Supporting Information

Straightforward Synthesis of a Double-Lasso Macrocycle from a non-Symmetrical [c2]-Daisy Chain

Camille Romuald, Guillaume Cazals, Christine Enjalbal and Frédéric Coutrot*

Supramolecular Machines and Architecture Team, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS – UM1 - UM2, Université Montpellier 2, Place Eugène Bataillon, case courrier 1706, F-34095 Montpellier Cedex 5, France

frederic.coutrot@univ-montp2.fr, http://www.glycorotaxane.fr

A. General methods2	
B. Synthesis of the diazido pseudo [c2]Daisy chain 32	
1) Preparation of the 1-azido-12-bromododecane 9	
2) Preparation of the 1-phthalimido-12-azidododecane 10	
3) Preparation of the 12-azidododecan-1-amine 11	
4) Preparation of the crown ether 1	
5) Preparation of the compound 2	
6) Preparation of the compound 3	
C. Synthesis of the dialkyne pseudo [c2]Daisy chain 55	
1) Preparation of the tridec-2-yn-1-ol 12	
2) Preparation of the tridec-12-yn-1-ol 13	
3) Preparation of the 13-bromotridec-1-yne 14	
4) Preparation of the phthalimide 15	
5) Preparation of the tridec-12-yn-1-amine 16	
6) Preparation of the compound 4	
7) Preparation of the compound 5	
D. Procedure for the protonation of a stoichiometric mixture of the amines 2 and 4 in order to obtain statistical distribution of the pseudo rotaxane dimers 3, 5 and 6/6'	1 a
E. Kinetic study of exchange using matrix-assisted laser desorption/ionization time of flight (MALE TOF) mass spectrometry (MS) on a stoichiometric mixture of compounds 3 and 5 10)I-
F. Synthesis of the molecular lassoes 711	
G. Synthesis of the uncomplexed compound 7u12	
1) Preparation of the compound 17	
2) Preparation of the compound 18	
3) Preparation of the compound 19	
4) Preparation of the uncomplexed compound 7u 13	
NMR Spectra	

A. General methods

All reactions were achieved under an atmosphere of argon unless otherwise indicated. All reagents were purchased from Aldrich and were used as received without further purification. Dichloromethane was distilled over P₂O₅ and was degassed by bubbling Ar for 20 min. Analytical thin-layer chromatography (TLC) was performed on Merck silicagel 60 F254 plates. Compounds were visualized by dipping the plates in an ethanolic solution of ninhydrine or KMNO₄, followed by heating. ¹H NMR and ¹³C NMR spectra were obtained on a Bruker DRX-400 spectrometer (respectively at 400.13 MHz and 100.62 MHz). Chemical shifts of ¹H NMR and ¹³C NMR are given by using CHCl₃, CH₃CN or DMSO as references (7.27 ppm, 1.94 ppm and 2.50 ppm respectively for ¹H spectra and 77.00 ppm, 118.26 ppm and 39.52 ppm respectively for ¹³C spectra). Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), quint (quintuplet), m (multiplet).

Low and high-resolution ESI mass spectra were recorded on a Q-Tof I mass spectrometer (Waters, Milford, CA) fitted with an electrospray ion source. Data were acquired and processed with the Masslynx software. The mass spectrometer was calibrated in the positive ion mode using 1% phosphoric acid in water/acetonitrile solution (H₂O/CH₃CN, 50/50, v/v). Data were acquired by the Tof analyzer at 1 acquisition/s from *m/z* 100 to *m/z* 3000 with a resolution of 5000. Depending on the sample, 50 acquisitions were summed to produce the final spectrum. Samples were dissolved in a mixture H₂O/CH₃CN (50/50, v/v) and infused into the ESI source at a flow rate of 10 µl/min. Voltages were set at +3.0 kV for the capillary and adjusted for the sampling cone. The source was heated at 100°C. Nitrogen constituted both nebulizing and desolvation gas. The latter was heated at 120°C.

MALDI mass spectra were recorded on an Ultraflex III TOF/TOF instrument (Bruker Daltonics, Wissembourg, France). A pulsed Nd:YAG laser at a wavelength of 355 nm was operated at a frequency of 100 Hz with a delayed extraction time of 30 ns. The source was operated in the positive mode. Data were acquired with the Flex Control software and processed with the Flex Analysis software. A solution of the HCCA matrix in water/acetonitrile (50/50, v/v) at a concentration of 10 mg/ml was mixed with the sample in equal amount and 1 µl of this solution was deposited onto the MALDI target according to the dried droplet procedure. After evaporation of the solvent, the MALDI target was introduced into the mass spectrometer ion source. External calibration was performed with the commercial peptide mixture (Calibration peptide standard 2, Bruker Daltonics, Wissembourg, France). MS data were acquired under the following MS conditions. An acceleration voltage of 25.0 kV (IS1) was applied for a final acceleration of 21.85 kV (IS2). The reflectron mode was used for the Tof analyzer (voltages of 26.3 kV and 13.8 kV). Mass spectra were acquired from 500 laser shots, the laser fluence being adjusted for each studied sample. Ions were detected over a mass range from m/z 400 to 3000 or 4000.

B. Synthesis of the diazido pseudo [c2]Daisy chain 3

1) Preparation of the 1-azido-12-bromododecane 9

$$N_3 \xrightarrow{1}_{2} \xrightarrow{3}_{4} \xrightarrow{5}_{6} \xrightarrow{7}_{8} \xrightarrow{9}_{10} \xrightarrow{11}_{12} B_1$$

9

To a solution of 1,12-dibromododecane (3.07 g, 9.356 mmol, 1.5 equiv) in 15 mL of DMF at 60 °C, was added by portions NaN₃ (450 mg, 6.237 mmol, 1 equiv) during 30 min. The mixture was stirred for 4,5 hours at 60 °C. The solvent was then removed under *vacuo*, and Et₂O (30 mL) and NaOH 1M (30 mL) were added.

The two layers were stirred then separated and the aqueous layer was extracted with Et₂O (2 x 20 mL). The organic layers were combined, dried over MgSO₄ and concentrated. The crude was purified by chromatography on a silicagel column (solvent gradient elution: Petroleum ether, then Et₂O/Petroleum ether 3/97) to give the product (869 mg, 48%) as a yellow oil.

\mathbf{R}_{f} (petroleum ether /AcOEt 9:1) 0.74

¹**H NMR (CDCl₃, 400 MHz, 298K) :** δ (ppm) = 3.42 (t, 2H, ³J_{*H12-H11*} = 7.0 Hz, H₁₂), 3.26 (t, 2H, ³J_{*H1-H2*} = 7.0 Hz, H₁), 1.86 (quint, 2H, ³J_{*H11-H10*} = ³J_{*H11-H12*} = 7.0 Hz, H₁₁), 1.65-1.55 (m, 2H, H₂), 1.49-1.23 (m, 16H, H₃ H₄ H₅ H₆ H₇ H₈ H₉ H₁₀).

JMOD ¹³**C NMR (CDCl₃, 100 MHz, 298K) :** δ (ppm) = 51.4 (C₁), 33.9 (C₁₂), 32.8 (C₁₁), 29.4 & 29.4 & 29.3 & 29.1 & 28.8 & 28.7 & 26.6 (C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀).

2) Preparation of the 1-phthalimido-12-azidododecane 10

Potassium phthalimide (832 mg, 4.491 mmol, 1.5 equiv) was added to a solution of the 1-azido-12bromododecane **9** (869 mg, 2.994 mmol, 1 equiv) in 20 mL of DMF. After stirring for 5 h at 70°C, the solvent was removed in *vacuo*. The solid residue was suspended in dichloromethane and filtered through a layer of silica gel. The filtrate was evaporated to give the desired product (965 mg) in 90% yield as a yellow solid.

¹**H NMR (CDCl₃, 400 MHz, 298K)** : δ (ppm) = 7.87-7.82 (m, 2H, H₁₅), 7.74-7.69 (m, 2H, H₁₆), 3.68 (t, 2H, ³J_{*H12-H11*} = 7.3 Hz, H₁₂), 3.26 (t, 2H, ³J_{*H1-H2*} = 7.0 Hz, H₁), 1.72-1.63 (m, 2H, H₁₁), 1.63-1.55 (m, 2H, H₂), 1.41-1.22 (m, 16H, H₃ H₄ H₅ H₆ H₇ H₈ H₉ H₁₀).

JMOD ¹³C NMR (CDCl₃, 100 MHz, 298K) : δ (ppm) = 167.8 (C₁₃), 133.4 (C₁₆), 131.8 (C₁₄), 122.6 (C₁₅), 51.0 (C₁), 37.6 (C₁₂), 29.1 & 29.1 & 29.1 & 28.8 & 28.8 & 28.5 & 28.2 & 26.5 & 26.3 (C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁).

MS (ESI): $[M+H]^+$ calculated for $[C_{20}H_{29}N_4O_2]^+$: 357.2, found : 357.2

3) Preparation of the 12-azidododecan-1-amine 11

Hydrazine monohydrate (474 mg, 9.475 mmol, 3.5 equiv) was added to a solution of the phthalimide **10** (965 mg, 2.707 mmol, 1 equiv) in 40 mL of ethanol. The mixture was stirred at reflux for 4 h, and then cooled to room temperature. An aqueous solution of KOH 1N (50 mL) was added and the solvent was removed in *vacuo*. The solution was extracted with dichloromethane (2x50 mL); then, the organic layers were combined, dried over MgSO₄ and concentrated to yield the desired product (563 mg, 92 %).

R_f (CH₂Cl₂/CH₃OH 9:1) 0.1

¹H NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 3.26 (t, 2H, ³J_{*H12-H11*} = 7.0 Hz, H₁₂), 2.68 (t, 2H, ³J_{*H1-H2*} = 7.0 Hz, H₁), 1.64-1.56 (m, 2H, H₁₁), 1.48-1.24 (m, 18H, H₂ H₃ H₄ H₅ H₆ H₇ H₈ H₉ H₁₀). JMOD ¹³C NMR (CDCl₃, 100 MHz, 298K) : δ (ppm) = 50.6 (C₁₂), 41.5 (C₁), 33.1 (C₁₁), 28.9 & 28.8 & 28.8 & 28.7 & 28.4 & 28.1 & 26.2 & 26.0 (C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀). MS (ESI): [M+H]⁺ calculated for [C₁₂H₂₇N₄]⁺ : 227.2, found : 227.2

4) Preparation of the crown ether 1

This compound has been synthesized according to the procedure described by S. J. Cantrill, G. J. Youn, J. F. Stoddart.^[1]

\mathbf{R}_f (AcOEt) 0.3

¹**H NMR (400 MHz, CDCl₃, 298K):** δ (ppm) = 9.83 (s, 1H, H₁), 7.43 (dd, 1H, ³J_{H7-H6} = 8.2 Hz, ⁴J_{H7-H3} = 1.9 Hz, H₇), 7.38 (d, 1H, ⁴J_{H3-H7} = 1.9 Hz, H₃), 6.94 (d, 1H, ³J_{H6-H7} = 8.2 Hz, H₆), 6.90-6.86 (m, 4H, H₁₅ H₁₆ H₁₇ H₁₈), 4.24-4.20 (m, 4H, H₈ H₂₅), 4.17-4.15 (m, 4H, H₁₃ H₂₀), 3.98-3.92 (m, 8H, H₉ H₁₂ H₂₁ H₂₄), 3.86-3.84 (m, 8H, H₁₀ H₁₁ H₂₂ H₂₃).

JMOD ¹³**C NMR** (100 MHz, CDCl₃, 298K): δ (ppm) = 190.9 (C₁), 154.3 & 149.1 & 148.8 (C₄ C₅ C₁₄ C₁₉), 130.2 (C₂), 126.9 (C₇), 121.4 & 113.9 (C₁₅ C₁₆ C₁₇ C₁₈), 111.8 (C₆), 110.9 (C₃), 71.5 & 71.4 & 71.3 & 69.7 & 69.5 & 69.4 & 69.4 & 69.3 (<u>C</u>H₂O).

MS (ESI): $[M+Na]^+$ calculated for $C_{25}H_{32}O_9Na^+$: 499.52, found: 499.27

5) Preparation of the compound 2

A solution of the crown ether aldehyde 1 (1.18 g, 2.49 mmol, 1 equiv) and the 12-azidododecan-1-amine 11 (563 mg, 2.49 mmol, 1 equiv) in 100 mL of toluene was heated under reflux for 30 h using a Dean-Stark apparatus. The solvent was then evaporated to give a yellow oil. The mixture was diluted with MeOH (70 mL), and then NaBH₄ (471 mg, 12.45 mmol, 5 equiv) was added portionwise at 5°C. Stirring was maintained at room temperature for a further 5 h. Then, an aqueous solution of HCl 5M (100 mL) was added to the reaction mixture. Methanol was evaporated, and the residue was diluted with dichloromethane (100 mL) and washed with an aqueous solution of NaOH 5M (120 mL). The two layers were separated and the aqueous layer was extracted with dichloromethane (3x100 mL). The organic layers were combined, dried over MgSO₄ and concentrated. The crude (1.78 g) was directly engaged in the following reaction.

R_f (CH₂Cl₂/CH₃OH 9:1) 0.1

¹**H** NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 6.93-6.83 (m, 6H, H_D H_E H_N H_O H_P H_Q), 6.82 (s, 1H, H_B), 4.20-4.10 (m, 8H, H_G H_L H_S H_X), 3.96-3.89 (m, 8H, H_H H_K H_T H_W), 3.84 (s, 8H, H_I H_J H_U H_V), 3.70 (s, 2H, H₁), 3.26 (t, 2H, ³J_{H14-H13} = 7.0 Hz, H₁₄), 2.60 (t, 2H, ³J_{H3-H4} = 7.3 Hz, H₃), 1.65-1.55 (m, 2H, H₁₃), 1.55-1.45 (m, 2H, H₄), 1.41-1.21 (m, 16H, H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₂).

^[1] S. J. Cantrill, G. J. Youn, J. F. Stoddart, J. Org. Chem. 2001, 66, 6857-6872.

JMOD ¹³**C NMR** (**CDCl**₃, **100 MHz**, **298K**) : δ (ppm) = 148.7 & 148.6 & 147.6 (C_A C_F C_M C_R), 133.3 (C_C), 121.1 & 120.6 & 113.8 & 113.7 & 113.7 (C_B C_D C_E C_N C_O C_P C_Q), 71.1 & 69.6 & 69.1 (CH₂O_{DB24C8}), 53.4 (C₁), 51.2 (C₁₄), 49.1 (C₃), 29.7 & 29.3 & 29.3 & 29.3 & 29.2 & 29.2 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂ C₁₃). **MS** (**ESI**): [M+H]⁺ calculated for [C₃₇H₅₉N₄O₈]⁺ : 687.4, found : 687.4

6) Preparation of the compound 3

A solution of HCl 2M in diethyl ether (12.5 mL, 25 mmol, 10 equiv) was added to the amine **2** (1.70 g, 2.49 mmol, 1 equiv). The mixture was stirred for 30 min, and then diethyl ether was evaporated to give a solid. To a solution of the previous solid in milliQ water (10 mL) was added NH₄PF₆ (1.22 g, 7.47 mmol, 3 equiv) and dichloromethane (10 mL). The biphasic solution was stirred vigorously for 30 min; then, the two layers were separated and the aqueous layer was extracted with dichloromethane (3x10 mL). The organic layers were then combined, dried over MgSO₄ and concentrated. The crude was purified by chromatography on a silicagel column (gradient solvent elution CH₂Cl₂/Acetone 1/0 to 9/1) to yield the compound **3** (1.45 g, 70% over the two steps).

R_f (CH₂Cl₂/CH₃OH 9:1) 0.57

¹**H NMR (CDCl₃, 400 MHz, 298K)** : δ (ppm) = 6.92 (d, 2H, ³J_{HD-HE} = 8.1 Hz, H_D), 6.87-6.69 (m, 10H, H_E H_N H_O H_P H_Q), 6.61 (s, 2H, H_B), 4.53-4.25 (m, 4H, H₁), 4.52-3.56 (m, 48H, CH₂O_{DB24C8}), 3.56-3.32 (m, 4H, H₃), 3.27 (t, 4H, ³J_{H14-H13} = 7.0 Hz, H₁₄), 1.74-1.64 (m, 4H, H₄), 1.61 (tt, 4H, ³J_{H13-H12} = ³J_{H13-H14} = 7.0 Hz, H₁₃), 1.44-1.14 (m, 32H, H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₂).

JMOD ¹³**C NMR** (**CDCl**₃, **100 MHz**, **298K**) : δ (ppm) = 147.5 & 147.4 & 146.1 & 146.0 (C_A C_F C_M C_R), 124.7 (C_C), 122.8 (C_D), 120.9 & 120.8 & 112.6 & 112.6 & 111.6 & 111.6 (C_B C_E C_N C_O C_P C_Q), 72.1 & 71.7 & 70.1 & 70.7 & 70.6 & 70.5 & 70.2 & 70.1 (CH₂O_{DB24C8}), 52.0 (C₁), 51.3 (C₁₄), 48.8 (C₃), 29.3 & 29.3 & 29.3 & 29.3 & 29.0 & 28.9 & 28.7 & 26.6 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂ C₁₃). **MS (MALDI):** [M-1H-2PF₆]⁺ calculated for [C₇₄H₁₁₇N₈O₁₆]⁺ : 1373.86, found : 1373.9

C. Synthesis of the dialkyne pseudo [c2]Daisy chain 5

1) Preparation of the tridec-2-yn-1-ol 12

$$HO_{1}^{2} \\ HO_{1}^{2} \\ I$$

To a stirred solution of 1-dodecyne (5g, 30.064 mmol, 1 equiv) in anhydrous THF at 5°C was added, under Argon, *n*-BuLi (20.7 mL, 33.077 mmol, 1.6 M in THF, 1.1 equiv). After 30 min at 5°C, paraformaldehyde (1.08 g, 36.077 mmol, 1.2 equiv) was added by portions. The solution was further stirred during 1h at 5°C, then during one night at room temperature. The reaction mixture was quenched with 120 mL of 1:1 water/saturated water with NH₄Cl. The biphasic solution was separated and the aqueous layer extracted twice

with 100 mL of ethyl acetate. The organic layers were then combined, dried over $MgSO_4$ and concentrated to afford compound 12 in a quantitative yield (5.90 g) as a yellow solid.

\mathbf{R}_{f} (petroleum ether /AcOEt 9:1) 0.21

¹**H** NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 4.25 (t, 2H, ⁵J_{H4-H1} = 2.0 Hz, H₁), 2.21 (tt, 2H, ⁵J_{H4-H1} = 2.0 Hz, ³J_{H4-H5} = 7.2 Hz, H₄), 1.55-1.46 (m, 2H, H₅), 1.42-1.33 (m, 2H, H₆), 1.33-1.20 (m, 12H, H₇ H₈ H₉ H₁₀ H₁₁ H₁₂), 0.89 (t, 3H, ³J_{H13-H12} = 6.9 Hz, H₁₃).

JMOD ¹³**C NMR (CDCl₃, 100 MHz, 298K) :** δ (ppm) = 86.6 & 78.2 (C₂ C₃), 51.4 (C₁), 31.9 & 29.6 & 29.5 & 29.3 & 29.1 & 28.9 & 28.6 & 22.7 (C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂), 18.7 (C₄), 14.1 (C₁₃).

2) Preparation of the tridec-12-yn-1-ol 13

$$HO_{1 \ 3}^{2 \ 4 \ 6 \ 8 \ 10 \ 12 \ 13} = 11^{12}$$

To dry ethylene-1,2-diamine (80 mL) at 0-5°C under argon was added NaH (11.90 g, 0.297 mol, 10 equiv, 60% in oil). The mixture was allowed to warm slowly at 60°C and stirred for 3h to give a deep blue mixture. Then, it was cooled to 45°C before adding portionwise the tridec-2-yn-1-ol **12** (5.84 g, 29.749 mmol, 1 equiv). The solution was stirred at 60°C for one night before being cooled to 0°C. 100 mL of diethyl ether and 100 mL of water were introduced slowly; then HCl 12M was added until pH 1. Aqueous layer was extracted with diethyl ether (4x100 mL). The organic layers were combined, dried and concentrated. The crude oil was purified by chromatography on a silicagel column (solvent elution: petroleum ether/AcOEt 1/1) to give the desired product (3.56 g, 61%) as a yellow solid.

\mathbf{R}_{f} (petroleum ether /AcOEt 1:1) 0.71

¹**H NMR (CDCl₃, 400 MHz, 298K) :** δ (ppm) = 3.63 (t, 2H, ³J_{H1-H2} = 6.6 Hz, H₁), 2.18 (td, 2H, ³J_{H11-H10} = 7.1 Hz, ⁴J_{H11-H13} = 2.6 Hz, H₁₁), 1.94 (t, 1H, ⁴J_{H13-H11} = 2.6 Hz, H₁₃), 1.62-1.47 (m, 4H, H₂ H₁₀), 1.43-1.23 (m, 14H, H₃ H₄ H₅ H₆ H₇ H₈ H₉).

JMOD ¹³C NMR (CDCl₃, 100 MHz, 298K) : δ (ppm) = 84.4 (C₁₂), 68.0 (C₁₃), 62.2 (C₁), 32.4 (C₂) 29.4 & 29.3 & 29.2 & 28.9 & 28.5 & 28.2 (C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀), 25.6 (C₁₁).

3) Preparation of the 13-bromotridec-1-yne 14

To a solution of the tridec-12-ynol **13** (2.40 g, 12.226 mmol, 1 equiv) in 40 mL of dry dichloromethane were added the tetrabromomethane (8.11 g, 24.451 mmol, 2 equiv) and the triphenylphosphine (6.41 g, 24.451 mmol, 2 equiv). The mixture was stirred at room temperature for 1h; then, the solvent was removed under reduced pressure. A solution of petroleum ether / ethyl acetate (9:1) was added and the resulted precipitate was filtered and washed abundantly. The filtrate was evaporated and the crude was purified by chromatography on a silicagel column (elution: petroleum ether/AcOEt 9/1) to give the brominated product **14** (3.07 g, 97%) as a yellow oil.

\mathbf{R}_{f} (petroleum ether /AcOEt 97:3) 0.50

¹**H NMR (CDCl₃, 400 MHz, 298K) :** δ (ppm) = 3.42 (t, 2H, ³J_{*H1-H2*} = 6.9 Hz, H₁), 2.19 (td, 2H, ³J_{*H11-H10*} = 7.1 Hz, ⁴J_{*H11-H13*} = 2.7 Hz, H₁₁), 1.95 (t, 1H, ⁴J_{*H13-H11*} = 2.7 Hz, H₁₃), 1.90-1.81 (m, 2H, H₂), 1.57-1.48 (m, 2H, H₁₀), 1.48-1.23 (m, 14H, H₃ H₄ H₅ H₆ H₇ H₈ H₉).

JMOD ¹³**C NMR (CDCl₃, 100 MHz, 298K) :** δ (ppm) = 84.4 (C₁₂), 68.0 (C₁₃), 33.7 (C₁), 32.7 & 29.3 & 29.3 & 29.3 & 29.0 & 28.6 & 28.6 & 28.4 & 28.0 (C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀), 18.3 (C₁₁).

4) Preparation of the phthalimide 15

Potassium phthalimide (3.40 g, 18.34 mmol, 1.5 equiv) was added to a solution of the 13-bromotridec-1-yne **14** (3.17 g, 12.230 mmol, 1 equiv) in 60 mL of DMF. After stirring for 4 h at 70°C, the solvent was removed in *vacuo*. The solid residue was suspended in dichloromethane and filtered through a layer of silica gel. The filtrate was evaporated to give the desired product (3.98 g) in a quantitative yield as a yellow solid.

\mathbf{R}_{f} (Petroleum ether/AcOEt 75/25) 0.50

¹**H** NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 7.87-7.81 (m, 2H, H₁₆), 7.73-7.68 (m, 2H, H₁₇), 3.67 (t, 2H, ${}^{3}J_{H1-H2} = 7.4$ Hz, H₁), 2.17 (td, 2H, ${}^{3}J_{H11-H10} = 7.8$ Hz, ${}^{4}J_{H11-H13} = 2.6$ Hz, H₁₁), 1.94 (t, 1H, ${}^{4}J_{H13-H11} = 2.6$ Hz, H₁₃), 1.72-1.62 (m, 2H, H₂), 1.56-1.47 (m, 2H, H₁₀), 1.42-1.22 (m, 14H, H₃ H₄ H₅ H₆ H₇ H₈ H₉). JMOD ¹³C NMR (CDCl₃, 100 MHz, 298K) : δ (ppm) = 168.0 (C₁₄), 133.5 (C₁₇), 131.9 (C₁₅), 122.8 (C₁₆), 84.4 (C₁₂), 68.0 (C₁₃), 37.7 (C₁), 29.2 & 29.2 & 28.9 & 28.8 & 28.5 & 28.3 & 28.2 & 26.6 (C₂ C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀), 18.1 (C₁₁).

5) Preparation of the tridec-12-yn-1-amine 16

Hydrazine monohydrate (2.14 g, 42.805 mmol, 3.5 equiv) was added to a solution of the phthalimide **15** (3.98 g, 12.230 mmol, 1 equiv) in 60 mL of ethanol. The mixture was stirred at reflux for 4 h, and then cooled to room temperature. An aqueous solution of KOH 1N (100 mL) was added and the solvent was removed in *vacuo*. The solution was extracted with dichloromethane (2x100 mL); then, the organic layers were combined, dried over MgSO₄ and concentrated to yield the desired product (2.10 g, 88 %) as a yellow solid.

\mathbf{R}_{f} (CH₂Cl₂/MeOH 9:1) 0

¹**H** NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 2.67(t, 2H, ³J_{H1-H2} = 7.0 Hz, H₁), 2.18 (td, 2H, ³J_{H11-H10} = 7.2 Hz, ⁴J_{H11-H13} = 2.7 Hz, H₁₁), 1.93 (t, 1H, ⁴J_{H13-H11} = 2.7 Hz, H₁₃), 1.56-1.47 (m, 2H, H₁₀), 1.47-1.34 (m, 4H, H₂ H₉), 1.34-1.21 (m, 12H, H₃ H₄ H₅ H₆ H₇ H₈).

JMOD ¹³**C NMR (CDCl₃, 100 MHz, 298K) :** δ (ppm) = 84.6 (C₁₂), 67.9 (C₁₃), 42.0 (C₁), 33.6 (C₂), 29.4 & 29.4 & 29.3 & 28.9 & 26.7 (C₃ C₄ C₅ C₆ C₇ C₈ C₉ C₁₀), 18.2 (C₁₁).

MS (ESI): $[M+H]^+$; calculated for $[C_{13}H_{26}N]^+$: 196.2, found : 196.2

6) Preparation of the compound 4

A solution of the crown ether aldehyde 1 (5.78 g, 12.134 mmol, 1 equiv) and the tridec-12-yn-1-amine 16 (2.37 g, 12.134 mmol, 1 equiv) in 200 mL of toluene was heated under reflux for 30 h using a Dean-Stark apparatus. The solvent was then evaporated to give a yellow oil. The mixture was diluted with MeOH (150 mL), and then NaBH₄ (2.30 g, 60.670 mmol, 5 equiv) was added portionwise at 0-5°C. Stirring was maintained at room temperature for a further 5 h. Then, an aqueous solution of HCl 5M (100 mL) was added to the reaction mixture. Methanol was evaporated, and the residue was diluted with dichloromethane (100 mL) and washed with an aqueous solution of NaOH 5M (100 mL). The two layers were separated and the aqueous layer was extracted with dichloromethane (2x200 mL). The organic layers were combined, dried over MgSO₄ and concentrated. The crude (6.73 g) was directly engaged in the following reaction.

R_f (CH₂Cl₂/MeOH 9:1) 0.1

¹**H** NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 6.90-6.80 (m, 7H, H_B H_D H_E H_N H_O H_P H_Q), 4.19-4.10 (m, 8H, H_G H_L H_S H_X), 3.95-3.89 (m, 8H, H_H H_K H_T H_W), 3.84 (s, 8H, H_I H_J H_U H_V), 3.70 (s, 2H, H₁), 2.60 (t, 2H, ³J_{H4-H3} = 7.3 Hz, H₃), 2.18 (td, 2H, ³J_{H13-H12} = 7.1 Hz, ⁴J_{H13-H15} = 2.7 Hz, H₁₃), 1.94 (t, 1H, ⁴J_{H15-H13} = 2.7 Hz, H₁₅), 1.57-1.45 (m, 4H, H₄ H₁₂), 1.44-1.34 (m, 2H, H₁₁), 1.33-1.23 (m, 12H, H₅ H₆ H₇ H₈ H₉ H₁₀).

JMOD ¹³**C NMR** (CDCl₃, 100 MHz, 298K) : δ (ppm) = 148.3 & 148.2 & 147.2 (C_A C_F C_M C_R), 132.8 (C_C), 120.7 & 120.2 & 113.4 & 113.4 & 113.3 (C_B C_D C_E C_N C_O C_P C_Q), 83.9 (C₁₄), 70.5 (C₁ C_J C_U C_V), 69.2 (C_H C_K C_T C_W), 68.6 (C_G C_L C_S C_X), 67.8 (C₁₅), 52.9 (C₁), 48.6 (C₃), 29.2 & 28.9 & 28.9 & 28.9 & 28.8 & 28.4 & 28.0 & 27.9 & 26.7 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂), 17.7 (C₁₃).

MS (ESI): $[M+H]^+$; calculated for $[C_{38}H_{58}NO_8]^+$: 656.4, found : 656.3

7) Preparation of the compound 5

A solution of HCl 2M in diethyl ether (20 mL, 0.2 mol, 19 equiv) was added to the amine 4 (6.73 g, 10.59 mmol, 1 equiv). The mixture was stirred for 30 min, and then diethyl ether was evaporated to give a solid. To a solution of the previous solid in milliQ water (50 mL) was added NH_4PF_6 (5.12 g, 31.77 mmol, 3 equiv) and dichloromethane (50 mL). The biphasic solution was stirred vigorously for 30 min; then, the two layers were separated and the aqueous layer was extracted with dichloromethane (3x30 mL). The organic layers were then combined, dried over MgSO₄ and concentrated. The crude was purified by chromatography on a silicagel column (solvent elution $CH_2Cl_2/MeOH 98/2$) to yield the compound 5 (8.40 g, 87% over the two steps) as a pale yellow solid.

R_f (CH₂Cl₂/MeOH 9:1) 0.54

¹**H** NMR (CDCl₃, 400 MHz, 298K) : δ (ppm) = 6.93 (dd, 1H, ⁴J_{HD-HB} = 1.5 Hz, ³J_{HD-HE} = 8.4 Hz, H_D), 6.87-6.72 (m, 5H, H_E H_N H_O H_P H_Q), 6.60 (d, 1H, ⁴J_{HB-HD} = 1.5 Hz, H_B), 4.52-4.28 (m, 2H, H₁), 4.52-3.59 (m, 24H, CH₂O_{DB24C8}), 3.58-3.30 (m, 2H, H₃), 2.19 (td, 2H, ³J_{H13-H12} = 7.1 Hz, ⁴J_{H13-H15} = 2.7 Hz, H₁₃), 1.96 (t, 1H, ⁴J_{H15-H13} = 2.7 Hz, H₁₅), 1.73-1.63 (m, 2H, H₄), 1.57-1.48 (m, 2H, H₁₂), 1.44-1.35 (m, 2H, H₁₁), 1.35-1.16 (m, 12H, H₅ H₆ H₇ H₈ H₉ H₁₀).

JMOD ¹³**C NMR (CDCl₃, 100 MHz, 298K) :** δ (ppm) = 147.6 & 147.5 & 146.2 & 146.0 (C_A C_F C_M C_R), 124.7 (C_C), 122.9 (C_D), 121.0 & 120.9 & 112.9 & 112.5 & 111.7 (C_B C_E C_N C_O C_P C_Q), 72.2 & 71.8 & 70.9 & 70.8 & 70.7 & 70.3 & 67.5 & 67.0 & 66.7 (CH₂O_{DB24C8}), 68.2 (C₁₅), 52.1 (C₁), 48.8 (C₃), 29.3 & 29.0 & 28.6 & 28.4 & 26.6 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂), 18.3 (C₁₃).

MS (MALDI): $[M-1H-2PF_6]^+$ calculated for $[C_{76}H_{115}N_2O_{16}]^+$: 1311.82, found : 1311.8

D. Procedure for the protonation of a stoichiometric mixture of the amines 2 and 4 in order to obtain a statistical distribution of the pseudo rotaxane dimers 3, 5 and 6/6'

A suspension of the compound **4** (41 mg, $6.236.10^{-5}$ mol, 1 equiv) and the compound **2** (43 mg, $6.236.10^{-5}$ mol, 1 equiv) in 2.5 mL (2.5 mmol, 40 equiv) of HCl 1M in diethyl ether was stirred for 30 min. The mixture was then evaporated and washed with diethyl ether to give a solid. NH₄PF₆ (51 mg, $3.118.10^{-4}$ mol, 5 equiv) and 3 mL of dichloromethane were added to a suspension of the previous product in 3 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min. After separation, the aqueous layer was extracted twice with 3 mL of dichloromethane. The organic layers were combined, dried over MgSO₄ and concentrated to obtain the mixture of pseudo rotaxane dimers **3**, **5** and **6/6'** (100 mg, 98 %)

E. Kinetic study of exchange using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) on a stoichiometric mixture of compounds 3 and 5

Figure 2. MALDI-TOF mass spectra of : (a) the diazido pseudo rotaxane dimer **3**, (b) the dialkyne pseudo rotaxane dimer **5**, (c) a stoichiometric mixture of pseudo rotaxane dimers **3** and **5** over time, (d) after protonation of a stoichiometric mixture of monomers **2** and **4**. The detected ions corresponds to $[M-2PF_6-1H]^+$.

F. Synthesis of the molecular lassoes 7

In a typical procedure, $Cu(CH_3CN)_4PF_6$ (67 mg, 0.180 mmol, 1 equiv) and 2,6-lutidine (2 mg, 0.018 mmol, 0.1 equiv) were added successively to a solution of the azido compound **3** (150 mg, 0.180 mmol, 1 equiv) and the alkyne compound **5** (144 mg, 0.180 mmol, 1 equiv) in 360 mL of dry dichloromethane (concentration 0.5 mM). The mixture was stirred for 4 days at room temperature, after which time the solvent was evaporated under *vacuo*. The crude was then directly purified by chromatography on a silicagel column (solvent gradient elution CH_2Cl_2 / CH_3OH 1/0 to 98/1) then on a LH20 sephadex column (eluent CH_2Cl_2 / CH_3OH 1/1) to afford the dilasso rotamacrocycle **7** (150 mg, 51%) accompanied by traces of tetralasso **8** which were only detected by mass spectrometry. Integration of the signals is given here for dilasso **7**.

¹**H** NMR (CD₃CN, 400 MHz, 298K) : δ (ppm) = 7.48 (s, 1H, H₁₅), 6.90-6.85 & 6.69-6.58 (2*br s, 4H, H₂ H₂₈), 6.84-6.70 (m, 12H, H_B H_D H_N H₀ H_P H_Q), 6.43 (d, 2H, ³J_{*HE-HD*} = 8.4 Hz, H_E), 4.57-4.39 (m, 4H, H₁ H₂₉), 4.27 (t, 2H, ³J_{*HI6-HI7*} = 7.3 Hz, H₁₆), 4.33-3.62 (m, 48H, CH₂O_{DB24C8}), 3.47-3.35 (m, 4H, H₃ H₂₇), 2.64 (t, 2H, ³J_{*HI3-HI2*} = 7.6 Hz, H₁₃), 1.87-1.78 (m, 2H, H₁₇), 1.76-1.66 (m, 4H, H₄ H₂₆), 1.66-1.57 (m, 2H, H₁₂), 1.41-1.16 (m, 30H, H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₈ H₁₉ H₂₀ H₂₁ H₂₂ H₂₃ H₂₄ H₂₅).

JMOD ¹³**C NMR** (**CD**₃**CN**, **100 MHz**, **298K**) : δ (ppm) = 148.7 & 147.7 & 147.0 (C₁₄ C_A C_F C_M C_R), 126.2 (C_c), 122.3 (C₁₅), 123.5 & 121.6 & 114.1 & 113.0 & 112.7 & 112.7 (C_B C_D C_E C_N C_O C_P C_Q), 71.5 & 71.4 & 71.2 & 71.0 & 68.5 & 68.2 & 68.0 & 67.9 (CH₂O_{DB24C8}), 52.8 (C₁ C₂₉), 52.1 (C₁₃), 50.6 (C₃ C₂₇), 30.9 & 30.3 & 30.2 & 30.2 & 30.1 & 30.0 & 29.9 & 29.6 & 29.5 & 27.3 & 27.2 & 27.1 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂ C₁₇ C₁₈ C₁₉ C₂₀ C₂₁ C₂₂ C₂₃ C₂₄ C₂₅ C₂₆) 26.2 (C₁₆).

MS (MALDI): $[M-1H-2PF_6]$ calculated for $[C_{75}H_{116}N_5O_{16}]$: 1342.84 found: 1342.8 (compound 7); $[M-3H-4PF_6]$ calculated for $[C_{150}H_{232}N_{10}O_{32}]$: 2685.68, found: 2684.7 (compound 8).

Figure 2. MALDI-TOF mass spectrum of lasso rotamacrocycle 7 and traces of 8 (with zoom of the isotopic clusters)

G. Synthesis of the uncomplexed compound 7u

1) Preparation of the compound 17

To a solution of the compound **2** (61 mg, 0.074 mmol, 1 equiv) in dichloromethane (6 mL) were added Boc₂O (48 mg, 0.221 mmol, 3 equiv) and DIEA (2.9 mg, 0.221 mmol, 3 equiv). The solution was stirred during 3 h at room temperature. The organic layer was washed successively with an aqueous solution of HCl 1M (2x10 mL), a saturated aqueous solution of NaHCO₃ (2x10 mL), then dried over MgSO₄ and concentrated under *vacuo*. The crude was purified by chromatography on a silicagel column (solvent elution CH₂Cl₂/MeOH 98/2) to yield the N-Boc protected compound **17** (56 mg, 97%) as a white solid.

¹**H NMR (CDCl₃, 400 MHz, 298K)** : δ (ppm) = 6.94-6.70 (m, 7H, H_B H_D H_E H_N H_O H_P H_Q), 4.37-4.28 (br s, 2H, H₁), 4.20-4.09 (m, 8H, H_G H_L H_S H_X), 3.96-3.87 (m, 8H, H_H H_K H_T H_W), 3.83 (s, 8H, H_I H_J H_U H_V), 3.26 (t, 2H, ³J_{H14-H13} = 7.0 Hz, H₁₄), 3.21-3.01 (m, 2H, H₃), 1.75-1.65 (br s, 2H, H₄), 1.64-1.55 (m, 2H, H₁₃), 1.53-1.18 (m, 25H, H₂ H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₂).

JMOD ¹³**C NMR** (**CDCl**₃, **100 MHz**, **298K**) : δ (ppm) = 148.9 & 148.9 & 147.9 (C_A C_F C_M C_R, (CH₃)₃C<u>C</u>O), 131.9 (C_C), 121.4 & 114.1 & 113.8 (C_B C_D C_E C_N C_O C_P C_Q), 79.3 (CO<u>C</u>(CH₃)₃), 71.1 (C_I C_J C_U C_V), 69.8 (C_H C_K C_T C_W), 69.3 (C_G C_L C_S C_X), 51.4 (C₁₄), 49.3 (C₁), 46.1 (C₃), 29.5 & 29.4 & 29.4 & 29.43 & 29.3 & 29.1 & 28.8 & 26.8 & 26.6 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂ C₁₃), 28.4 ((<u>C</u>H₃)₃CCO). **MS** (**ESI**): [M+H]⁺; calculated for [C₄₂H₆₇N₄O₁₀]⁺: 787.5, found : 787.5

2) Preparation of the compound 18

To a solution of the compound 4 (300 mg, 0.0374 mmol, 1 equiv) in dichloromethane (15 mL) were added Boc_2O (245 mg, 1.122 mmol, 3 equiv) and DIEA (0.145 mL, 1.122 mmol, 3 equiv). The solution was stirred during 3 h at room temperature. The organic layer was washed successively with an aqueous solution of HCl 1M (2x30 mL), a saturated aqueous solution of NaHCO₃ (2x30 mL), then dried over MgSO₄ and concentrated under *vacuo*. The crude was purified by chromatography on a silicagel column (solvent elution CH₂Cl₂/MeOH 98/2) to yield the N-Boc protected compound **18** (272 mg, 96%) as a white solid.

R_f (CH₂Cl₂/MeOH 9:1) 0.74

¹**H NMR (CDCl₃, 400 MHz, 298K)** : δ (ppm) = 6.94-6.70 (m, 7H, H_B H_D H_E H_N H_O H_P H_Q), 4.38-4.27 (br s, 2H, H₁), 4.21-4.09 (m, 8H, H_G H_L H_S H_X), 3.95-3.87 (m, 8H, H_H H_K H_T H_W), 3.83 (s, 8H, H_I H_J H_U H_V), 3.20-3.00 (m, 2H, H₃), 2.18 (td, 2H, ³J_{HI3-HI2} = 7.1 Hz, ⁴J_{HI3-HI5} = 2.7 Hz, H₁₃), 1.94 (t, 1H, ⁴J_{HI5-HI3} = 2.7 Hz, H₁₅), 1.57-1.18 (m, 18H, H₄ H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₂), 1.45 (s, 9H, H₂).

JMOD ¹³**C NMR** (**CDCl**₃, **100 MHz**, **298K**) : δ (ppm) = 148.8 & 147.9 (C_A C_F C_M C_R), 131.9 (C_C), 121.4 & 114.6 & 113.8 (C_B C_D C_E C_N C_O C_P C_Q), 79.3 (COC(CH₃)₃), 71.1 (C₁ C_J C_U C_V), 69.8 (C_H C_K C_T C_W), 69.3 (C_G C_L C_S C_X), 68.0 (C₁₅), 51.4 (C₁), 46.3(C₃), 29.5 & 29.4 & 29.4 & 29.3 & 29.0 & 28.7 & 26.8 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂), 28.4 ((CH₃)₃CCO), 18.4 (C₁₃).

MS (ESI): $[M+H]^+$; calculated for $[C_{43}H_{66}NO_{10}]^+$: 756.5, found : 756.5

3) Preparation of the compound 19

In a typical procedure, $Cu(CH_3CN)_4PF_6$ (22 mg, 0.060 mmol, 1 equiv) and 2,6-lutidine (0.6 mg, 0.006 mmol, 0.1 equiv) were added successively to a solution of the azido compound **17** (47 mg, 0.060 mmol, 1 equiv) and the alkyne compound **18** (45 mg, 0.060 mmol, 1 equiv) in 2 mL of dry dichloromethane. The mixture was stirred for 24 h at room temperature, after which time the solvent was evaporated under *vacuo*. The crude was then directly purified by chromatography on a silicagel column (solvent gradient elution CH_2Cl_2 /CH₃OH 1/0 to 98/2) to afford the compound **19** (48 mg, 52%).

¹**H** NMR (CD₃CN, 400 MHz, 298K) : δ (ppm) = 7.46 (s, 1H, H₁₅), 7.13-7.02 (m, 8H, H_E H_N H_O H_P H_Q), 7.00-6.97 (br s, 2H, H_B), 6.91 (dd, 2H, ⁴J_{HD-HB} = 1.8 Hz, ³J_{HD-HE} = 8.3 Hz, H_D), 4.34 (s, 4H, H₁ H₂₉), 4.28-4.19 (m, 18H, H_G H_L H_S H_X H₁₆), 3.78-3.70 (m, 16H, H_H H_K H_T H_W), 3.60 & 3.60 (2*s, 16H, H_I H_J H_U H_V), 3.21-3.10 (br t, 4H, H₃ H₂₇), 2.63 (t, 2H, ³J_{HI3-HI2} = 7.6 Hz, H₁₃), 1.85-1.77 (m, 2H, H₁₇), 1.65-1.56 (m, 2H, H₁₂), 1.55-1.37 (m, 4H, H₄ H₂₆), 1.44 (s, 18H, H₂ H₂₈), 1.36-1.16 (m, 30H, H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₈ H₁₉ H₂₀ H₂₁ H₂₂ H₂₃ H₂₄ H₂₅).

JMOD ¹³**C NMR** (**CD**₃**CN**, **100 MHz**, **298K**) : δ (ppm) = 149.2 & 149.1 & 149.1 & 148.1 (C₁₄ C_A C_F C_M C_R), 135.4 (C_C), 124.1 & 124.0 & 122.8 & 117.5 & 117.4 & 117.3 & 116.5 (C_B C_D C_E C_N C_O C_P C_Q), 122.5 (C₁₅), 80.0 (CO<u>C</u>(CH₃)₃), 69.7 & 69.6 & 69.4 & 68.7 & 68.6 & 68.6 & 68.2 & 68.1 & 68.0 (CH₂O_{DB24C8}), 50.6 (C₁₆), 50.2 (C₁ C₂₉), 47.6 (C₃ C₂₇), 30.9 & 30.2 & 30.2 & 30.2 & 30.1 & 30.1 & 30.1 & 30.0 & 29.8 & 29.6 & 27.5 & 27.0 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂ C₁₇ C₁₈ C₁₉ C₂₀ C₂₁ C₂₂ C₂₃ C₂₄ C₂₅ C₂₆), 28.6 ((<u>CH₃</u>)₃C), 26.2 (C₁₃). **MS (ESI):** [M+H]⁺; calculated for [C₈₅H₁₃₂N₅O₂₀]⁺: 1543.9, found : 1543.9

4) Preparation of the uncomplexed compound 7u

A suspension of the N-Boc protected compound **19** (48 mg, 0.031 mmol, 1 equiv) in 1 mL of HCl 1M in diethyl ether was stirred for 1 hour. The mixture was then evaporated and washed with diethyl ether to give a solid. NH_4PF_6 (25 mg, 0.156 mmol, 5 equiv) and 3 mL of dichloromethane were added to a suspension of the previous product in 3 mL of milliQ water. The resulted bilayer solution was vigorously stirred for 30 min.

After separation, the aqueous layer was extracted twice with 3 mL of dichloromethane. The organic layers were combined, dried over MgSO₄ and concentrated to obtain the compound 7u (40 mg, 78 %)

¹**H NMR (CD₃CN, 400 MHz, 298K) :** δ (ppm) = 7.50 (s, 1H, H₁₅), 7.21-7.02 (m, 14H, H_B H_D H_E H_N H_O H_P H_Q), 4.32-4.20 (m, 18H, H₁₆ H_G H_L H_S H_X), 4.10 & 4.10 (2*s, 4H, H₁ H₂₉), 3.82-3.70 (m, 16H, H_H H_K H_T H_W), 3.61 (s, 16H, H_I H_J H_U H_V), 3.07-2.96 (m, 4H, H₃ H₂₇), 2.61 (t, 2H, ³J_{*H13-H12*} = 7.5 Hz, H₁₃), 1.87-1.77 (m, 2H, H₁₇), 1.70-1.54 (m, 2H, H₄ H₁₂ H₂₆), 1.40-1.16 (m, 30H, H₅ H₆ H₇ H₈ H₉ H₁₀ H₁₁ H₁₈ H₁₉ H₂₀ H₂₁ H₂₂ H₂₃ H₂₄ H₂₅).

JMOD ¹³**C NMR** (**CD**₃**CN**, 100 **MHz**, 298K) : δ (ppm) = 150.2 & 149.2 & 149.0 & 148.9 & 148.6 (C₁₄ C_A C_F C_M C_R), 126.0 (C_C), 125.8 & 124.0 & 123.8 & 119.0 & 117.4 & 116.9 & 116.9 (C_B C_D C_E C_N C_O C_P C_Q), 122.2 (C₁₅), 69.8 & 69.7 & 69.1 & 69.0 & 68.9 & 68.8 & 68.6 & 68.3 & 68.2 & 68.1 (CH₂O_{DB24C8}), 51.9 (C₁ C₂₉), 50.6 (C₁₆), 48.7 (C₃ C₂₇), 30.7 & 30.2 & 30.0 & 29.9 & 29.9 & 29.8 & 29.8 & 29.8 & 29.7 & 29.7 & 29.5 & 29.4 & 29.3 & 26.8 & 26.8 & 26.8 & 26.5 & 26.5 (C₄ C₅ C₆ C₇ C₈ C₉ C₁₀ C₁₁ C₁₂ C₁₇ C₁₈ C₁₉ C₂₀ C₂₁ C₂₂ C₂₃ C₂₄ C₂₅ C₂₆), 26.0 (C₁₃).

NMR Spectra

100 17 f1 (ppm)7

¹H NMR (400 MHz, CDCI₃, 298 K)

JMOD ¹³C NMR (100 MHz, CDCI₃, 298 K)

1 0	712	8	-	0	NΝ	048	2	0
D 7	N 0 0	2	Ω.		20	4 4 Q	4	4
0 0	8 9 9	LC	2	LC	mΝ	00	4	-
6. 7		4.	4.	ς.	ที่ ที่		÷	÷
					12	\leq		

¹H NMR (400 MHz, CDCI₃, 298 K)

147,484 147,405 146,139 145,961	124,696 122,757 120,893 120,791 120,791 111,594 111,594	77,000 70.656 70.142 57.323 56.848 56.613	51.955 51.322 48.756	29.352 29.312 29.282 29.283 28.898 28.898 28.898 28.898 28.672 28.672
YY	SSY SY		511	

JMOD ¹³C NMR (100 MHz, CDCI₃, 298 K)

