
Supporting Information

Catenation of Calixarene Annulus

Carmine Gaeta,^{*,†} Carmen Talotta,[†] Silvia Mirra,[†] Luigi Margarucci,[‡] Agostino Casapullo,[‡] and Placido Neri^{*,†}

[†]Dipartimento di Chimica e Biologia and NANO_MATES Research Center, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Salerno), Italy

[‡]Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Salerno), Italy

TABLE OF CONTENTS

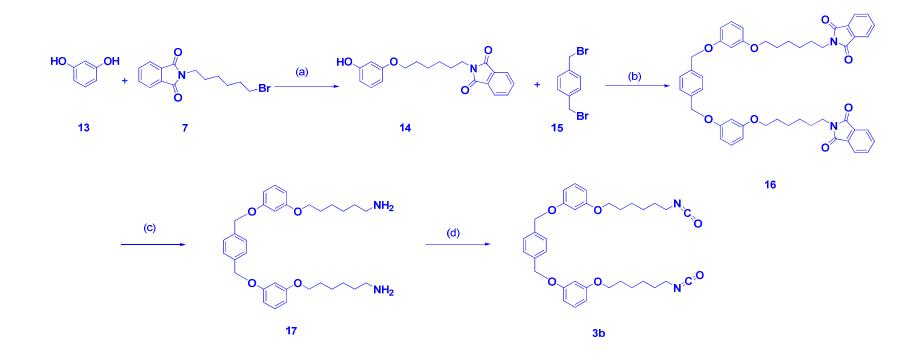
General Comments	S2
Synthesis of Diisocyanate Derivative 3b	S3-S6
¹ H and ¹³ C NMR Spectra of Derivatives 14, 16, 17, and 3b	S7-S14
Synthesis of Calix[2]catenane 4 ⁺ ·TFPB ⁻	S15-S17
ESI-MS ⁺ Spectrum of Calix[2]catenane 4^+ ·TFPB ⁻ (Figure S11)	S18
¹ H and ¹³ C NMR Spectra of Calix[2]catenane 4^+ ·TFPB (Figures S12 and S13)	S19-S20
2D COSY Spectrum of Calix[2]catenane 4 ⁺ ·TFPB ⁻ (Figure S14)	S21
2D ROESY Spectrum of Calix[2]catenane 4 ⁺ ·TFPB (Figures S15-S17)	S22-S24
Molecular Modeling Studies of Calix[2]catenane 4 ⁺ (Figure S18)	S25
Synthesis of Directional Axle 5^+ TFPB	S26-S29
¹ H and ¹³ C NMR Spectra of Derivatives 8 , 9 , 11 , and 5 ⁺ .TFPB ⁻	S30-S37
1D and 2D NMR Threading Studies of Calix[6]arenes 1a , b with Directional Axle 5 ⁺ • TFPB ⁻	S38-S43
Molecular Modeling Studies of Pseudorotaxane $(5 \subset 1b)^+$ (Figure S32)	S44
Synthesis of Oriented Calix[2]catenane 12 ⁺ . TFPB	S45-S46
ESI-MS ⁺ Spectrum of Oriented Calix[2]catenane 12^+ TFPB ⁻ (Figure S33)	S47
¹ H and ¹³ C NMR Spectra of Oriented Calix[2]catenane 12 ⁺ ·TFPB ⁻ (Figures S34 and S35)	S48-S49
2D COSY Spectrum of Oriented Calix[2]catenane 12^+ TFPB (Figure S36)	S50
2D ROESY Spectrum of Oriented Calix[2]catenane 12 ⁺ . TFPB ⁻ (Figure S37)	S51
Molecular Modeling Studies of Oriented Calix[2] catenane 12^+ (Figures S38 and S39)	S52-S53
Synthesis of Neutral [2]Catenane 4 (Figures S40 and S41)	S54-S55

GENERAL COMMENTS

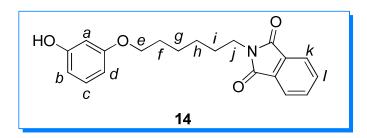
ESI-MS⁺ measurements for calix[2]catenanes 4^+ ·TFPB⁻ and 12^+ ·TFPB⁻ were performed on a Waters Q-Tof Premiere mass spectrometer equipped with electrospray ion source, using a mixture of CH₂Cl₂/CH₃OH/HCOOH (80:18:2) as solvent. All the others ESI-MS⁺ measurements were performed on a Micromass Bio-Q triple quadrupole mass spectrometer equipped with electrospray ion source, using a mixture of H₂O/CH₃CN (1:1) and 5% HCOOH as solvent. Flash chromatography was performed on Merck silica gel (60, 40-63 µm). All chemicals were reagent grade and were used without further purification. Anhydrous solvents were purchased from Aldrich. When necessary compounds were dried *in vacuo* over CaCl₂. Reaction temperatures were measured externally. Reactions were monitored by TLC on Merck silica gel plates (0.25 mm) and visualized by UV light, or by sprying with H₂SO₄-Ce(SO₄)₂ or phosphomolybdic acid. Derivatives 1a,¹ 1b,² 3a,³ 10,⁴ and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate⁵ were synthesized according to literature procedures.

1D and 2D NMR spectra were recorded on a Bruker Avance-400 spectrometer [400 (¹H) and 100 MHz (¹³C)], Bruker Avance-300 spectrometer [300 (¹H) and 75 MHz (¹³C)], or Bruker Avance-250 spectrometer [250 (¹H) and 63 MHz (¹³C)]; chemical shifts are reported relative to the residual solvent peak (CHCl₃: δ 7.26, CDCl₃: δ 77.23; C₆H₅CH₃: δ 2.09, C₆D₅CD₃: δ 20.4; CD₃OH: δ 4.87, CD₃OD: δ 49.0; THF-d₈: 3.58, 1.73). Standard pulse programs, provided by the manufacturer, were used for 2D COSY-45 and 2D ROESY experiments. Molecular modeling studies were performed with a combined use of the MacroModel-9/Maestro-4.1 program and the Gaussian-09 software package.

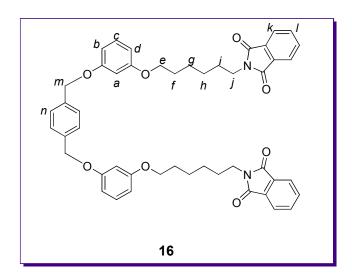
¹ Gutsche, C. D.; Lin, L. G. Tetrahedron 1986, 42, 1633.


² Gaeta, C.; Troisi, F.; Neri, P. Org. Lett. 2010, 12, 2092.

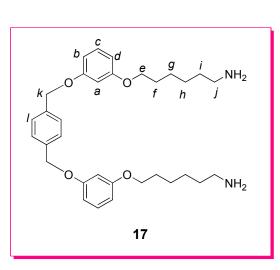
³ Ovalos, M.; Babiano, R.; Cintas, P.; Gomez-Carretero, A.; Jimenez, J. L.; Lozano, M.; Ortiz, A. L.; Palacios, J. C.; Pinazo, A. *Chem. Eur. J.* **2008**, *14*, 5656.


⁴ Pierro, T.; Gaeta, C.; Talotta, C.; Casapullo, A.; Neri, P. Org. Lett. 2011, 13, 2650.

⁵ Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. Bull. Chem. Soc. Jpn. 1984, 57, 2600.

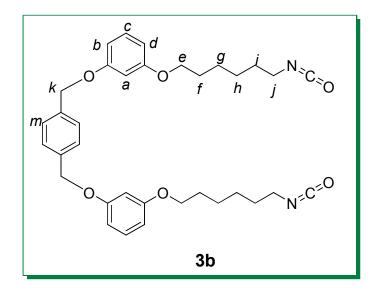

Synthesis of Diisocyanate Derivative 3b

Scheme S1. Synthesis of derivative 3b. Reagents and conditions: (a) K₂CO₃, [18]crown-6, dry CH₃CN, RT, 4 h; (b) K₂CO₃, [18]crown-6, dry CH₃CN, reflux, 25 h; (c) NH₂NH₂, EtOH, reflux, 1 h; (d) triphosgene/dry toluene, dry NEt₃, reflux, 5h.



To a solution of resorcinol **13** (1.76 g, 16.0 mmol) in 60 mL of dry acetonitrile were added K₂CO₃ (1.1 g, 8.0 mmol) and [18]crown-6 (0.21 g, 0.81 mmol) under stirring. The mixture was refluxed for 1h, then a solution of derivative **7** (2.48 g, 8.02 mmol) in 20 mL of dry acetonitrile was slowly added and the mixture was refluxed for 3h. After concentration under vacuum, the mixture was partitioned between AcOEt (80 mL) and water (80 mL), then the organic layer was dried over MgSO₄ filtered and evaporated under reduced pressure. The crude product was subjected to flash chromatography on silica gel (CH₂Cl₂/Et₂O, 90/10, *v/v*), to give derivative **14** as a white solid (0.95 g, 35%). ESI-MS⁺: *m/z* = 340 (MH⁺); ¹H NMR (250 MHz, CDCl₃, 298 K): δ 1.41-1.78 (overlapped, 8H, H_{*f*+*g*+*h*+*i*), 3.70 (t, *J* = 7.3 Hz, 2H, H_{*j*}), 3.92 (t, *J* = 6.5 Hz, 2H, H_{*e*}), 5.09 (s, 1H, OH), 6.40-6.47 (overlapped, 3H, H_{*a*+*b*+*d*), 7.01 (t, *J* = 8.8 Hz, 1H, H_{*c*}), 7.69-7.85 (overlapped, 4H, H_{*k*+*i*}); ¹³C NMR (63 MHz, CDCl₃, 298 K): δ 26.2, 27.2, 29.0, 29.5, 68.4, 102.5, 107.7, 108.2, 123.9, 130.7, 132.7, 134.6, 157.4, 161.0, 169.2. Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24. Found: C, 70.87; H, 6.15.}}

Derivative 16


To a solution of derivative **14** (0.95 g, 2.8 mmol), in 30 mL of dry acetonitrile were added K_2CO_3 (1.9 g, 14.0 mmol) and [18]crown-6 (0.81 g, 3.1 mmol) under stirring. The mixture was refluxed for 1 h, then a solution of derivative **15** (0.34 g, 1.3 mmol) in 10 mL of dry acetonitrile was slowly added and the mixture was refluxed for 24 h. After concentration under vacuum, the mixture was partitioned between AcOEt (80 mL) and water (80 mL), then the organic layer was dried over MgSO₄ filtered and evaporated under reduced pressure to give **16** as a yellow solid (0.56 g, 55%). ESI-MS⁺: m/z = 781 (MH⁺); ¹H NMR (250 MHz, CDCl₃, 298 K): δ 1.43-1.79 (overlapped, 16H, H_{*f*+g+*h*+*i*}), 3.69 (t, J = 7.3 Hz, 4H, H_{*j*}), 3.91 (t, J = 6.3 Hz, 4H, H_{*e*}), 5.04 (s, 4H, H_{*m*}), 6.47-6.57 (overlapped, 6H, H_{*a*+*b*+*d*}), 7.15 (t, J = 8.8 Hz, 2H, H_{*c*}), 7.44 (s, 4H, H_{*n*}), 7.68-7.85 (overlapped, 8H, H_{*k*+*l*}); ¹³C NMR (63 MHz, CDCl₃, 298 K): δ 26.2, 27.1, 29.0, 29.6, 38.4, 68.3, 70.2, 102.3, 107.4, 123.8, 128.2, 130.3, 132.7, 134.4, 137.4, 160.4, 160.8, 168.9, 169.7. Anal. Calcd for C₄₈H₄₈N₂O₈: C, 73.83; H, 6.20. Found: C, 73.92; H, 6.11.

Derivative 17

A solution of derivate **16** (0.6 g, 0.8 mmol) and hydrazine (144.0 mmol, 9.20 mL, 50-60% v/v solution in H₂O) in EtOH (8 mL) was refluxed for 1 h under N₂. The solution was cooled at room temperature and H₂O (100 mL) was added. The product was extracted with CH₂Cl₂ (3×50 mL) and the organic layers were collected and dried over MgSO₄, filtered and evaporated under reduced pressure to give **17** as a white solid (0.33 g, 88%).¹**H NMR** (250 MHz, CDCl₃, 298 K): δ 1.26-1.80 (overlapped, 16H, H_{f+g+h+i}), 2.69 (t, *J* =6.0 Hz, 4H, H_j), 3.93 (t, *J* = 6.5 Hz, 4H, H_e), 5.05 (s, 4H, H_k), 6.50-5.57 (overlapped, 6H, H_{a+b+d}), 7.17 (t, *J* = 9.0 Hz, 2H, H_c), 7.45 (s, 4H, H_i); ¹³**C NMR** (63 MHz, CDCl₃, 298 K): δ 26.5, 27.2, 29.8, 34.4, 42.8, 68.4, 70.3, 102.4, 107.4, 107.7, 128.3, 130.4, 137.3, 160.5, 160.9. Anal. Calcd for C₃₂H₄₄N₂O₄: C, 73.81; H, 8.52. Found: C, 73.90; H, 8.43.

Derivative 3b

A mixture of derivative **17** (0.33 g, 0.60 mmol), triphosgene (0.19 g, 0.60 mmol) and NEt₃ (0.14 g, 0.20 mL, 1.4 mmol) in 150 mL of dry toluene was refluxed for 5 h. The mixture was cooled to room temperature and filtered under a stream of N₂. The solvent was removed under reduced pressure to give derivative **3b** as a white solid (0.30 g, 82%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ 1.46–1.82 (overlapped, 16H, H_{*f*+g+*h*+*i*}), 3.32 (t, *J* =6.8 Hz, 4H, H_{*j*}), 3.95 (t, *J* = 6.4 Hz, 4H, H_{*e*}), 5.06 (s, 4H, H_{*k*}), 6.52-6.59 (overlapped, 6H, H_{*a*+*b*+*d*}), 7.18 (t, *J* = 8.4 Hz, 2H, H_{*c*}), 7.46 (s, 4H, H_{*m*}); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 26.1, 26.9, 29.7, 31.8, 43.5, 68.3, 70.3, 102.4, 107.5, 107.7, 125.9, 128.3, 128.8, 129.6, 130.5, 137.3, 160.5, 160.9. Anal. Calcd for C₃₄H₄₀N₂O₆: C, 71.31; H, 7.04. Found: C, 71.40; H, 6.95.

¹H and ¹³C NMR spectra of derivatives 14, 16, 17, and 3b

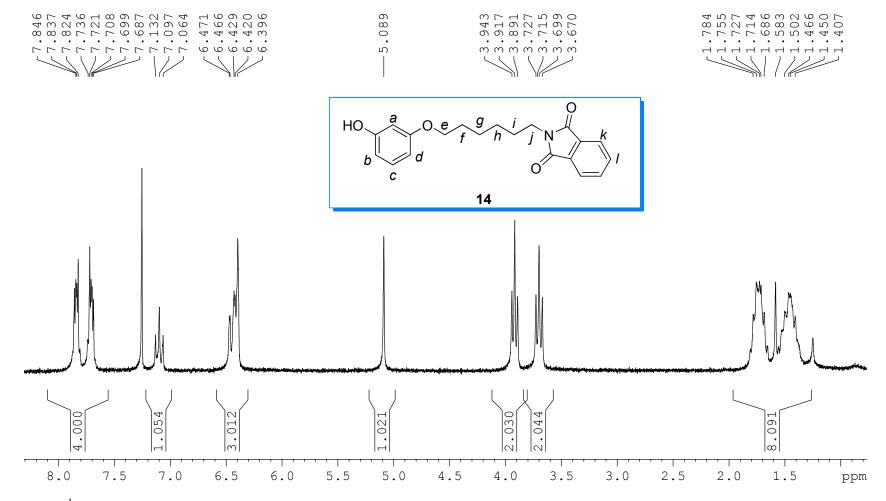


Figure S1. ¹H NMR spectrum of derivative 14 (250 MHz, CDCl₃, 298 K).

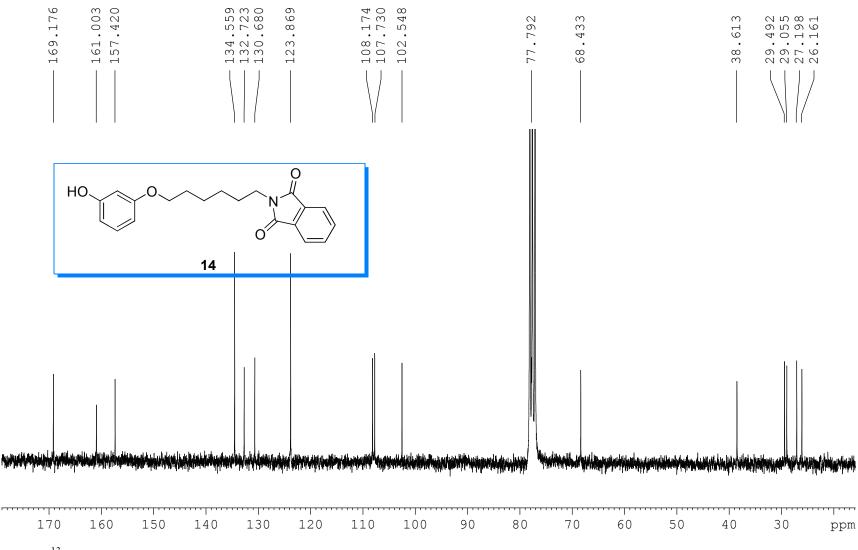


Figure S2. ¹³C NMR spectrum of derivative 14 (63 MHz, CDCl₃, 298 K).

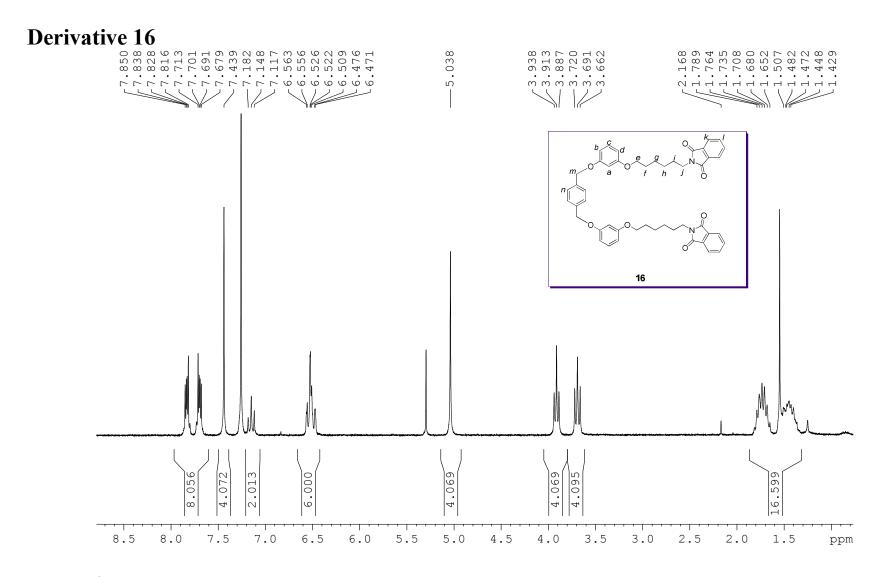


Figure S3. ¹H NMR spectrum of derivative 16 (250 MHz, CDCl₃, 298 K).

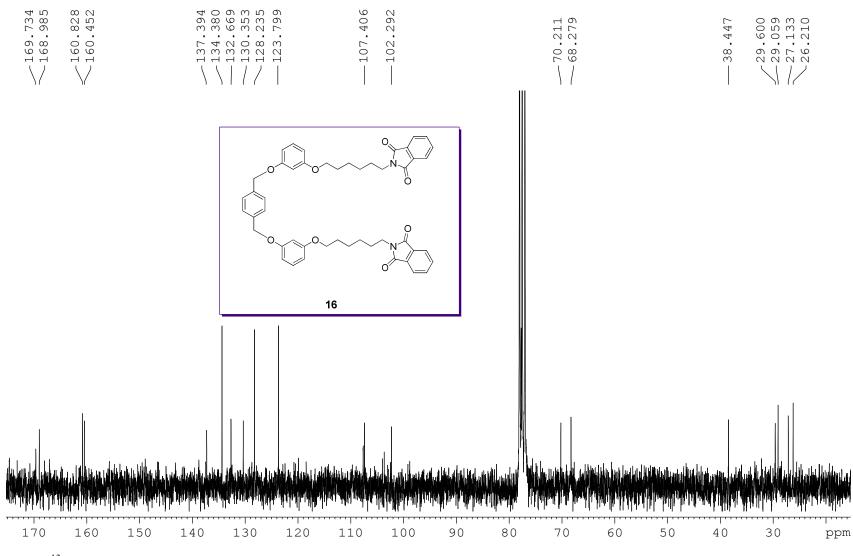


Figure S4. ¹³C NMR spectrum of derivative 16 (63 MHz, CDCl₃, 298 K).

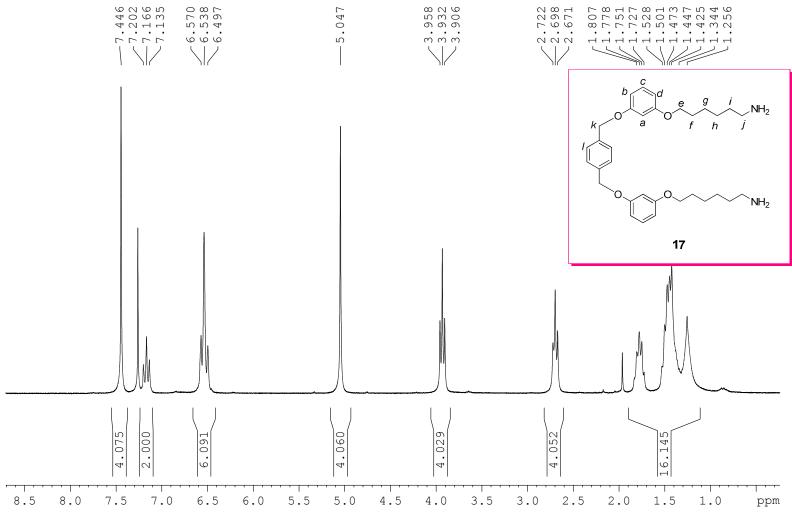


Figure S5. ¹H NMR spectrum of derivative 17 (250 MHz, CDCl₃, 298 K).

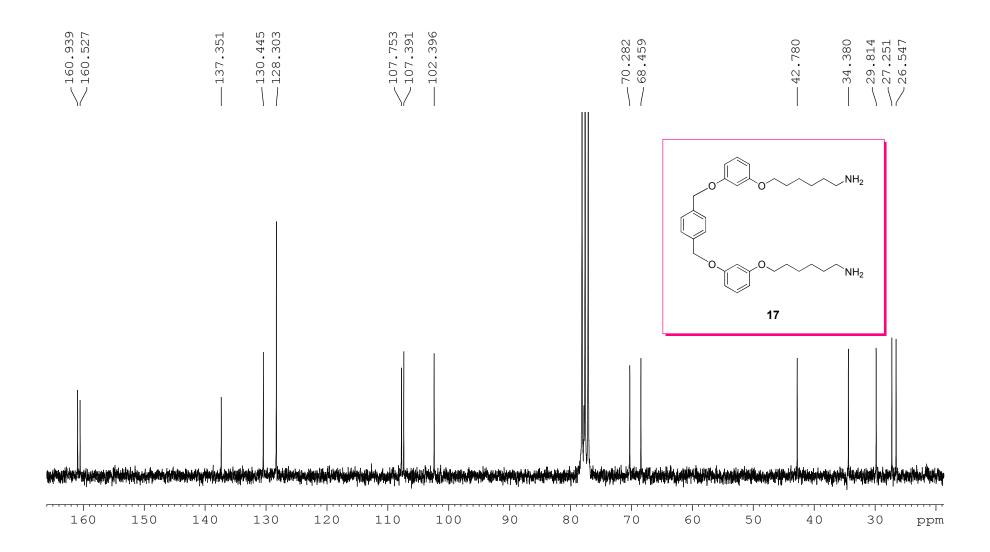


Figure S6. ¹³C NMR spectrum of derivative 17 (63 MHz, CDCl₃ 298 K).

Diisocyanate Derivative 3b

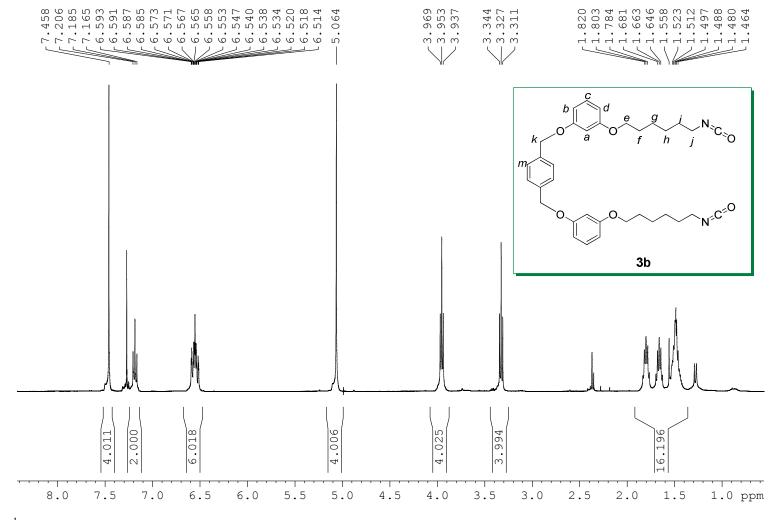


Figure S7. ¹H NMR spectrum of diisocyanate derivative **3b** (400 MHz, CDCl₃, 298 K).

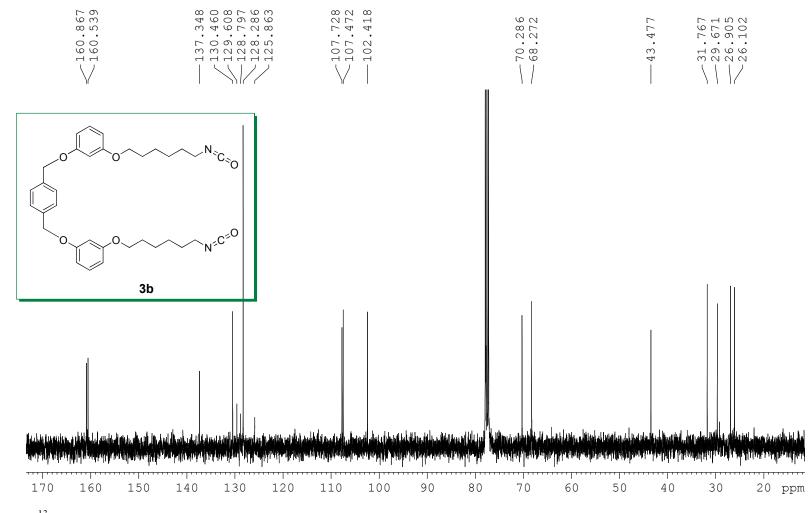
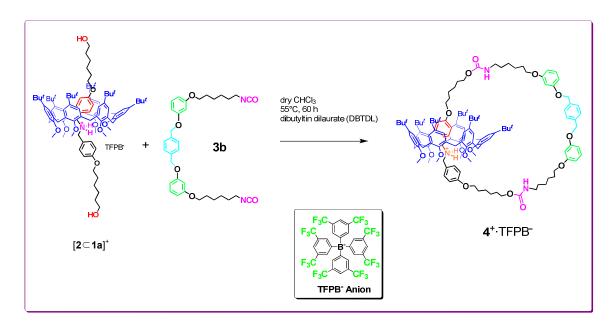
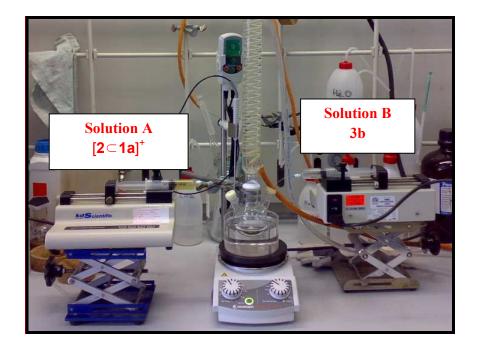




Figure S8. ¹³C NMR spectrum of diisocyanate derivative **3b** (100 MHz, CDCl₃, 298 K).

Synthesis of Calix[2]catenane 4⁺·TFPB⁻

Scheme S2. Synthesis of calix[2]catenane **4**⁺·TFPB⁻.

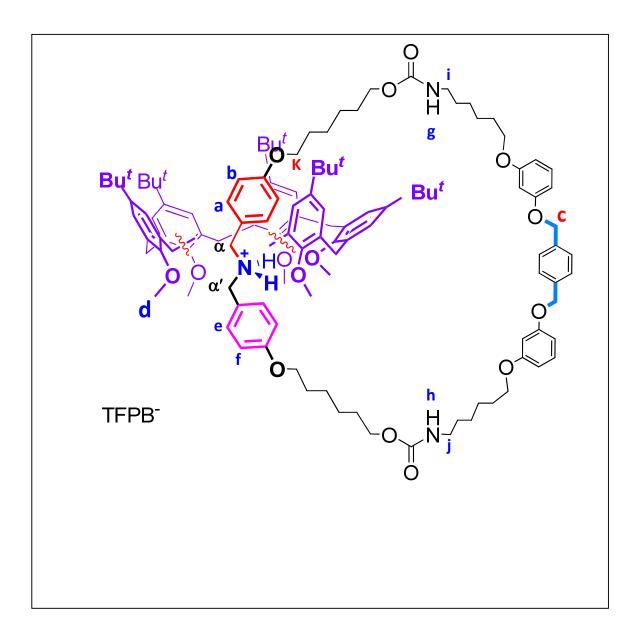
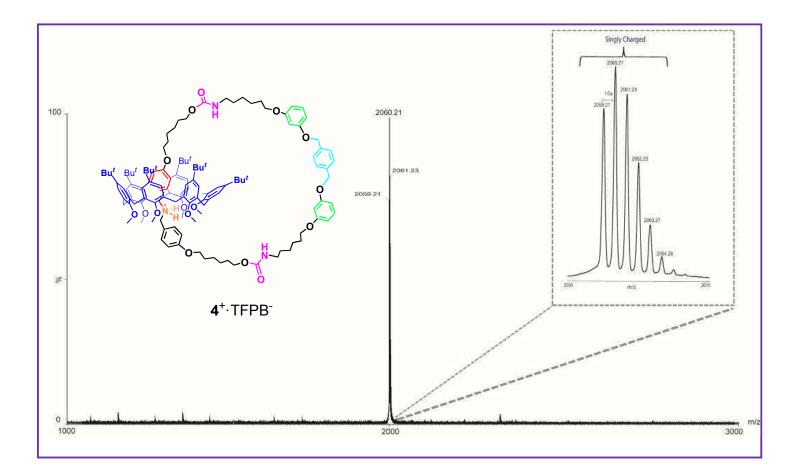
Figure S9. Apparatus assembled for the synthesis of calix[2]catenane 4^+ ·TFPB⁻.

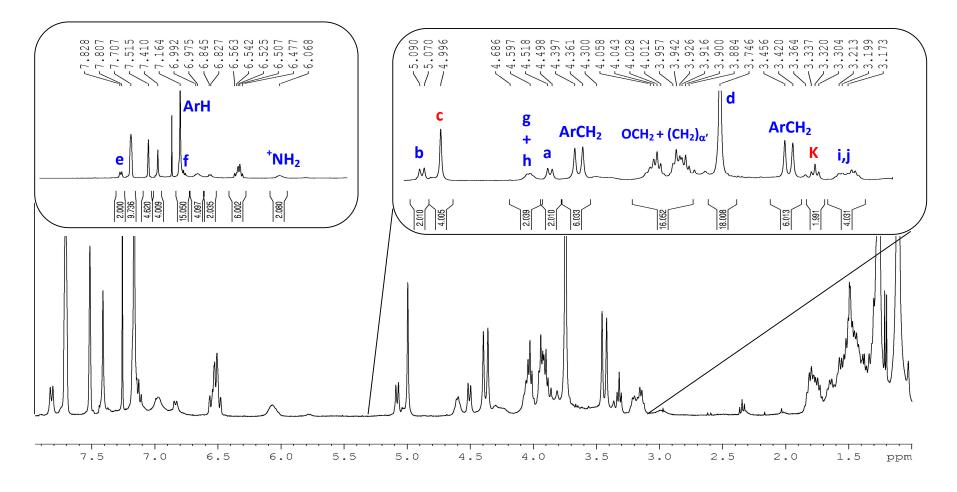
Preparation⁶ of calix[6]arene-based pseudo[2]rotaxane $[2 \subset 1a]^+$ ·TFPB⁻ (solution A, Figure S9): calix[6]arene 1a (0.15 g, 0.14 mmol) and dibenzylammonium derivative 2^+ ·TFPB⁻ (0.15 g, 0.12 mmol) were dissolved in 20 mL dry CHCl₃ and the mixture was stirred for 72 h at 60 °C under a nitrogen atmosphere. The reaction was checked by ¹H NMR and the solution of pseudo[2]rotaxane $[2 \subset 1a]^+$ ·TFPB⁻ was used without further purification.

Preparation of solution B (Figure S9): diisocyanate derivative **3b** (0.07 g, 0.12 mmol) was dissolved in 20 mL of dry CHCl₃.

The solutions A and B were simultaneously and slowly added dropwise over 33 h by means of the two electronically controlled siringe pumps in Figure S9 (flow: 0.6 mL/min) and mixed in a reaction flask containing 2 mL of dry CHCl₃ at 55 °C in the presence of catalytic amount of dibutyltin dilaurate (DBTDL, 4 drops). After completion of the addition, the mixture was stirred at 55 °C for additional 27 h, and then cooled at room temperature. The solvent was removed under reduced pressure and the solid obtained was subjected to flash chromatography on silica gel (gradient of *n*-hexane/CH₂Cl₂, from 30/70 to 10/90 v/v, and to pure CH₂Cl₂). The product obtained was further purified by semipreparative HPLC on a Spherisorb Cyano (CN) column, with mobile phase *n*-hexane/*i*-PrOH 90/10, flow rate of 0.8 mL/min, to give calix[2]catenane 4^+ ·TFPB as a white solid (0.105 g, 0.036 mmol, 30.0 %). **ESI-MS**⁺: $m/z = 2060.21 \text{ [M - TFPB]}^+$; ¹**H NMR** (400 MHz, CDCl₃, 298 K): δ 1.12 (s, Bu^t_{calix}, 54H), 1.25-1.73 (overlapped, 32H, CH₂), 1.48 (⁺NH₂(CH₂)_αAr, 2H) 3.17-3.21 [overlapped, 4H, $(CH_2)_i + (CH_2)_i$], 3.32 [t, J = 6.41 Hz, 2H, $(OCH_2)_k$], 3.44 and 4.38 (AX, J =14.4 Hz, 12H, ArCH₂Ar_{calix}), 3.75 (s, 18H, OCH_{3calix}), 3.88-4.05 [overlapped, 12H, OCH₂ + $(CH_2)_{\alpha'}$], 4.50 (d, J = 8.3 Hz, 2H, ArH^a), 4.59 (overlapped, 2H, H_g+H_h) 5.00 [s, 4H, $(CH_2)_c$], 5.08 (d, J = 8.3 Hz, 2H, ArH^b), 6.07 (bs, 2H, NH₂⁺), 7.48-6.56 (overlapped, 6H, ArH), 7.12 (t, J = 8.8 Hz, 2H, ArH), 7.16 (s, 12H, Ar H_{calix}), 7.16 (d, J = 8.2 Hz, 2H, ArH), 7.41 (s, 4H, ArH), 7.51 (s, 4H, Ar H_{TFPB}), 7.71 (s, 8H, Ar H_{TFPB}), 7.81 (d, J = 8.2 Hz, 2H, ArH); ¹³C NMR (63 MHz, CDCl₃, 298 K): δ 23.2, 25.3, 25.9, 26.3, 27.0, 28.8, 29.4, 29.7, 30.3, 31.8, 32.1, 34.7, 41.4, 54.0, 62.4, 65.0, 68.4, 68.6, 70.3, 102.5, 107.5, 114.5, 116.0, 118.0, 119.3, 123.0, 123.9, 126.8, 127.3, 128.2, 129.2, 129.6, 130.3, 130.5, 131.6, 132.4, 132.9, 135.4, 137.3, 147.7, 153.3, 157.4, 158.9, 160.5, 160.9. Anal. Calcd for C₁₆₄H₁₈₈BF₂₄N₃O₁₆: C, 67.36; H, 6.48. Found: C, 67.42; H, 6.40.

⁶ Pierro, T.; Gaeta, C.; Talotta, C.; Casapullo, A.; Neri, P. Org. Lett. **2011**, *13*, 2650.


Figure S10.

ESI-MS⁺ Spectrum of Calix[2]catenane 4⁺·TFPB⁻

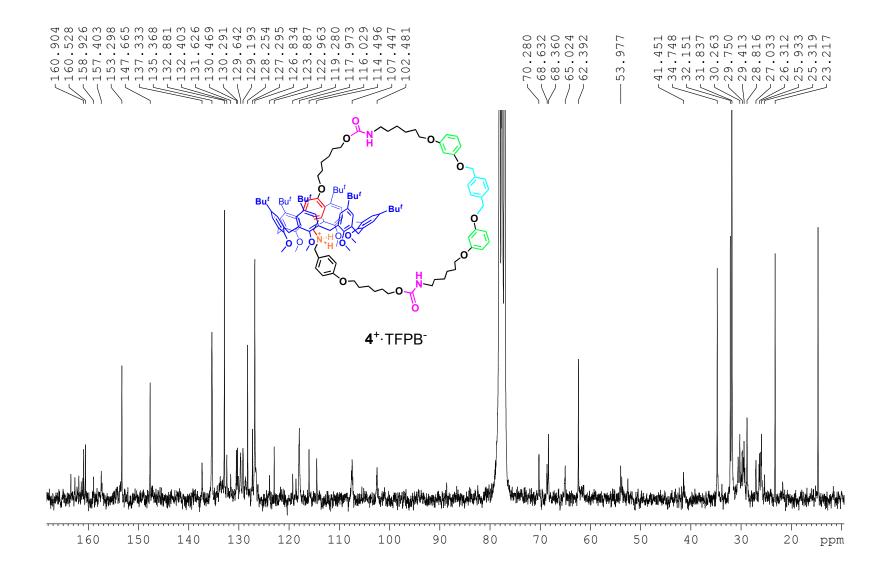
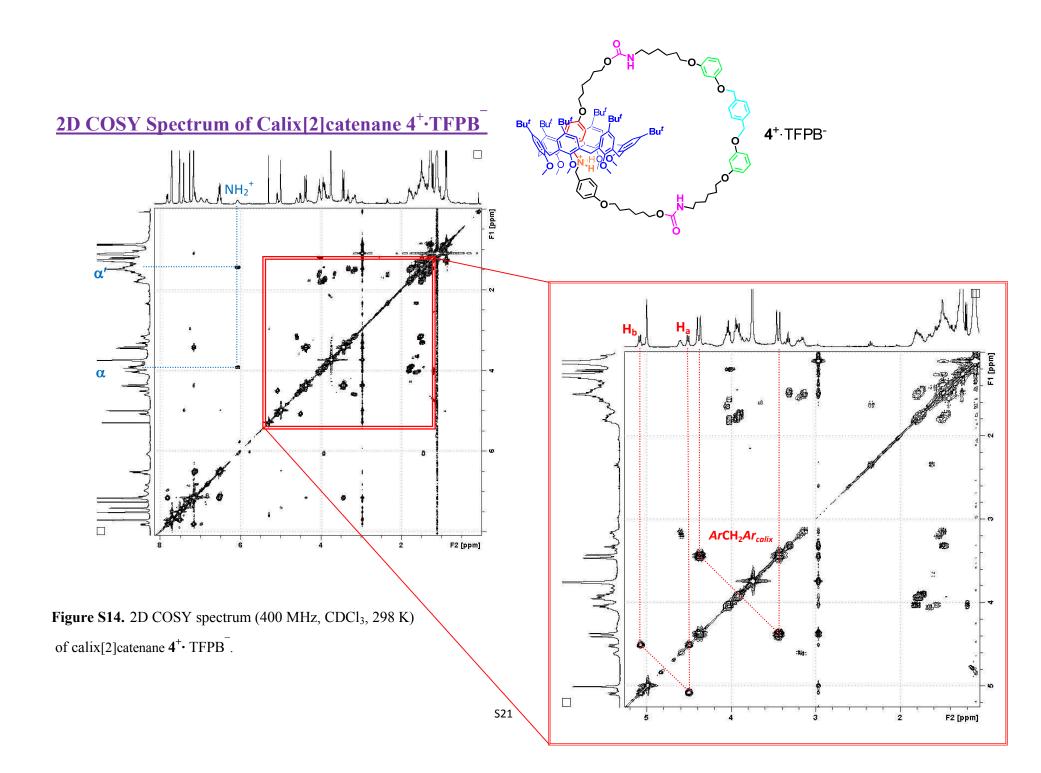


Figure S11. ESI-MS⁺ spectrum of calix[2]catenane **4**⁺**TFPB**⁻.


¹H and ¹³C NMR Spectra of Calix[2]catenane 4⁺·TFPB⁻

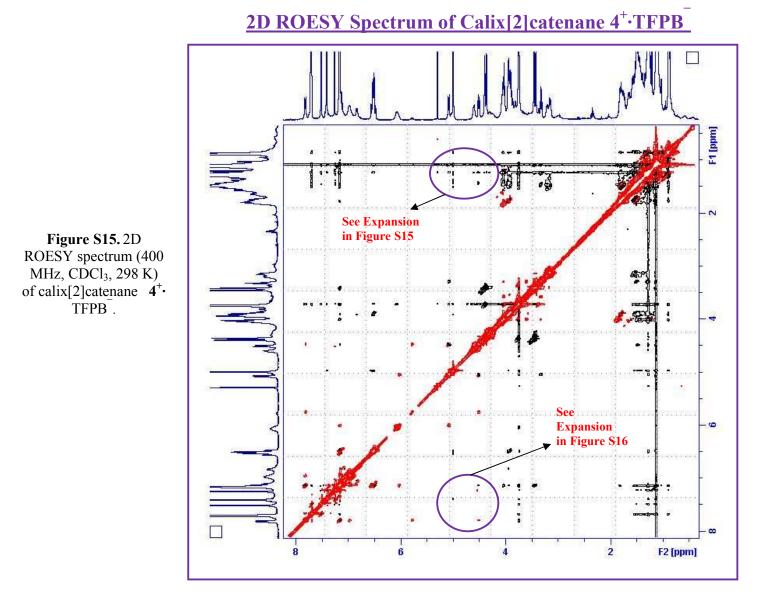


Figure S12. ¹H NMR spectrum of calix[2]catenane 4⁺• TFPB⁻ (400 MHz, CDCl₃, 298 K).

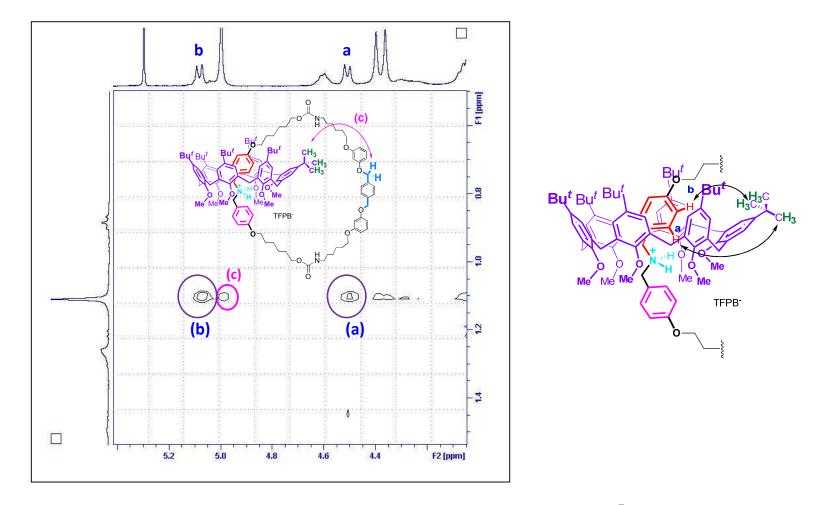
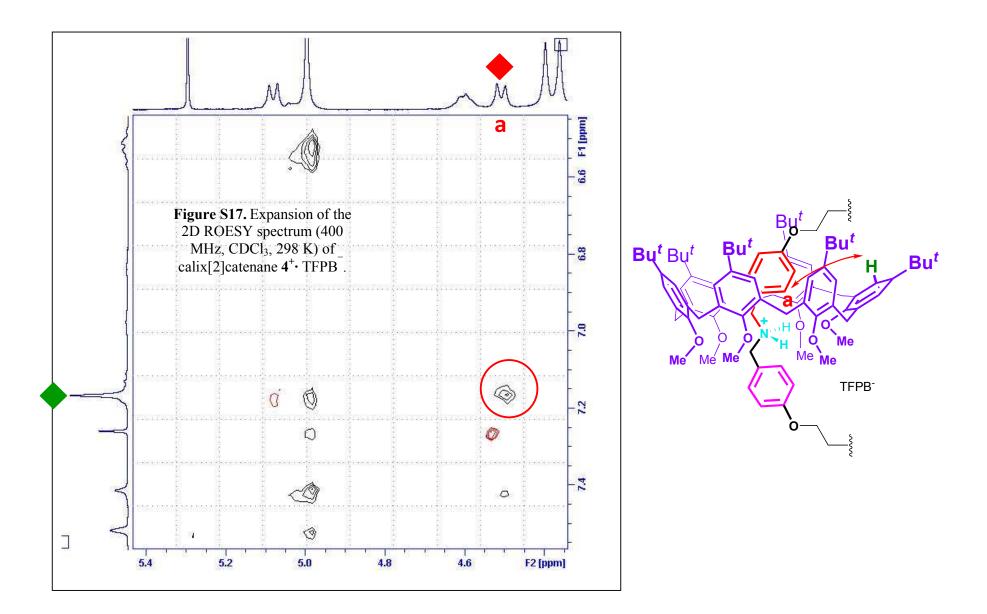


Figure S13. ¹³C NMR spectrum of calix[2]catenane 4⁺· TFPB⁻ (100 MHz, CDCl₃, 298 K).



S22

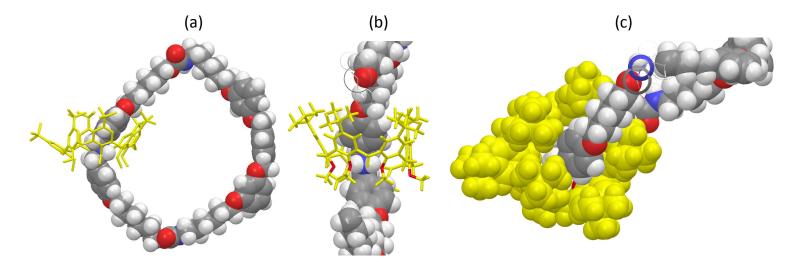


Figure S16. Expansion of the 2D ROESY spectrum (400 MHz, CDCl₃, 298 K) of calix[2]catenane **4**⁺• TFPB⁻.

Molecular Modeling Studies of Calix[2]**catenane** 4⁺

DFT calculations were performed with the Gaussian 09 Software Package.⁷ Input structure files for DFT calculations were obtained by molecular modeling with MacroModel 9.0 program⁸ (Schrödinger, LLC, New York, NY, 2005) using OPLS force field and CHCl₃ solvent (GB/SA model). The input structure files were optimized at the DFT B3LYP level of theory using the 6-31G* basis set for the entire system.

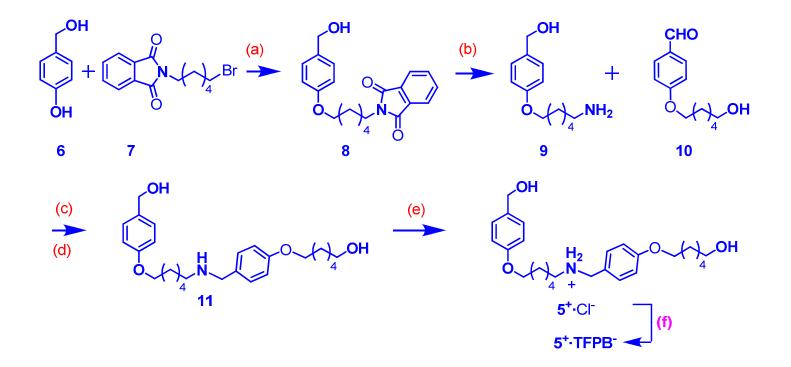
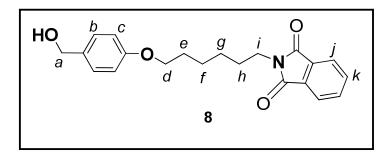
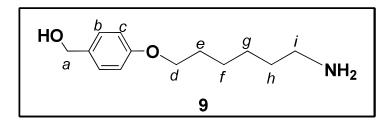


Figure S18. (a) Energy-minimized structure of calix-threaded [2]catenane 4^+ (B3LYP DFT calculation using the 6-31G* basis set). (b) Detailed view of the predicted $^+N-H\cdotsOMe^{calix}$ H-bonds. (c) Detailed view of the filling of the aromatic cavity of the calixarene macrocycle through the threading with the benzylammonium unit.

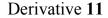

⁷ Gaussian 09, Revision **A.1**, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

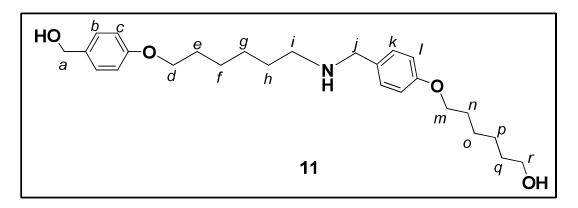
⁸ MacroModel-9.0/Maestro-4.1 program: Mohamadi, F.; Richards, N. G.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440.

Synthesis of Directional Axle 5⁺·TFPB

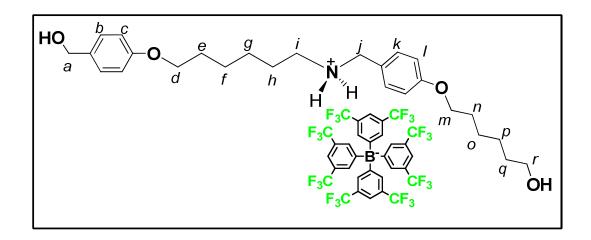


Scheme S3. Synthesis of directional axle 5⁺·TFPB⁻. *Reagents and conditions:* (a) K₂CO₃, [18]crown-6, dry CH₃CN, RT, 25 h; (b) NH₂NH₂, EtOH, reflux, 1 h; (c) CHCl₃, RT, 30 min; (d) NaBH₄, MeOH, RT, 3 h; (e) HCl (4 M in MeOH), MeOH, 0 °C, quant.; (f) NaTFPB, dry MeOH, RT, 12 h. S26

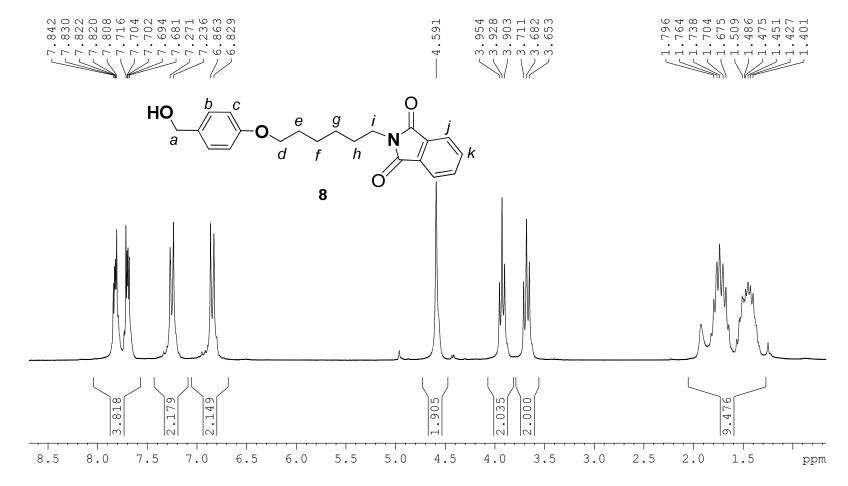



A mixture of derivative **6** (1.20 g, 9.7 mmol), [18]crown-6 (0.13 g, 0.5 mmol), and K₂CO₃ (0.67 g, 4.9 mmol) in 30 mL of dry acetonitrile was refluxed for 1 h. Then, the solution was cooled at room temperature and derivative **7** (1.50 g, 4.9 mmol) was added and then the mixture was refluxed again for 24 h. The solution was cooled at room temperature and the solvent was evaporated under reduced pressure. The residue was partitioned between AcOEt (100 mL) and water (100 mL), then the organic layer was dried over MgSO₄, filtered, and evaporated under reduced pressure. The crude product was subjected to flash chromatography on silica gel (CH₂Cl₂/Et₂O, 98/2, ν/ν), to give derivative **8** as a white solid (0.79 g, 42%). ESI-MS⁺: m/z = 354 (MH⁺); ¹H NMR (250 MHz, CDCl₃, 298 K): δ 1.40-1.80 (overlapped, 9H, H_{e+f+g+h} + OH), 3.68 (t, J = 7.2 Hz, 2H, H_i), 3.93 (t, J = 6.5 Hz, 2H, H_d), 4.59 (s, 2H, H_a), 6.85 (d, J = 8.5 Hz, 2H, H_c), 7.25 (d, J = 8.5 Hz, 2H, H_b), 7.68-7.84 (overlapped, 4H, H_{j+k}); ¹³C NMR (63 MHz, CDCl₃, 298 K): δ 25.8, 26.8, 28.7, 29.2, 38.0, 65.2, 67.9, 114.6, 123.3, 128.8, 132.2, 133.1, 134.0, 158.8, 168.7. Anal. Calcd for C₂₁H₂₃NO₄: C, 71.37; H, 6.56. Found: C, 71.46; H, 6.47.

Derivative 9



A solution of derivative **8** (0.79 g, 1.9 mmol) and hydrazine (190 mmol, 12 mL, 50-60% v/v solution in H₂O) in EtOH (10 mL) was refluxed for 1 h under N₂. The solution was cooled at room temperature and H₂O (100 mL) was added. The product was extracted with CH₂Cl₂ (3×80 mL) and the organic layers were collected and dried over MgSO₄, filtered, and evaporated under reduced pressure to give **9** as a white solid (0.42 g, 97%). ESI-MS⁺: m/z = 224 (MH⁺); ¹H NMR (250 MHz, CDCl₃, 298 K): δ 1.41-1.81 (overlapped, 8H, H_{e+f+g+h}), 2.68 (t, J = 6.3 Hz, 2H, H_i), 3.95 (t, J = 6.5 Hz, 2H, H_d), 4.60 (s, 2H, H_a), 6.88 (d, J = 8.5 Hz, 2H, H_c), 7.28 (d, J = 8.5 Hz, 2H, H_b); ¹³C NMR (63 MHz, CDCl₃, 298 K): δ 26.1, 26.8, 29.4, 33.8, 42.2, 65.1, 68.0, 114.7, 128.7, 133.3, 158.8. Anal. Calcd for C₁₃H₂₁NO₂: C, 69.92; H, 9.48 Found: C, 70.00; H, 9.37.



A mixture of derivate 9 (0.41 g, 1.8 mmol) and derivate 10 (0.41 g, 1.8 mmol) in CHCl₃ (5 mL) was stirred at room temperature for 30 min. The solvent was evaporated under reduced pressure to give the imine intermediate as a yellow oil in a quantitative yield. The imine intermediate was used for the next step without further purification. The imine was dissolved in dry MeOH (7 mL), and NaBH₄ (1.36 g, 36 mmol) was added at 0 °C and then the mixture was allowed to warm at room temperature. The solution was kept under stirring for 3 h. The solvent was removed under reduced pressure and the residue partitioned between AcOEt (50 mL) and an aqueous saturated solution of NaHCO₃ (100 mL). The organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure, to give amine derivate 11 as a white solid (0.67 g, 89%). ESI-MS⁺: m/z = 430 (MH⁺); ¹H NMR (250 MHz, CD₃OD, 298 K): δ 1.48-1.82 (overlapped, 16H, $H_{e+f+g+h} + H_{n+o+p+q}$), 3.01 (t, J = 7.7 Hz, 2H, H_i), 3.56 (t, J = 6.3 Hz, 2H, H_r), 3.94-4.01 (overlapped, 4H, H_{d+m}), 4.12 (s, 2H, H_i), 4.37 (s, 2H, H_a), 6.88 (d, J = 8.5 Hz, 2H, H_c), 6.98 (d, J = 8.7 Hz, 2H, H_l), 7.24 (d, J = 8.7 Hz, 2H, H_k), 7.41 (d, J = 8.5 Hz, 2H, H_b); ¹³C NMR (63 MHz, CD₃OD, 298 K): δ 27.0, 27.1, 27.3, 30.1, 30.3, 33.6, 51.8, 62.9, 68.7, 69.0, 75.3, 115.3, 116.0, 124.2, 130.7, 131.3, 132.6, 133.6, 160.2, 161.6. Anal. Calcd for C₂₆H₃₉NO₄: C, 72.69; H, 9.15; Found: C, 72.78; H, 9.06.

Derivative 11 (0.67 g, 1.6 mmol) was dissolved in MeOH (30 mL) at 0 °C and an aqueous solution of HCl (37% w/w, 0.2 mL) was added dropwise. The mixture was kept under stirring for 30 min, until the formation of a white precipitate. The solid was collected by filtration, washed with MeOH (10 mL) and CH₃CN (10 mL), and dried under vacuum, to give derivative $5^+ \cdot Cl^-$ as a white solid (0.79 g, 94%). Derivative $5^+ \cdot Cl^-$ (0.50 g, 1.08 mmol) was dissolved without further purification in warm dry MeOH (15 mL), then a solution of sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (0.96 g, 1.08 mmol) in dry MeOH (15 mL) was added. The mixture was kept under stirring overnight in the dark. The solvent was removed and deionized water was added, obtaining a brown precipitate that was filtered off and dried under vacuum for 48 h to give derivative 5⁺·TFPB⁻ (1.24 g, 89%). ¹H NMR (300 MHz, CD₃OD, 298 K): δ 1.46-1.77 (overlapped, 16H, $H_{e+f+g+h+n+o+p+q}$), 3.00 (t, J = 7.2 Hz, 2H, H_i), 3.53 (dt, $J_1 = 18.6$, $J_1 = 18.6$, 6.0 Hz, 2H, OCH₂), 3.97-4.10 (overlapped, 8H), 6.86 (d, J =8.4 Hz, 2H, ArH), 6.98 (d, J = 8.7 Hz, 2H, ArH), 7.24 (d, J = 8.4 Hz, 2H, ArH), 7.38 (d, J = 8.7 Hz, 2H, ArH), 7.60 (overlapped, 12H, ArH_{TFPB}); ¹³C NMR (75 MHz, CD₃OD, 298 K): δ 26.6, 26.8, 27.1, 27.5, 29.8, 30.2, 30.7, 33.6, 51.7, 51.7, 62.7, 68.7, 69.2, 71.1, 73.6, 115.2, 116.3, 118.4, 120.4, 124.1, 127.6, 129.8, 130.3, 130.8, 131.5, 132.2, 136.2, 160.2, 161.7, 162.1, 163.1, 163.9. Anal. Calcd for C₅₈H₅₂BF₂₄NO₄: C, 52.84; H,4.05. Found: C, 52.93; H, 3.96.

¹H and ¹³C NMR Spectra of Derivatives 8, 9, 11, and 5⁺·TFPB⁻

Figure S19. ¹H NMR spectrum of derivative **8** (250MHz, CDCl₃, 298 K).

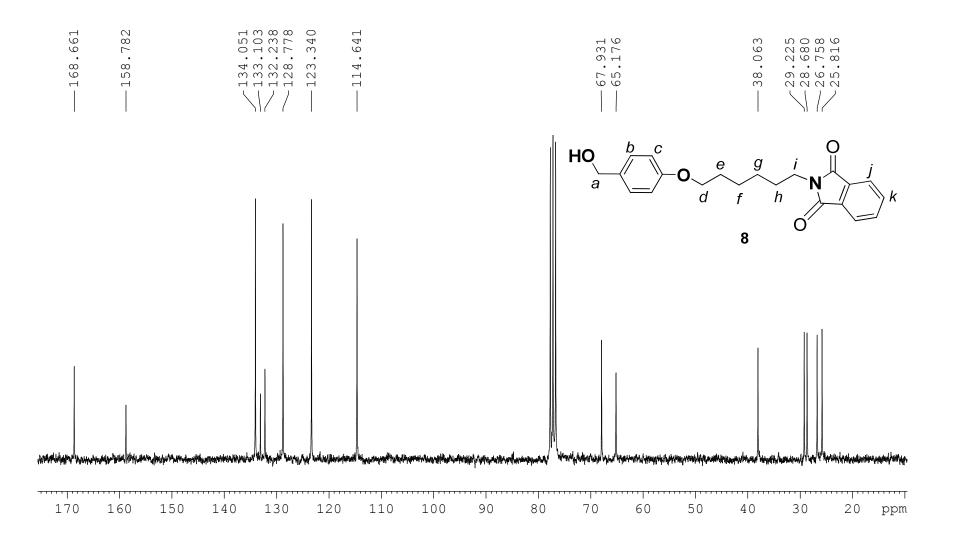


Figure S20. ¹³C NMR spectrum of derivative 8 (63 MHz, CDCl₃, 298 K).

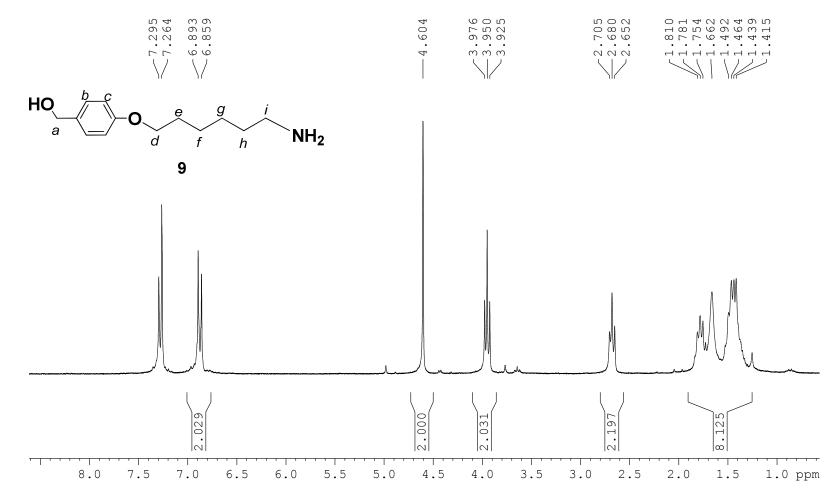


Figure S21. ¹H NMR spectrum of derivative 9 (250 MHz, CDCl₃, 298 K).

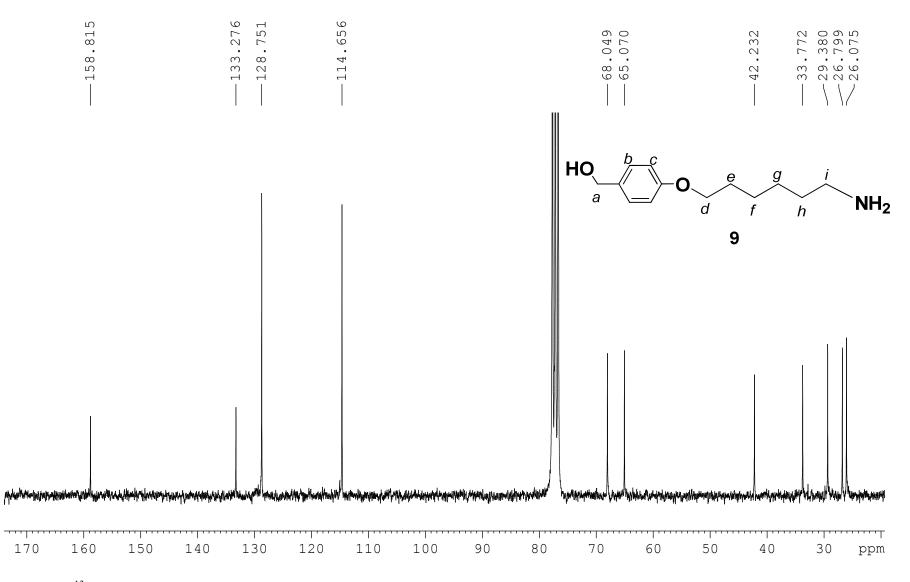


Figure S22. ¹³C NMR spectrum of derivative 9 (63 MHz, CDCl₃, 298 K).

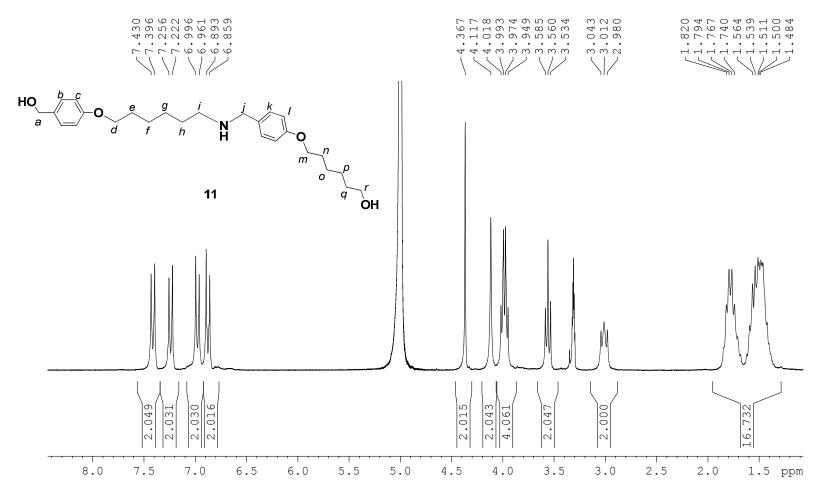


Figure S23. ¹H NMR spectrum of derivative 11 (250 MHz, CD₃OD, 298 K).

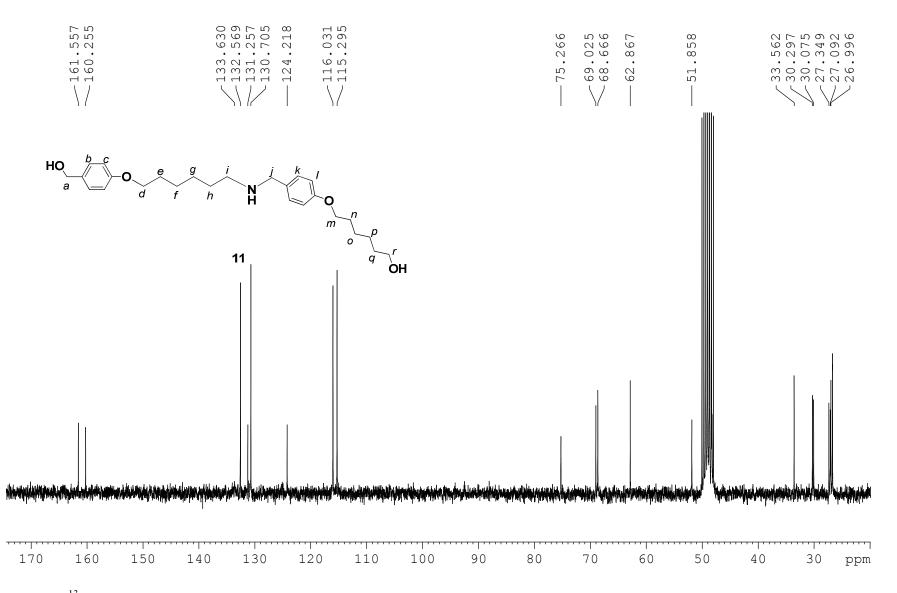
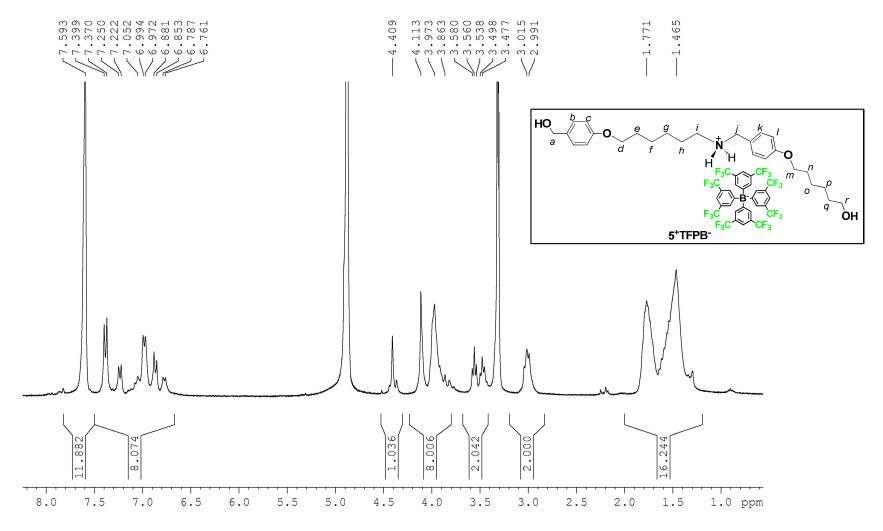
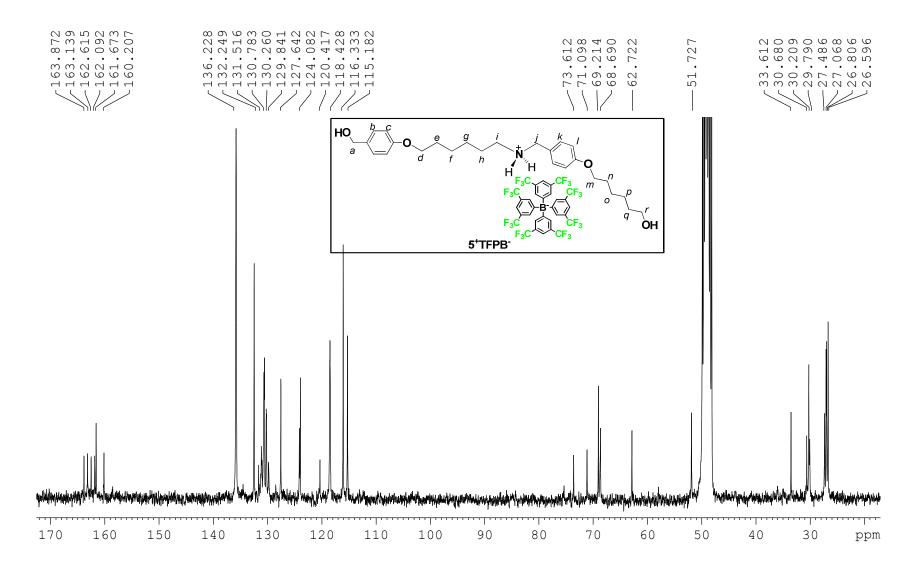




Figure S24. ¹³C NMR spectrum of derivative 11 (63 MHz, CD₃OD, 298 K).

Directional Axle 5⁺·TFPB⁻

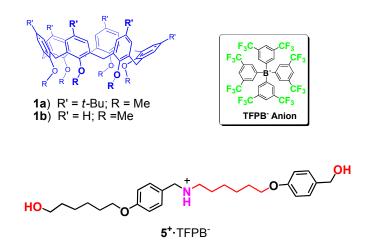

Figure S25. ¹H NMR spectrum of directional axle **5**⁺•**TFPB**⁻(300 MHz, CD₃OD, 298 K).

Figure S26. ¹³C NMR spectrum of directional axle **5**⁺•**TFPB**⁻ (75 MHz, CD₃OD, 298 K).

1D and 2D NMR Threading Studies of Calix[6]arenes 1a,b with Directional Axle 5⁺·TFPB⁻

Calix[6]arene derivative **1a** or **1b** (0.14 mmol) was dissolved in 15 mL of dry CHCl₃. Then, a solution of 5^+ ·**TFPB**⁻ (0.18 g, 0.14 mmol) in dry CHCl₃ (15 mL) was added and the mixture was stirred for 15 min at room temperature. The reaction was checked by ¹H NMR spectroscopy (see Figures S26 and S27).

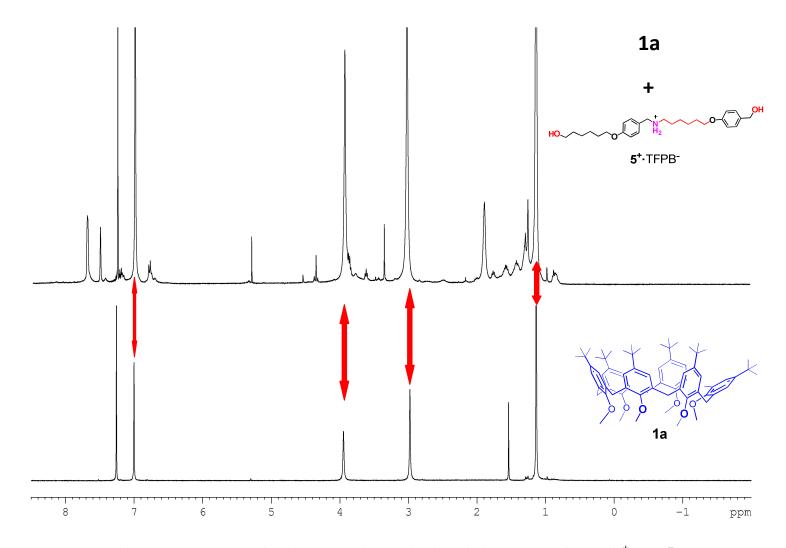


Figure S27. ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of 1a (bottom) and an equimolar solution (9 mM) of 1a and 5⁺·TFPB⁻ (top).

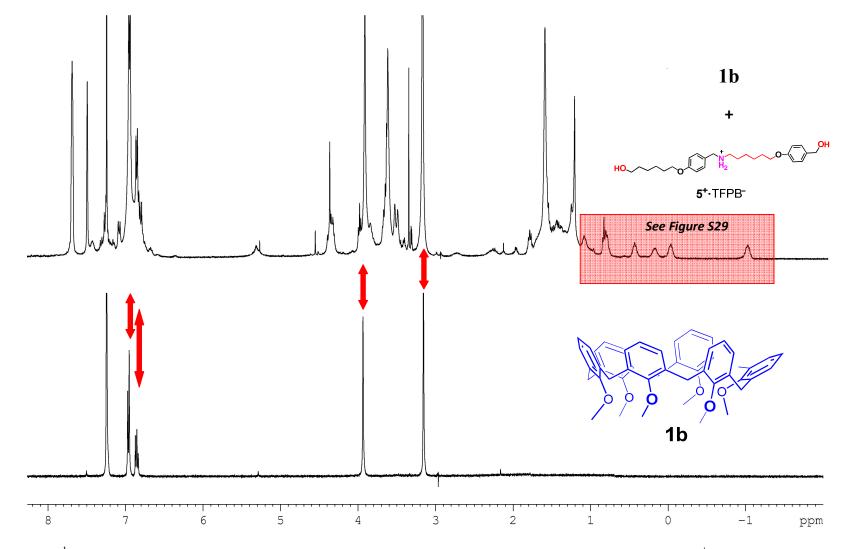


Figure S28. ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of 1b (bottom) and an equimolar solution (9 mM) of 1b and 5⁺·TFPB⁻(top).

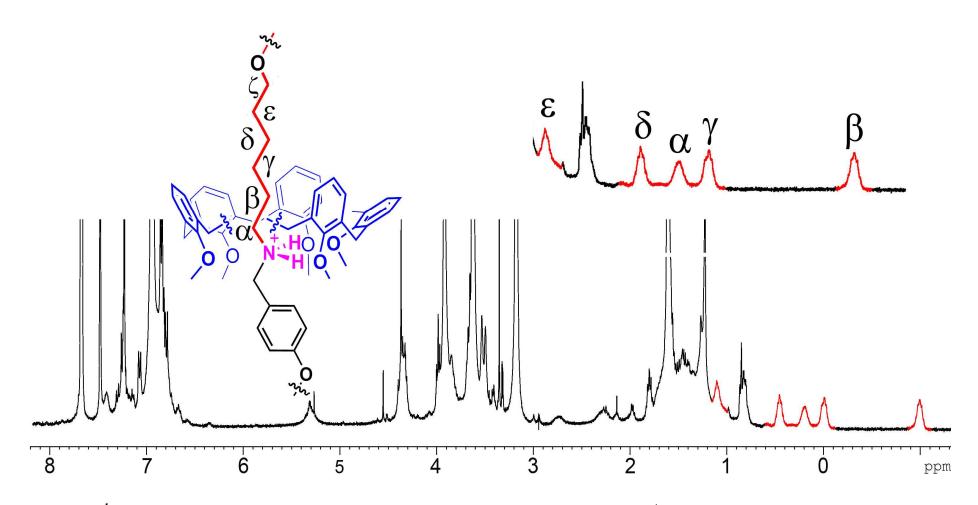
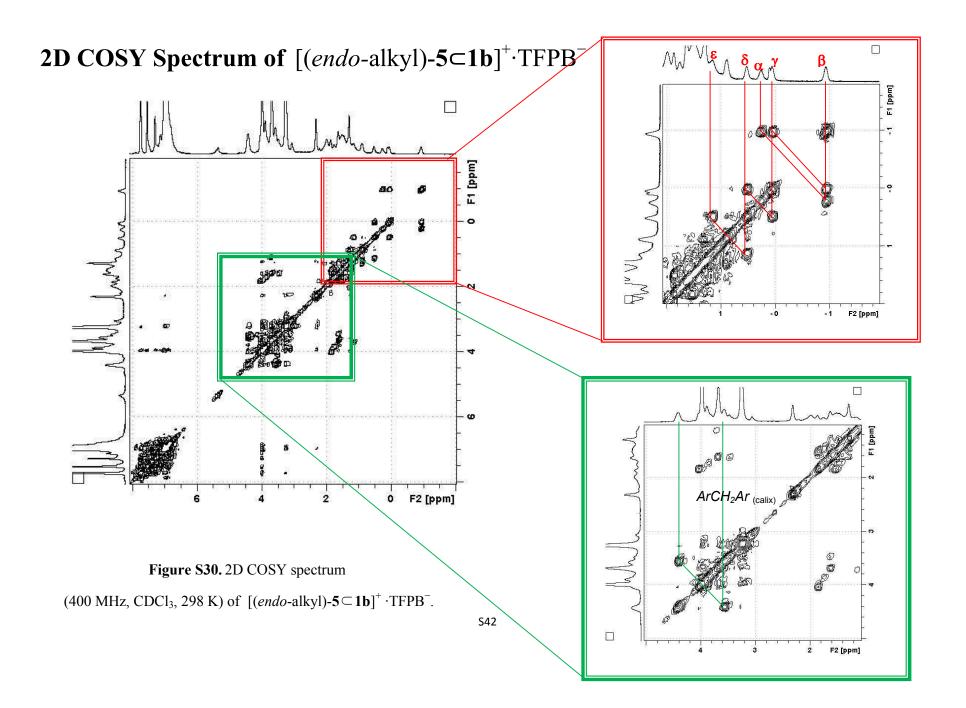
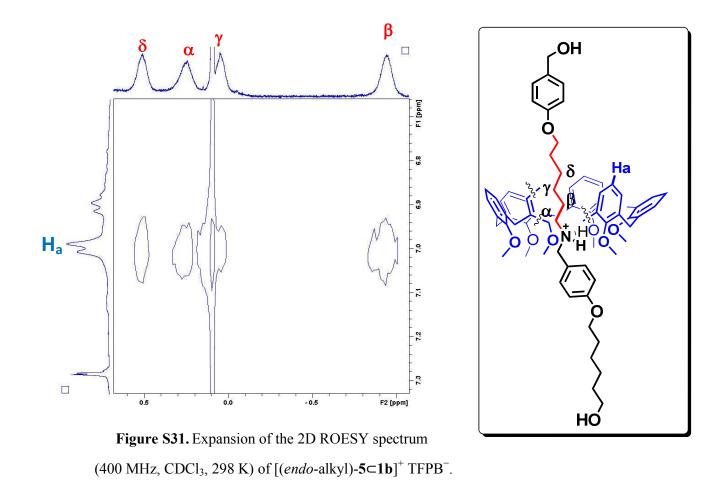
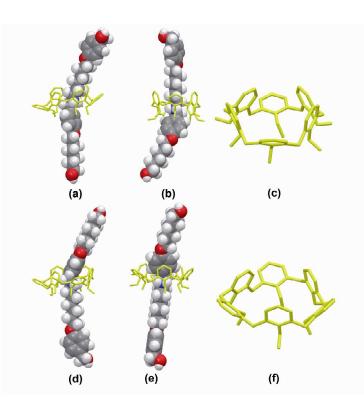
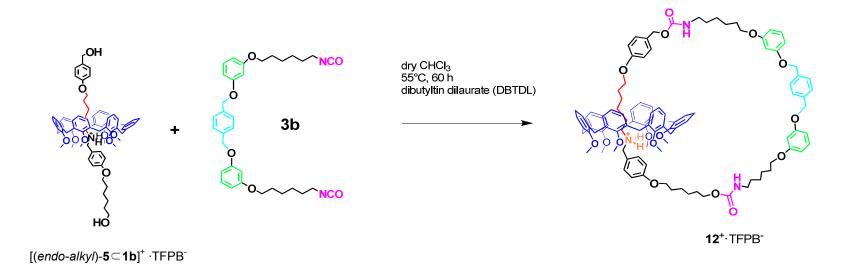




Figure S29. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of an equimolar solution (9 mM) of 1b and 5⁺ · TFPB⁻.

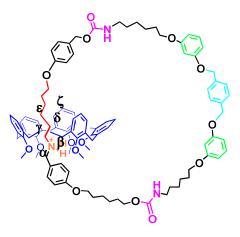

2D ROESY Spectrum of [(*endo*-alkyl)-**5**⊂**1b**]⁺·TFPB⁻


Molecular Modeling Studies of Pseudorotaxane $(5 \subset 1b)^+$

DFT calculations were performed with the Gaussian 09 Software Package.⁷ Input structure files for DFT calculations were obtained by molecular modeling with MacroModel 9.0 program⁸ (Schrödinger, LLC, New York, NY, 2005) using OPLS force field and CHCl₃ solvent (GB/SA model). The input structure files were optimized at the DFT B3LYP level of theory using the 6-31G* basis set for the entire system.

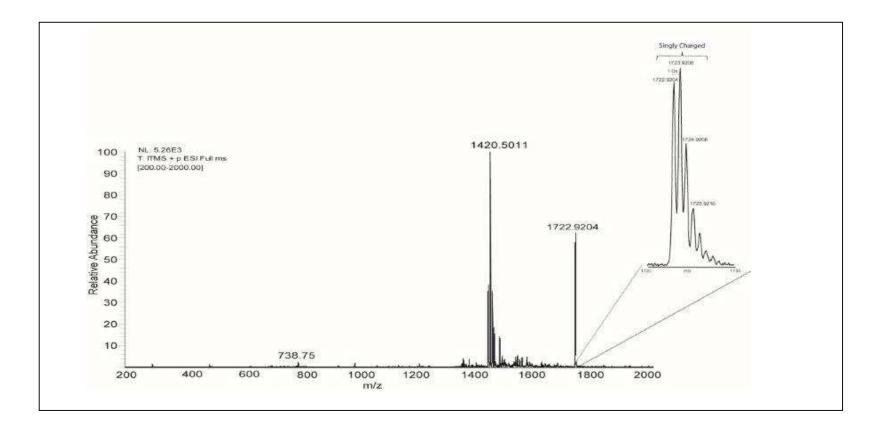
Figure S32. Different views of the energyminimized structures of *endo*-alkyl (a-c) and *endo-benzyl* (d-f) stereoisomers of pseudo[2]rotaxane $(5 \subset 1b)^+$ (B3LYP DFT calculations using the 6-31G* basis set).

Synthesis of Oriented Calix[2]catenane 12⁺·TFPB⁻


Scheme S4. Synthesis of oriented calix[2]catenane **12⁺·TFPB**⁻.

First Step: Preparation of pseudo[2]rotaxane [(*endo*-alkyl)-5⊂1b]⁺·TFPB⁻

Hexamethoxy-*p*-H-calix[6]arene **1b** (0.30 g, 0.23 mmol) and derivative **5**⁺·TFPB⁻ (0.33 g, 0.46 mmol) were dissolved in dry CHCl₃ (38.0 mL) and the mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The reaction was checked by ¹H NMR and the solution of pseudo[2]rotaxane [(*endo*-alkyl)-**5** \subset **1b**]⁺·TFPB⁻ was used without further purification for the successive macrocyclization step.


Second Step: [1+1] Macrocyclization

To the solution above described, a solution of diisocyanate derivative **3b** (0.13 g, 0.23 mmol, dissolved in 38 mL of dry CHCl₃) was slowly added dropwise over 21 h (flow rate: 0.6 mL/min) in the presence of a catalytic amount of dibutyltin dilaurate (DBTDL, 4 drops), at 55 °C. After the completion of the addition, the mixture was kept at 55 °C under stirring for additional 39 h. After cooling to room temperature, the solvent was removed under reduced pressure and the solid obtained was subjected to flash chromatography on silica gel (gradient of *n*-hexane/CH₂Cl₂, from 30/70 to 10/90 v/v, and to pure CH₂Cl₂) to give derivative 12^+ ·TFPB as a white solid (0.136 g, 0.053 mmol, 23%). ESI-MS⁺: m/z = 1722.92 [M -TFBP]⁺; ¹H NMR (400 MHz, CDCl₃, 298 K): -0.98 (m, 2H, H_β), 0.05 (m, 2H, H_γ), 0.25 (broad t, 2H, H_a), 0.59 (m, 2H, H_b), 1.09 (m, 2H, H_e), 1.49–1.84 (overlapped, 24H, CH₂), 3.19 (broad, -OC(O)NHCH₂-, 2H), 3.52 and 4.38 [AX, (ArCH₂Ar)_{calix}, J = 14.1 Hz, 12H], 3.61 [s, 18H, (OCH₃)_{calix}], 3.69 (m, 2H, H₂), 3.90-4.08 (overlapped 10H, OCH₂ + ⁺NH₂CH₂Ar), 4,67 (s, 2H, ArCH₂O), 5.04 (s, 4H, ArCH₂O), 5.37 (broad, 2H, NH₂⁺), 6.51-6.61 [overlapped, 4H, ArH], 6.88-7.44 [overlapped, 34H, ArH], 7.52 [s, 4H, (ArH)_{TFPB}], 7.71 [s, 8H, (Ar*H*)_{TFPB}⁻]; ¹³C NMR (63 MHz, CDCl₃ 298 K): δ 14.3, 23.1, 23.8, 24.0, 25.1, 25.8, 26.0, 26.7, 28.7, 29.1, 29.3, 29.6, 30.0, 30.2, 41.0, 52.0, 61.5, 64.7, 67.9, 68.3, 69.9, 77.5, 102.0, 107.0, 107.3, 114.3, 115.2, 117.6, 118.3, 122.5, 127.0, 128.0, 128.8, 129.3, 129.3, 129.8, 130.1, 130.9, 131.2, 132.3, 133.5, 135.0, 136.9, 155.4, 157.0, 160.0, 160.6, 160.8, 161.5, 162.2, 163.0 Anal. Calcd for C₁₄₀H₁₄₀BF₂₄N₃O₁₆: C, 64.99; H, 5.45. Found: C, 65.08; H, 5.36.

12⁺·TFPB⁻

ESI-MS⁺ Spectrum of Oriented Calix[2]catenane 12⁺·TFPB⁻

Figure S33. ESI-MS⁺ spectrum of oriented calix[2]catenane $12^+ \cdot TFPB^-$.

¹H and ¹³C NMR Spectra of Oriented Calix[2]catenane 12⁺·TFPB⁻

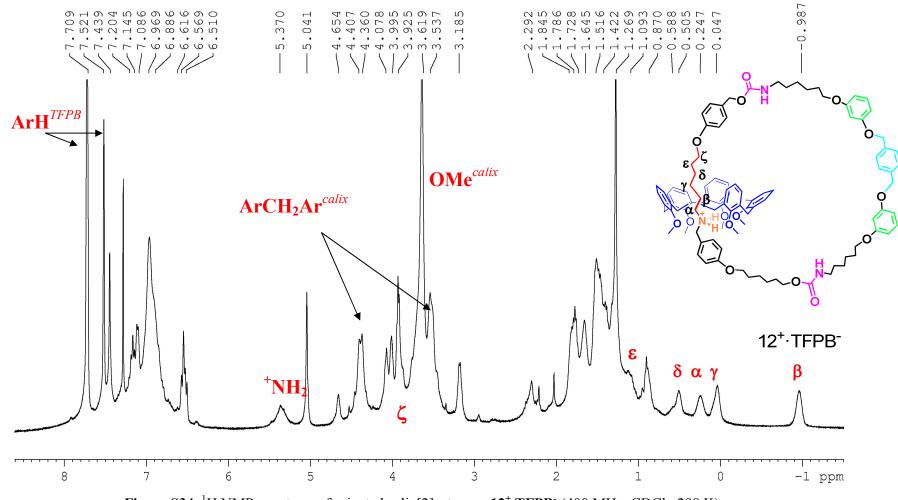
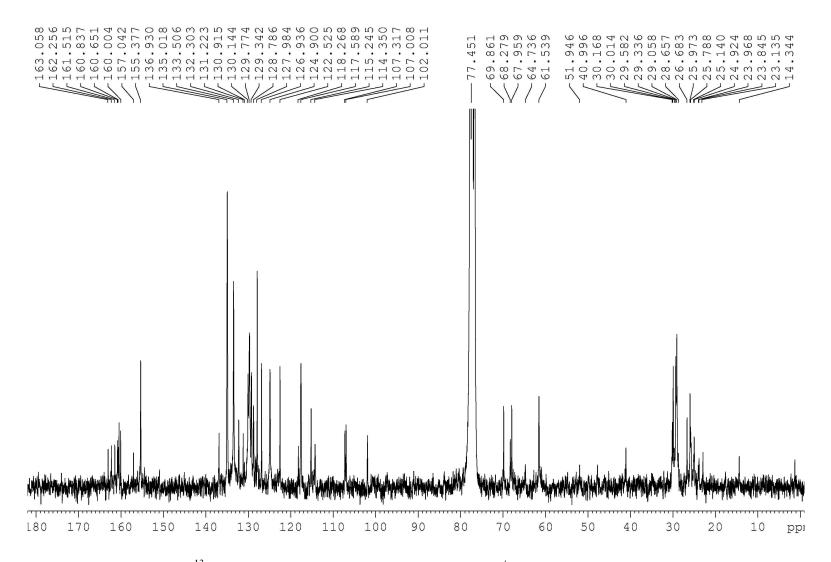
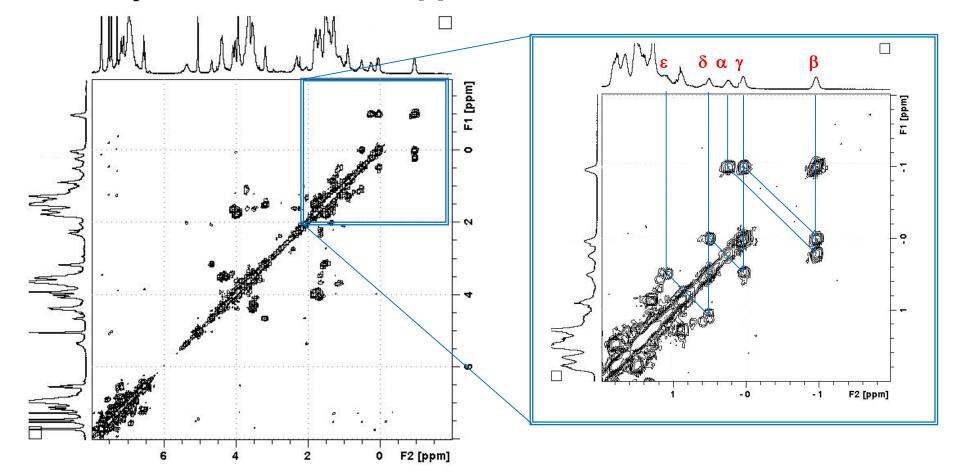
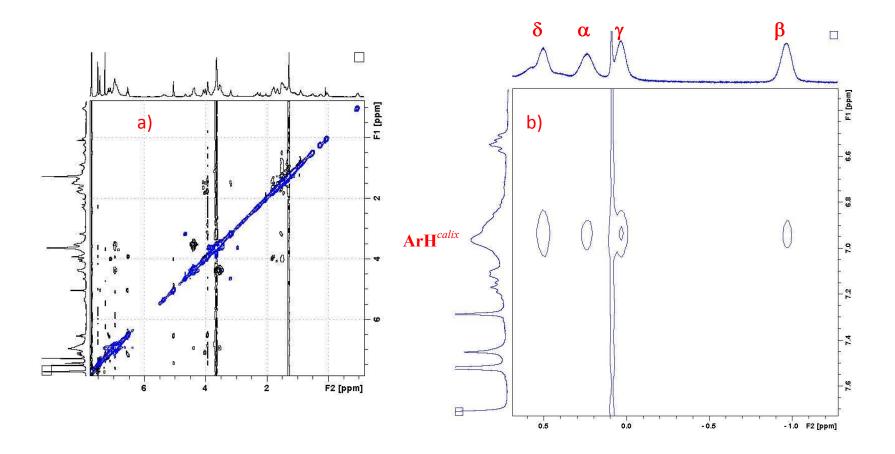


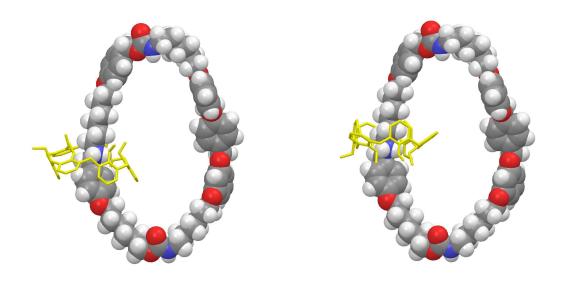
Figure S34. ¹H NMR spectrum of oriented calix[2]catenane 12⁺·TFPB⁻ (400 MHz, CDCl₃, 298 K).

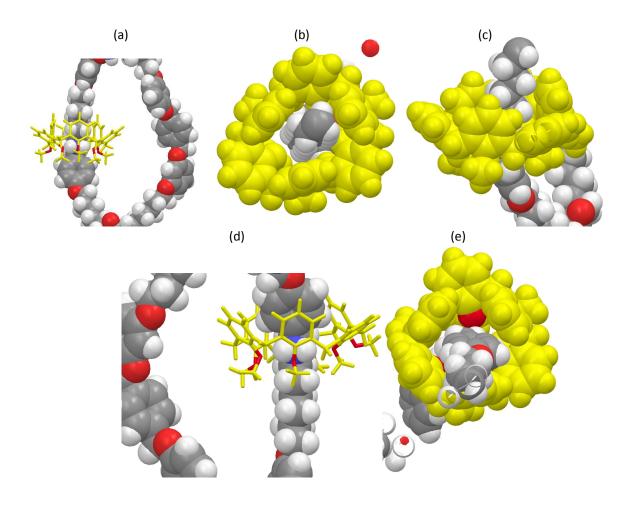




Figure S35. ¹³C NMR spectrum of oriented calix[2]catenane 12⁺·TFPB⁻ (63 MHz, CDCl₃, 298 K).

2D COSY Spectrum of Oriented Calix[2]catenane 12⁺·TFPB⁻

Figure S36. 2D COSY spectrum (400 MHz, CDCl₃, 298 K) of oriented calix[2]catenane 12⁺·TFPB⁻.


2D ROESY Spectrum of Oriented Calix[2]catenane 12⁺·TFPB⁻


Figure S37. a) 2D ROESY spectrum (400 MHz, CDCl₃, 298 K) of oriented calix[2]catenane 12⁺·TFPB⁻. b) Expansion of the same spectrum showing the alkyl/ArH ROE correlations.

Molecular Modeling Studies of Oriented Calix[2]catenane 12⁺

DFT calculations were performed with the Gaussian 09 Software Package.⁷ Input structure files for DFT calculations were obtained by molecular modeling with MacroModel 9.0 program⁸ (Schrödinger, LLC, New York, NY, 2005) using OPLS force field and CHCl₃ solvent (GB/SA model). The input structure files were optimized at the DFT B3LYP level of theory using the 6-31G* basis set for the entire system.

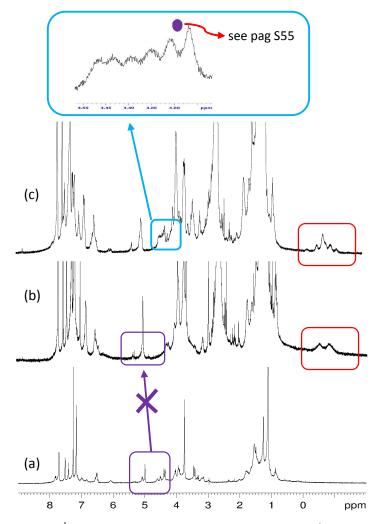

Figure S38. Energy-minimized structures of (*endo*-alkyl) (left) and (*endo*-benzyl) (right) orientational isomers of calix-threaded [2]catenane 12^+ (B3LYP DFT calculation using the 6-31G* basis set).

Figure S39. (a) Detailed view of the predicted ${}^{+}N-H{}\cdotsOMe^{calix}$ H-bonds in the energy-minimized structure of (*endo*-alkyl) orientational isomer of calix-threaded [2]catenane 12⁺ (B3LYP DFT calculation using the 6-31G* basis set). (b and c) Detailed view of the filling of the aromatic cavity of the calixarene macrocycle 1b through the threading with the alkyl chain unit. (d) Detailed view of the predicted ${}^{+}N-H{}\cdotsOMe^{calix}$ H-bonds in the energy-minimized structure of (*endo*-benzyl) orientational isomer of calix-threaded [2]catenane 12⁺ (B3LYP DFT calculation using the 6-31G* basis set). (e) Detailed view of the filling of the aromatic cavity of the calixarene macrocycle 1b through the threading with the benzyl unit.

Synthesis of Neutral [2]Catenane 4

To a solution of cationic [2]catenane 4^+ (0.010 g, 3.4×10^{-3} mmol) in CDCl₃ (2 mL) was added phosphazene base P1-*t*-Bu (0.22 M solution in CDCl₃, 1.9 µL, 8.5 ×10⁻³ mmol) and the mixture was stirred for 15 min to give neutral [2]catenane **4.** Subsequently ¹H VT NMR spectra (400 MHz, CDCl₃) were registered (Figure S40).

Neutral [2]catenane 4, obtained upon deprotonation of 4^+ , showed a broad ¹H NMR spectrum, in CDCl₃ at 298 K (Figure S40b), indicating a wheel dynamics comparable to the NMR timescale. At a lower temperature the ¹H NMR spectrum of neutral 4 (400 MHz, CDCl₃, 233 K, Figures S40c) evidenced the presence of signals at negative values characteristic of an endoalkyl inclusion. This implies that the calix[6]arene wheel move from the original dibenzylammonium site to new positions in which an aliphatic chain is inside the calix-cavity (see Figure S41).

Figure S40. ¹H NMR Spectra (400 MHz, CDCl₃) of: (a) 4^+ ·TFPB⁻ (298 K), (b) neutral 4 at 298 K and (c) neutral 4 at 233 K.

On the basis of previous results,⁹ among the four possibles isomers represented in Figure S41, the most favoured one is **4a**, which is stabilized by H-bonds between calixarene OMe atoms and urethane NH group. This is compatible with the main single $ArCH_2Ar AX$ system • evidenced in Figure S40.

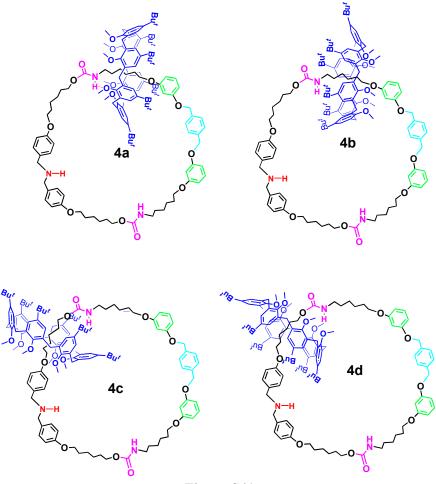


Figure S41.

⁹ Pierro, T.; Gaeta, C.; Talotta, C.; Casapullo, A.; Neri, P. *Org. Lett.* **2011**, *13*, 2650. Talotta, C.; Gaeta, C.; Pierro, T.; Neri, P. *Org. Lett.* **2011**, *13*, 2098.