12}\right)$, $68.0\left(\mathrm{C}_{13}\right)$, $37.7\left(\mathrm{C}_{1}\right), 29.2 \& 29.2 \& 28.9 \& 28.8 \& 28.5 \& 28.3 \& 28.2 \& 26.6\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}\right.$ $\left.\mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right), 18.1\left(\mathrm{C}_{11}\right)$.

5) Preparation of the tridec-12-yn-1-amine 16

Hydrazine monohydrate ($2.14 \mathrm{~g}, 42.805 \mathrm{mmol}, 3.5$ equiv) was added to a solution of the phthalimide $\mathbf{1 5}$ (3.98 $\mathrm{g}, 12.230 \mathrm{mmol}, 1$ equiv) in 60 mL of ethanol. The mixture was stirred at reflux for 4 h , and then cooled to room temperature. An aqueous solution of $\mathrm{KOH} 1 \mathrm{~N}(100 \mathrm{~mL})$ was added and the solvent was removed in vacuo. The solution was extracted with dichloromethane ($2 \times 100 \mathrm{~mL}$); then, the organic layers were combined, dried over MgSO_{4} and concentrated to yield the desired product ($2.10 \mathrm{~g}, 88 \%$) as a yellow solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0$
 $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{H I l-H 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.93\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 13-H 1 l}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.56-1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.47-1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2}\right.$ $\left.\mathrm{H}_{9}\right)$, 1.34-1.21 (m, 12H, $\left.\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR (CDCl $_{3}, \mathbf{1 0 0} \mathbf{~ M H z}$, 298K) : $\delta(\mathrm{ppm})=84.6\left(\mathrm{C}_{12}\right), 67.9\left(\mathrm{C}_{13}\right), 42.0\left(\mathrm{C}_{1}\right), 33.6\left(\mathrm{C}_{2}\right), 29.4 \&$ $29.4 \& 29.3 \& 28.9 \& 26.7\left(\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10}\right)$, $18.2\left(\mathrm{C}_{11}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}\right]^{+}: 196.2$, found : 196.2

6) Preparation of the compound 4

A solution of the crown ether aldehyde $\mathbf{1}(5.78 \mathrm{~g}, 12.134 \mathrm{mmol}, 1$ equiv) and the tridec-12-yn-1-amine $\mathbf{1 6}$ ($2.37 \mathrm{~g}, 12.134 \mathrm{mmol}, 1$ equiv) in 200 mL of toluene was heated under reflux for 30 h using a Dean-Stark apparatus. The solvent was then evaporated to give a yellow oil. The mixture was diluted with $\mathrm{MeOH}(150$ $\mathrm{mL})$, and then $\mathrm{NaBH}_{4}\left(2.30 \mathrm{~g}, 60.670 \mathrm{mmol}, 5\right.$ equiv) was added portionwise at $0-5^{\circ} \mathrm{C}$. Stirring was maintained at room temperature for a further 5 h . Then, an aqueous solution of $\mathrm{HCl} 5 \mathrm{M}(100 \mathrm{~mL})$ was added to the reaction mixture. Methanol was evaporated, and the residue was diluted with dichloromethane (100 mL) and washed with an aqueous solution of $\mathrm{NaOH} 5 \mathrm{M}(100 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with dichloromethane ($2 \times 200 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4} and concentrated. The crude (6.73 g) was directly engaged in the following reaction.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.1$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.90-6.80\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right)$, 4.19-4.10(m, $8 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}$), 3.95-3.89 (m, 8H, H $\mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}$), $3.84\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right.$), $3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 2.60(\mathrm{t}, 2 \mathrm{H}$, ${ }^{3} \mathrm{~J}_{H 4-H 3}=7.3 \mathrm{~Hz}, \mathrm{H}_{3}$), $2.18\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H 12}=7.1 \mathrm{~Hz},,^{4} \mathrm{~J}_{H 13-\mathrm{Hl5}}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H I 5-H 13}=2.7 \mathrm{~Hz}\right.$, H_{15}), 1.57-1.45 (m, 4H, $\mathrm{H}_{4} \mathrm{H}_{12}$), 1.44-1.34 (m, 2H, H H_{11}), 1.33-1.23 (m, 12H, $\mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}$).
JMOD ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, 100 \mathbf{M H z}$, 298K) : $\delta(\mathrm{ppm})=148.3 \& 148.2 \& 147.2\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 132.8\left(\mathrm{C}_{\mathrm{C}}\right)$, 120.7 \& $120.2 \& 113.4 \& 113.4 \& 113.3\left(C_{B} C_{D} C_{E} C_{N} C_{O} C_{P} C_{Q}\right), 83.9\left(C_{14}\right), 70.5\left(C_{I} C_{J} C_{U} C_{V}\right), 69.2\left(C_{H} C_{K}\right.$ $\left.\mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{w}}\right), 68.6\left(\mathrm{C}_{\mathrm{G}} \mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{X}}\right), 67.8\left(\mathrm{C}_{15}\right), 52.9\left(\mathrm{C}_{1}\right), 48.6\left(\mathrm{C}_{3}\right), 29.2 \& 28.9 \& 28.9 \& 28.9 \& 28.8 \& 28.4 \&$ $28.0 \& 27.9 \& 26.7\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 17.7\left(\mathrm{C}_{13}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calculated for $\left[\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{NO}_{8}\right]^{+}: 656.4$, found : 656.3

7) Preparation of the compound 5

A solution of HCl 2 M in diethyl ether $(20 \mathrm{~mL}, 0.2 \mathrm{~mol}, 19$ equiv) was added to the amine $4(6.73 \mathrm{~g}, 10.59$ $\mathrm{mmol}, 1$ equiv). The mixture was stirred for 30 min , and then diethyl ether was evaporated to give a solid. To a solution of the previous solid in milliQ water (50 mL) was added $\mathrm{NH}_{4} \mathrm{PF}_{6}(5.12 \mathrm{~g}, 31.77 \mathrm{mmol}, 3$ equiv $)$ and dichloromethane $(50 \mathrm{~mL})$. The biphasic solution was stirred vigorously for 30 min ; then, the two layers were separated and the aqueous layer was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The organic layers were then combined, dried over MgSO_{4} and concentrated. The crude was purified by chromatography on a silicagel column (solvent elution $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$ to yield the compound $\mathbf{5}(8.40 \mathrm{~g}, 87 \%$ over the two steps) as a pale yellow solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.54$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.93\left(\mathrm{dd}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H D-H B}=1.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{H D-H E}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{D}}\right), 6.87-$ $6.72\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.60\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H B-H D}=1.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}\right), 4.52-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 4.52-3.59(\mathrm{~m}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.58-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.19\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H 12}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 13-H 15}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.96\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 15}\right.$ $\left.{ }_{H 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{15}\right), 1.73-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 1.57-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 1.44-1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 1.35-1.16(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, 100 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=147.6 \& 147.5 \& 146.2 \& 146.0\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right)$, $124.7\left(\mathrm{C}_{\mathrm{C}}\right), 122.9\left(\mathrm{C}_{\mathrm{D}}\right), 121.0 \& 120.9 \& 112.9 \& 112.5 \& 111.7\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $72.2 \& 71.8 \& 70.9 \&$ $70.8 \& 70.7 \& 70.3 \& 67.5 \& 67.0 \& 66.7\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 68.2\left(\mathrm{C}_{15}\right), 52.1\left(\mathrm{C}_{1}\right), 48.8\left(\mathrm{C}_{3}\right), 29.3 \& 29.0 \& 28.6$ $\& 28.4 \& 26.6\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 18.3\left(\mathrm{C}_{13}\right)$.
MS (MALDI): $\left[\mathrm{M}-1 \mathrm{H}-2 \mathrm{PF}_{6}\right]^{+}$calculated for $\left[\mathrm{C}_{76} \mathrm{H}_{115} \mathrm{~N}_{2} \mathrm{O}_{16}\right]^{+}: 1311.82$, found : 1311.8

D. Procedure for the protonation of a stoichiometric mixture of the amines 2 and 4 in order to obtain a statistical distribution of the pseudo rotaxane dimers 3,5 and 6/6,

A suspension of the compound $4\left(41 \mathrm{mg}, 6.236 .10^{-5} \mathrm{~mol}, 1\right.$ equiv) and the compound $2\left(43 \mathrm{mg}, 6.236 .10^{-5}\right.$ mol, 1 equiv) in $2.5 \mathrm{~mL}(2.5 \mathrm{mmol}, 40$ equiv) of HCl 1 M in diethyl ether was stirred for 30 min . The mixture was then evaporated and washed with diethyl ether to give a solid. $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(51 \mathrm{mg}, 3.118 .10^{-4} \mathrm{~mol}\right.$, 5 equiv) and 3 mL of dichloromethane were added to a suspension of the previous product in 3 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min . After separation, the aqueous layer was extracted twice with 3 mL of dichloromethane. The organic layers were combined, dried over MgSO_{4} and concentrated to obtain the mixture of pseudo rotaxane dimers $\mathbf{3}, 5$ and $\mathbf{6} / \mathbf{6}^{\prime}(100 \mathrm{mg}, 98 \%)$
E. Kinetic study of exchange using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) on a stoichiometric mixture of compounds 3 and 5

Figure 2. MALDI-TOF mass spectra of : (a) the diazido pseudo rotaxane dimer 3, (b) the dialkyne pseudo rotaxane dimer 5, (c) a stoichiometric mixture of pseudo rotaxane dimers $\mathbf{3}$ and 5 over time, (d) after protonation of a stoichiometric mixture of monomers 2 and $\mathbf{4}$. The detected ions corresponds to $\left[\mathrm{M}-2 \mathrm{PF}_{6}-1 \mathrm{H}\right]^{+}$.

F. Synthesis of the molecular lassoes 7

In a typical procedure, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}^{2}\right)_{4} \mathrm{PF}_{6}(67 \mathrm{mg}, 0.180 \mathrm{mmol}, 1$ equiv) and 2,6-lutidine $(2 \mathrm{mg}, 0.018 \mathrm{mmol}$, 0.1 equiv) were added successively to a solution of the azido compound $\mathbf{3}(150 \mathrm{mg}, 0.180 \mathrm{mmol}, 1$ equiv) and the alkyne compound $\mathbf{5}(144 \mathrm{mg}, 0.180 \mathrm{mmol}, 1$ equiv) in 360 mL of dry dichloromethane (concentration 0.5 mM). The mixture was stirred for 4 days at room temperature, after which time the solvent was evaporated under vacuo. The crude was then directly purified by chromatography on a silicagel column (solvent gradient elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 1 / 0$ to $98 / 1$) then on a LH 20 sephadex column (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 1 / 1$) to afford the dilasso rotamacrocycle $7(150 \mathrm{mg}, 51 \%)$ accompanied by traces of tetralasso $\mathbf{8}$ which were only detected by mass spectrometry. Integration of the signals is given here for dilasso 7 .
${ }^{1} \mathbf{H}$ NMR (CD $\left.{ }_{3} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 6.90-6.85 \& 6.69-6.58\left(2 * \mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{2}\right.$ $\left.\mathrm{H}_{28}\right), 6.84-6.70\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right), 6.43\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H E-H D}=8.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{E}}\right), 4.57-4.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{1} \mathrm{H}_{29}\right)$, $4.27\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HI6}-\mathrm{HI7}}=7.3 \mathrm{~Hz}, \mathrm{H}_{16}\right), 4.33-3.62\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 3.47-3.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{27}\right), 2.64(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J}_{H I 3-H 12}=7.6 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.87-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 1.76-1.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4} \mathrm{H}_{26}\right), 1.66-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 1.41-1.16$ (m, $30 \mathrm{H}, \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{18} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24} \mathrm{H}_{25}$).
JMOD ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}$, $100 \mathbf{M H z}$, 298K $): \delta(\mathrm{ppm})=148.7 \& 147.7 \& 147.0\left(\mathrm{C}_{14} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 126.2$ $\left(C_{C}\right), 122.3\left(C_{15}\right), 123.5 \& 121.6 \& 114.1 \& 113.0 \& 112.7 \& 112.7\left(C_{B} C_{D} C_{E} C_{N} C_{O} C_{P} C_{Q}\right), 71.5 \& 71.4 \&$ 71.2 \& 71.0 \& 68.5 \& $68.2 \& 68.0 \& 67.9\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24 \mathrm{C} 8}\right), 52.8\left(\mathrm{C}_{1} \mathrm{C}_{29}\right), 52.1\left(\mathrm{C}_{13}\right), 50.6\left(\mathrm{C}_{3} \mathrm{C}_{27}\right), 30.9$ \& 30.3 \& $30.2 \& 30.2 \& 30.1 \& 30.0 \& 29.9 \& 29.6 \& 29.5 \& 27.3 \& 27.2 \& 27.1\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{17}\right.$ $\left.\mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25} \mathrm{C}_{26}\right) 26.2\left(\mathrm{C}_{16}\right)$.
MS (MALDI): [M-1H-2PF ${ }_{6}$] calculated for $\left[\mathrm{C}_{75} \mathrm{H}_{116} \mathrm{~N}_{5} \mathrm{O}_{16}\right]$: 1342.84 found: 1342.8 (compound 7); [M-3H$\left.4 \mathrm{PF}_{6}\right]$ calculated for $\left[\mathrm{C}_{150} \mathrm{H}_{232} \mathrm{~N}_{10} \mathrm{O}_{32}\right]$: 2685.68 , found: 2684.7 (compound 8).

Figure 2. MALDI-TOF mass spectrum of lasso rotamacrocycle 7 and traces of $\mathbf{8}$ (with zoom of the isotopic clusters)

G. Synthesis of the uncomplexed compound 7u

1) Preparation of the compound 17

To a solution of the compound $2\left(61 \mathrm{mg}, 0.074 \mathrm{mmol}\right.$, 1 equiv) in dichloromethane (6 mL) were added $\mathrm{Boc}_{2} \mathrm{O}$ ($48 \mathrm{mg}, 0.221 \mathrm{mmol}, 3$ equiv) and DIEA ($2.9 \mathrm{mg}, 0.221 \mathrm{mmol}, 3$ equiv). The solution was stirred during 3 h at room temperature. The organic layer was washed successively with an aqueous solution of $\mathrm{HCl} 1 \mathrm{M}(2 \times 10$ mL), a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 10 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated under vacuo. The crude was purified by chromatography on a silicagel column (solvent elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2$) to yield the N -Boc protected compound 17 ($56 \mathrm{mg}, 97 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}$, 298K) : $\delta(\mathrm{ppm})=6.94-6.70\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right.$), 4.37-4.28(br s, $\left.2 \mathrm{H}, \mathrm{H}_{1}\right), 4.20-4.09\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}\right), 3.96-3.87\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right), 3.83\left(\mathrm{~s}, 8 \mathrm{H}^{2}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right), 3.26$ $\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 14-\mathrm{Hl3}}=7.0 \mathrm{~Hz}, \mathrm{H}_{14}\right), 3.21-3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 1.75-1.65\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 1.64-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 1.53-$ $1.18\left(\mathrm{~m}, 25 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12}\right)$.
JMOD ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=148.9 \& 148.9 \& 147.9\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}\right)$, $131.9\left(\mathrm{C}_{\mathrm{C}}\right), 121.4 \& 114.1 \& 113.8\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $79.3\left(\mathrm{COC}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 71.1\left(\mathrm{C}_{\mathrm{I}} \mathrm{C}_{\mathrm{J}} \mathrm{C}_{\mathrm{U}} \mathrm{C}_{\mathrm{V}}\right)$, $69.8\left(\mathrm{C}_{\mathrm{H}}\right.$ $\left.\mathrm{C}_{\mathrm{K}} \mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{W}}\right), 69.3\left(\mathrm{C}_{\mathrm{G}} \mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{X}}\right), 51.4\left(\mathrm{C}_{14}\right), 49.3\left(\mathrm{C}_{1}\right), 46.1\left(\mathrm{C}_{3}\right), 29.5 \& 29.4 \& 29.4 \& 29.43 \& 29.3 \& 29.1 \&$ $28.8 \& 26.8 \& 26.6\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{13}\right), 28.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{~N}_{4} \mathrm{O}_{10}\right]^{+}: 787.5$, found : 787.5

2) Preparation of the compound 18

To a solution of the compound 4 ($300 \mathrm{mg}, 0.0374 \mathrm{mmol}, 1$ equiv) in dichloromethane $(15 \mathrm{~mL})$ were added $\mathrm{Boc}_{2} \mathrm{O}(245 \mathrm{mg}, 1.122 \mathrm{mmol}, 3$ equiv) and DIEA ($0.145 \mathrm{~mL}, 1.122 \mathrm{mmol}, 3$ equiv). The solution was stirred during 3 h at room temperature. The organic layer was washed successively with an aqueous solution of HCl $1 \mathrm{M}(2 \times 30 \mathrm{~mL})$, a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, then dried over MgSO_{4} and concentrated under vacuo. The crude was purified by chromatography on a silicagel column (solvent elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 98/2) to yield the N-Boc protected compound 18 ($272 \mathrm{mg}, 96 \%$) as a white solid.
$\mathbf{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) 0.74$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=6.94-6.70\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right)$, 4.38-4.27(br s, $\left.2 \mathrm{H}, \mathrm{H}_{1}\right)$, 4.21-4.09 (m, 8H, $\mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}$), 3.95-3.87 (m, 8H, $\mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}$), $3.83\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right.$), 3.20$3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.18\left(\mathrm{td}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H 12}=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{H 13-\mathrm{HI5}}=2.7 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.94\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{H 15-H 13}=2.7 \mathrm{~Hz}, \mathrm{H}_{15}\right)$, 1.57-1.18 (m, 18H, $\mathrm{H}_{4} \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{12}$), $1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{2}\right)$.

JMOD ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$, $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=148.8 \& 147.9\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 131.9\left(\mathrm{C}_{\mathrm{C}}\right), 121.4 \&$ $114.6 \& 113.8\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $79.3\left(\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $71.1\left(\mathrm{C}_{\mathrm{I}} \mathrm{C}_{\mathrm{J}} \mathrm{C}_{\mathrm{U}} \mathrm{C}_{\mathrm{V}}\right), 69.8\left(\mathrm{C}_{\mathrm{H}} \mathrm{C}_{\mathrm{K}} \mathrm{C}_{\mathrm{T}} \mathrm{C}_{\mathrm{W}}\right), 69.3\left(\mathrm{C}_{\mathrm{G}}\right.$ $\mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{X}}$), $68.0\left(\mathrm{C}_{15}\right), 51.4\left(\mathrm{C}_{1}\right), 46.3\left(\mathrm{C}_{3}\right), 29.5 \& 29.4 \& 29.4 \& 29.3 \& 29.0 \& 28.7 \& 26.8\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}\right.$ $\left.\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12}\right), 28.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}\right), 18.4\left(\mathrm{C}_{13}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calculated for $\left[\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{NO}_{10}\right]^{+}: 756.5$, found : 756.5

3) Preparation of the compound 19

In a typical procedure, $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}(22 \mathrm{mg}, 0.060 \mathrm{mmol}, 1$ equiv) and 2,6-lutidine $(0.6 \mathrm{mg}, 0.006 \mathrm{mmol}$, 0.1 equiv) were added successively to a solution of the azido compound $17(47 \mathrm{mg}, 0.060 \mathrm{mmol}, 1$ equiv) and the alkyne compound $\mathbf{1 8}(45 \mathrm{mg}, 0.060 \mathrm{mmol}, 1$ equiv) in 2 mL of dry dichloromethane. The mixture was stirred for 24 h at room temperature, after which time the solvent was evaporated under vacuo. The crude was then directly purified by chromatography on a silicagel column (solvent gradient elution $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 1 / 0$ to $98 / 2$) to afford the compound 19 ($48 \mathrm{mg}, 52 \%$).
${ }^{1} \mathbf{H}^{\text {NMR }}\left(\mathbf{C D}_{\mathbf{3}} \mathbf{C N}, 400 \mathrm{MHz}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=7.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 7.13-7.02\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Q}}\right)$, 7.00-6.97 (br s, $2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}$), $6.91\left(\mathrm{dd}, 2 \mathrm{H},{ }^{4} \mathrm{~J}_{H D-H B}=1.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{H D-H E}=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{D}}\right), 4.34\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{1} \mathrm{H}_{29}\right), 4.28-4.19$ $\left(\mathrm{m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}} \mathrm{H}_{16}\right), 3.78-3.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right), 3.60 \& 3.60\left(2 * \mathrm{~s}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right)$, 3.21$3.10\left(\mathrm{br} \mathrm{t}, 4 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{27}\right), 2.63\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-H 12}=7.6 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.85-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 1.65-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right)$, 1.55-1.37 (m, 4H, H4 H26), 1.44 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{H}_{2} \mathrm{H}_{28}$), 1.36-1.16 (m, $30 \mathrm{H}, \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{18} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21}$ $\mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24} \mathrm{H}_{25}$).
JMOD ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}$, $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{2 9 8 K}\right): \delta(\mathrm{ppm})=149.2 \& 149.1 \& 149.1 \& 148.1\left(\mathrm{C}_{14} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right)$, $135.4\left(\mathrm{C}_{\mathrm{C}}\right), 124.1 \& 124.0 \& 122.8 \& 117.5 \& 117.4 \& 117.3 \& 116.5\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right), 122.5\left(\mathrm{C}_{15}\right)$, $80.0\left(\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right), 69.7 \& 69.6 \& 69.4 \& 68.7 \& 68.6 \& 68.6 \& 68.2 \& 68.1 \& 68.0\left(\mathrm{CH}_{2} \mathrm{O}_{\text {DB24C8 }}\right), 50.6\left(\mathrm{C}_{16}\right)$, $50.2\left(\mathrm{C}_{1} \mathrm{C}_{29}\right), 47.6\left(\mathrm{C}_{3} \mathrm{C}_{27}\right), 30.9 \& 30.2 \& 30.2 \& 30.2 \& 30.1 \& 30.1 \& 30.1 \& 30.0 \& 29.8 \& 29.6 \& 27.5$ $\& 27.0\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21} \mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25} \mathrm{C}_{26}\right), 28.6\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 26.2\left(\mathrm{C}_{13}\right)$.
MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$; calculated for $\left[\mathrm{C}_{85} \mathrm{H}_{132} \mathrm{~N}_{5} \mathrm{O}_{20}\right]^{+}: 1543.9$, found : 1543.9

4) Preparation of the uncomplexed compound $7 \mathbf{u}$

A suspension of the N -Boc protected compound $19(48 \mathrm{mg}, 0.031 \mathrm{mmol}, 1$ equiv) in 1 mL of HCl 1 M in diethyl ether was stirred for 1 hour. The mixture was then evaporated and washed with diethyl ether to give a solid. $\mathrm{NH}_{4} \mathrm{PF}_{6}(25 \mathrm{mg}, 0.156 \mathrm{mmol}, 5$ equiv) and 3 mL of dichloromethane were added to a suspension of the previous product in 3 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min .

After separation, the aqueous layer was extracted twice with 3 mL of dichloromethane. The organic layers were combined, dried over MgSO_{4} and concentrated to obtain the compound $7 \mathbf{u}(40 \mathrm{mg}, 78 \%$)
${ }^{1} \mathbf{H}$ NMR (CD $\mathbf{C l}_{\mathbf{3}} \mathbf{C N}, 400 \mathbf{M H z}$ 298K) : $\delta(\mathrm{ppm})=7.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 7.21-7.02\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{D}} \mathrm{H}_{\mathrm{E}} \mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{O}} \mathrm{H}_{\mathrm{P}}\right.$ $\left.\mathrm{H}_{\mathrm{Q}}\right)$, 4.32-4.20 (m, 18H, $\left.\mathrm{H}_{16} \mathrm{H}_{\mathrm{G}} \mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{X}}\right), 4.10 \& 4.10\left(2 * \mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{1} \mathrm{H}_{29}\right), 3.82-3.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{H}_{\mathrm{T}} \mathrm{H}_{\mathrm{W}}\right)$, $3.61\left(\mathrm{~s}, 16 \mathrm{H}, \mathrm{H}_{\mathrm{I}} \mathrm{H}_{\mathrm{J}} \mathrm{H}_{\mathrm{U}} \mathrm{H}_{\mathrm{V}}\right), 3.07-2.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3} \mathrm{H}_{27}\right), 2.61\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{H 13-\mathrm{HI} 2}=7.5 \mathrm{~Hz}, \mathrm{H}_{13}\right), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}$, H_{17}), 1.70-1.54 (m, 2H, $\mathrm{H}_{4} \mathrm{H}_{12} \mathrm{H}_{26}$), 1.40-1.16 (m, $30 \mathrm{H}, \mathrm{H}_{5} \mathrm{H}_{6} \mathrm{H}_{7} \mathrm{H}_{8} \mathrm{H}_{9} \mathrm{H}_{10} \mathrm{H}_{11} \mathrm{H}_{18} \mathrm{H}_{19} \mathrm{H}_{20} \mathrm{H}_{21} \mathrm{H}_{22} \mathrm{H}_{23} \mathrm{H}_{24}$ H_{25}.
JMOD ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D}_{\mathbf{3}} \mathbf{C N}$, $\mathbf{1 0 0} \mathbf{~ M H z}$, 298K) : $\delta(\mathrm{ppm})=150.2 \& 149.2 \& 149.0 \& 148.9 \& 148.6\left(\mathrm{C}_{14} \mathrm{C}_{\mathrm{A}}\right.$ $\left.\mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{M}} \mathrm{C}_{\mathrm{R}}\right), 126.0\left(\mathrm{C}_{\mathrm{C}}\right), 125.8 \& 124.0 \& 123.8 \& 119.0 \& 117.4 \& 116.9 \& 116.9\left(\mathrm{C}_{\mathrm{B}} \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{E}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{O}} \mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{Q}}\right)$, $122.2\left(\mathrm{C}_{15}\right), 69.8 \& 69.7 \& 69.1 \& 69.0 \& 68.9 \& 68.8 \& 68.6 \& 68.3 \& 68.2 \& 68.1\left(\mathrm{CH}_{2} \mathrm{O}_{\mathrm{DB} 24}\right.$ \& 8) $51.9\left(\mathrm{C}_{1}\right.$ $\left.\mathrm{C}_{29}\right), 50.6\left(\mathrm{C}_{16}\right), 48.7\left(\mathrm{C}_{3} \mathrm{C}_{27}\right), 30.7 \& 30.2 \& 30.0 \& 29.9 \& 29.9 \& 29.8 \& 29.8 \& 29.8 \& 29.7 \& 29.7 \&$ $29.5 \& 29.4 \& 29.3 \& 26.8 \& 26.8 \& 26.8 \& 26.5 \& 26.5\left(\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8} \mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{11} \mathrm{C}_{12} \mathrm{C}_{17} \mathrm{C}_{18} \mathrm{C}_{19} \mathrm{C}_{20} \mathrm{C}_{21}\right.$ $\mathrm{C}_{22} \mathrm{C}_{23} \mathrm{C}_{24} \mathrm{C}_{25} \mathrm{C}_{26}$), $26.0\left(\mathrm{C}_{13}\right)$.

NMR Spectra

$$
\stackrel{i}{i}
$$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \text { mon } \\ & \text { min } \\ & \text { In } \end{aligned}$	+	$\stackrel{\circ}{\underset{\text { ® }}{\text { I }}}$	+	 \|

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$$
\stackrel{\text { in }}{i}
$$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$\stackrel{\text { Pl }}{\text { - }}$

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

シin
$\stackrel{\text { ®n }}{\text { ® }}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

			8－8			
N1	\1	\1		\｜	$\backslash \mid$	$\xrightarrow{\sim}$

JMOD ${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ）

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$\stackrel{\stackrel{\rightharpoonup}{6}}{\substack{1}}$	$\stackrel{\text { N }}{\text { N }}$	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

:

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)


```
~~
NへNへNべN
```

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ）

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$\begin{aligned} & \text { N } \\ & \text { o } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{-} \\ & \text { N } \end{aligned}$	¢
1		

JMOD ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

16

	or N ¢			$\begin{aligned} & \ddot{\infty} \\ & \underset{\infty}{\infty} \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{\infty} \\ & \underset{\sim}{\mathrm{H}} \end{aligned}$	$\stackrel{\substack{\text { in } \\ \text { ¢ }}}{\text { d }}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}{\underset{\sim}{\infty}}_{\infty}^{\infty} \operatorname{Nin}_{\sim}^{\infty}$	$\stackrel{8}{2}$
Y		\checkmark	Ψ		\1/			$\xrightarrow{\sim}$	

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	 	 		ন

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$\stackrel{\text { f }}{\stackrel{\text { I }}{ }}$				$\stackrel{\text { or }}{\text { a }}$	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

$$
17
$$

D
$\stackrel{\text { nen }}{\infty}$

 ||

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

	$\xrightarrow{\text { I }}$			$\begin{aligned} & \text { N} \\ & \underset{\sim}{n} \end{aligned}$	F이ㄱㅜㅜㅇㅇㅇㅇㅇㅇㅇㄱㄱ영
$1 /$	\|	V	\|		$\xrightarrow{\sim}$

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 298 K)

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ）

JMOD ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$)

ru

 Coss

$$
1
$$

