Supporting Information for

Enantioselective Synthesis of Planar Chiral Ferrocenes *via* Palladium-catalyzed Direct Coupling with Aryl Boronic Acids

De-Wei Gao, Yan-Chao Shi, Qing Gu,* Zheng-Le Zhao, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China Fax (+86) 21-54925087; E-mail: qinggu@sioc.ac.cn or slyou@sioc.ac.cn

Table of Contents

General Methods	S2
Complete optimization data	S2
Monitoring kinetic resolution effect of bispenylation	S4
Enantioselective synthesis of planar chiral ferrocene	S4
Determination of the absolute configuration of product 3a	S12
Synthesis of L1 and Pd-catalyzed asymmetric allylic alkylation	S14
References	S16
Copies of NMR and HPLC spectra	S17

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

Compounds **1a-d**¹⁻³ were prepared by reductive amination of ferrocene aldehyde with the corresponding amines. (*S*, R_p)-7 was prepared according to the reported procedure.⁴

Complete optimization data

NMe ₂		Pd(OAc) ₂ (10 mol % Boc-L-Val-OH (20 mol	%)	Ph Ph
Fe 1a	[•] PhB(OH) ₂ 2a	K ₂ CO ₃ (1 equiv), TBAB (equiv), DMA, 80 ^o C, 4 oxidant		Fe J 3a'
entry	oxida	nt 3a:3a ' ^b	yield $(\%)^c$	$ee(\%)^d$
1	Air	8.3:1	74 ^c	98
2	Ag_2O) -	7	-
3	AgOA		< 5	-
4	Ag ₂ Co	- D ₃ -	15	-
5	Ag ₃ PG	D ₄ -	15	-
6	Cu(OA	$Ac)_2$ -	14	-
7	Cu(O	Γf) ₂ -	24	-
8 ^e	O ₂	15:1	69(80)	95

Table 1. Examination of oxidants^{*a*}

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Pd(OAc)₂ (10 mol %), Boc-L-Val-OH (20 mol %), K₂CO₃ (1 equiv), TBAB (0.25 equiv) and oxidant (2 equiv for entries 2-7) in DMA at 80°C. ^{*b*} Determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} Isolated yield. ^{*d*} Ee of **3a** was determined by HPLC analysis. ^{*e*} Oxygen balloon was used.

 Table 2. Examination of base and solvent^a

_NM	le ₂			NMe ₂	_NMe ₂
	+	PhB(OH)₂	Pd(OAc) ₂ (10 mol %) Boc-L-Val-OH (20 mol %)	Ph	
Fe		2a	base (1 equiv), TBAB (0.25 equiv), solvent, 80 °C, air, 4h	Fe	Fe
1a			• , • • • •	3a	3a'

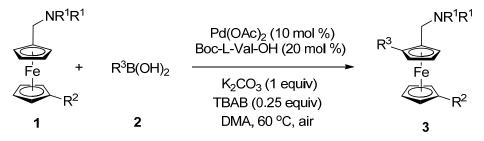
entry	solvent	base	3a:3a' ^b	yield $(\%)^c$	$ee (\%)^d$
1	DMA	K ₂ CO ₃	8.3:1	74	98
2	DMA	KHCO ₃	9.5:1	46 ^b	-
3	DMA	Na ₂ CO ₃	8:1	24 ^b	-
4	DMA	NaOAc	5.6:1	23 ^b	-
5	DMA	Cs_2CO_3	7.7:1	70	99
6	DMF	K_2CO_3	22:1	39	97
7	2-methyl-2-butanol	K_2CO_3	4.3:1	12 ^b	-
8	NMP	K ₂ CO ₃	20:1	55	92

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), $Pd(OAc)_2$ (10 mol %), Boc-L-Val-OH (20 mol %), base (1 equiv), TBAB (0.25 equiv) in 1.5 mL solvent at 80°C. ^{*b*} Determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} Isolated yield. ^{*d*} Ee of **3a** was determined by HPLC analysis.

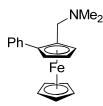
Table 3. Examination of the amount of phenylboronic acid, catalyst loading and temperature^a

NM	e ₂			NMe	2 NMe ₂
	+		Pd(OAc) ₂ (x mol %) Boc-L-Val-OH (y mol %)	Ph	+ Ph Ph
Fe	т	PhB(OH) ₂	K ₂ CO ₃ (1 equiv), TBAB (0.25	Fe	Fe
\bigcirc		2a	equiv), DMA, <i>T</i> °C, air, 4h		
1a				3a	3a'

entry	equiv of 2a	Х	у	$T(^{\circ}\mathbb{C})$	3a:3a' ^b	yield $(\%)^c$	ee (%) ^d
1	1.1	10	20	80	25:1	60	97
2	1.5	10	20	80	8.3:1	71	98
3	2	10	20	80	8.3:1	74	98
4	3	10	20	80	9.5:1	23	90
5	2	5	10	60	33:1	45	97
6	2	2.5	5	60	-	29	95
7	2	1	2	60	-	9 ^b	-
8	2	10	11	60	12:1	71	96

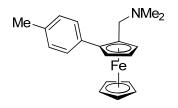

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a**, Pd(OAc)₂ (x mol %), Boc-L-Val-OH(y mol %), K₂CO₃ (1 equiv), TBAB (0.25 equiv) in 1.5 mL DMA under air. ^{*b*} Determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} Isolated yield. ^{*d*} Ee of **3a** was determined by HPLC analysis.

_NMe ₂		_ NM	e ₂ NMe ₂
Fe + PhB(OH)2	Pd(OAc) ₂ (10 mol % Boc-L-Val-OH (20 mol		+ Ph Ph
Fe Phb(OH) ₂	K ₂ CO ₃ (1 equiv), TBAB equiv), DMA, 60 °C, 1		Fe
1a	air	3a	3a'
entry	time (h)	3a:3a ' ^b	ee of 3a $(\%)^{c}$
1	2	33:1	94
2	4	28:1	95
3	6	17:1	98
4	8	9:1	99
5	10	7:1	99

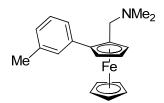

Table 4. Monitoring kinetic resolution effect of bispenylation^{*a*}

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Pd(OAc)₂ (10 mol %), Boc-L-Val-OH (20 mol %), K₂CO₃ (1 equiv), TBAB (0.25 equiv) in 1.5 mL DMA under air at 60°C. The ratio of **3a/3a'** and ee of **3a** were determined every two hours. ^{*b*} Determined by ¹H NMR analysis. ^{*c*} Determined by HPLC analysis.

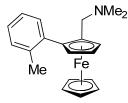
General procedure for the enantioselective synthesis of planar chiral ferrocene



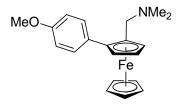
To a solution of boronic acid **2** (0.4 mmol) in DMA (1.5 mL) was added Boc-L-Val-OH (8.7 mg, 0.04 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), K₂CO₃ (27.6 mg, 0.2 mmol), TBAB (tetrabutyl ammonium bromide) (16.1 mg, 0.05 mmol) and ferrocene **1** (0.2 mmol) successively. The mixture was stirred at 60°C under air (open flask). After the reaction was complete (monitored by TLC), it was then quenched with saturated aqueous NaHCO₃ solution and extracted with EtOAc three times. The combined organic layers were washed with H₂O and brine successively, then dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (ethyl acetate/ petroleum ether = 1/10, v/v, 2% Et₃N) to afford desired product **3**.

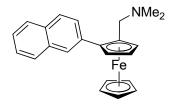

(*S*_p)-1-Dimethylaminomethyl-2-phenyl ferrocene (**3a**)

Yellow oil (50.7 mg, 79% yield, 98% *ee*). Analytical data for **3a**: $[\alpha]_D^{20} = +182.3^\circ$ (c = 0.25 Acetone, 98% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.17 (s, 6H), 3.15 (AB, $J_{AB} =$ 12.8 Hz, 1H), 3.64 (BA, $J_{BA} =$ 12.8 Hz, 1H), 4.05 (s, 5H), 4.23-4.24 (m, 1H), 4.30-4.31 (m, 1H), 4.46-4.47 (m, 1H), 7.23-7.30 (m, 1H), 7.31-7.34 (m, 2H), 7.70-7.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.0, 57.9, 67.1, 69.9, 70.0, 71.5, 82.2, 88.1, 126.0, 127.9, 129.3, 138.9; IR (film) 3070, 2932, 2762, 1725, 1600, 1452, 1357, 1255, 1171, 1105, 1014, 816, 761, 697 cm⁻¹; HRMS (ESI) exact mass calcd for (C₁₉H₂₁NFe) requires *m/z* 317.1065, found *m/z* 317.1073. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, $\lambda = 254$ nm, t (minor) = 15.35 min, t (major) = 15.93 min.

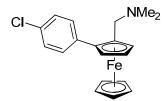


(S_p)-1-Dimethylaminomethyl-2-(4-methylphenyl) ferrocene (**3b**)

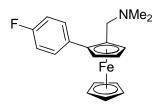

Yellow oil (47.0 mg, 70% yield, 97% *ee*). Analytical data for **3b**: $[\alpha]_D^{20} = +157.9^\circ$ (c = 0.25 Acetone, 97% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 6H), 2.34 (s, 3H), 3.15 (AB, $J_{AB} = 12.4$ Hz, 1H), 3.63 (BA, $J_{BA} = 12.4$ Hz, 1H), 4.03 (s, 5H), 4.19-4.21 (m, 1H), 4.27-4.28 (m, 1H), 4.42-4.43 (m, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 45.0, 57.8, 66.9, 69.6, 69.9, 71.3, 82.0, 88.3, 128.6, 129.2, 135.5, 135.6; IR (film) 3092, 2935, 2811, 2762, 1726, 1524, 1454, 1301, 1258, 1173, 1105, 1016, 815, 721 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₀H₂₃NFe) requires *m/z* 331.1221, found *m/z* 331.1213. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, $\lambda = 254$ nm, t (minor) = 14.36 min, t (major) = 15.40 min.


(*S*_p)-1-Dimethylaminomethyl-2-(3-methylphenyl) ferrocene (**3c**) Yellow oil (54.3 mg, 81% yield, 99% *ee*). Analytical data for **3c**: $[α]_D^{20} = +168.1^\circ$ (c = 0.25 Acetone, 99% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.19 (s, 6H), 2.39 (s, 3H), 3.15 (AB, *J*_{AB} = 12.4 Hz, 1H), 3.65 (BA, *J*_{BA} = 12.4 Hz, 1H), 4.06 (s, 5H), 4.06-4.23 (m, 1H), 4.30-4.31 (m 1H), 4.46-4.47 (m, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 7.21-7.24 (m, 1H), 7.52-7.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 44.9, 57.8, 66.9, 69.8, 69.9, 71.3, 82.1, 88.2, 126.4, 126.8, 127.7, 130.0, 137.2, 138.7; IR (film) 3093, 2936, 2811, 2762, 1727, 1605, 1499, 1454, 1354, 1258, 1173, 1105, 1020, 1000, 807, 785, 705 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₀H₂₃NFe) requires *m/z* 331.1221, found *m/z* 331.1214. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (minor) = 14.95 min, t (major) = 16.31 min.

(*S*_p)-1-Dimethylaminomethyl-2-(2-methylphenyl) ferrocene (**3d**) Yellow oil (22.4 mg, 33% yield, 94% *ee*). Analytical data for **3d**: $[α]_D^{20} = -128.1^\circ$ (c = 0.25 Acetone, 94% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 1.91 (s, 6H), 2.15 (s, 3H), 3.21 (AB, *J*_{AB} = 12.8 Hz, 1H), 3.47 (BA, *J*_{BA} = 12.8 Hz, 1H), 4.19 (s, 5H) 4.28-4.31 (m, 2H), 4.39-4.30 (m, 1H), 7.14-7.25 (m, 3H), 7.82-7.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.7, 30.9, 44.3, 56.1, 66.5, 69.2, 69.7, 83.8, 90.0, 124.9, 126.6, 129.8, 132.9, 136.0, 137.7; IR (film) 3093, 2926, 2812, 2763, 2322, 1676, 1498, 1454, 1247, 1175, 1106, 1018, 1001, 814, 762, 726 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₀H₂₃NFe) requires *m/z* 331.1221, found *m/z* 331.1216. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, $\lambda = 254$ nm, t (major) = 16.13 min, t (minor) = 17.49 min.

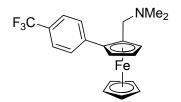

 (S_p) -1-Dimethylaminomethyl-2-(4-methoxyphenyl) ferrocene (**3e**) Yellow oil (59% yield, 96% *ee*). Analytical data for **3e**: $[\alpha]_D^{20} = +173.5^\circ$ (c = 0.25 Acetone, 96% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.15 (s, 6H), 3.12 (AB, $J_{AB} = 12.4$ Hz, 1H), 3.61 (BA, $J_{BA} = 12.4$ Hz, 1H), 3.82 (s, 3H), 4.03 (s, 5H), 4.18-4.19 (m, 1H), 4.25-4.26 (m, 1H), 4.39-4.40 (m, 1H), 6.85-6.88 (m, 2H), 7.62-7.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.0, 55.2, 57.9, 66.8, 69.5, 69.9, 71.2, 82.0, 88.3, 113.3, 130.3, 130.9, 158.0; IR (film) 3092, 2934, 2812, 2764, 1610, 1574, 1521, 1455, 1364, 1288, 1244, 1176, 1105, 1034, 830 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₀H₂₃NOFe) requires *m/z* 347.1170, found *m/z* 347.1162. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, $\lambda = 254$ nm, t (minor) = 18.79 min, t (major) = 20.32 min.

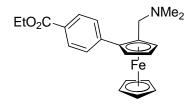
(*S*_p)-1-Dimethylaminomethyl -2-(2-naphthyl) ferrocene (**3f**)


Yellow oil (55.8 mg, 75% yield, 96% *ee*). Analytical data for **3f**: $[\alpha]_D^{20} = -42.6^\circ$ (c = 0.25 Acetone, 96% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 6H), 3.15 (AB, $J_{AB} =$ 12.4 Hz, 1H), 3.73 (BA, $J_{BA} =$ 12.4 Hz, 1H), 4.05 (s, 5H), 4.27-4.28 (m, 1H), 4.33-4.34 (m, 1H), 4.58-459 (m, 1H), 7.41-7.47 (m, 2H), 7.78-7.84 (m, 4H), 8.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 45.1, 58.2, 67.4, 70.0, 70.1, 71.9, 82.3, 87.8, 125.4, 126.0, 127.2, 127.3, 127.6, 127.9, 128.0, 132.0, 133.5, 136.4; IR (film) 3090, 2934, 2852, 2811, 2763, 1724, 1628, 1599, 1508, 1454, 1354, 1253, 1173, 1104, 1016, 999, 963, 813, 746 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₃H₂₃NFe) requires *m/z*

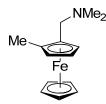
367.1221, found *m/z* 367.1217. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (minor) = 16.88 min, t (major) = 18.28 min.

(S_p)-1-Dimethylaminomethyl-2-(4-chlorophenyl) ferrocene (**3g**)

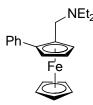

Yellow oil (50.9 mg, 72% yield, 97% *ee*). Analytical data for **3g**: $[\alpha]_D^{20} = +185.7^\circ$ (c = 0.25 Acetone, 97% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.19 (s, 6H), 3.09 (AB, $J_{AB} =$ 12.8 Hz, 1H), 3.61 (BA, $J_{BA} =$ 12.8 Hz, 1H), 4.04 (s, 5H), 4.04-4.25 (m, 1H), 4.30-4.31 (m, 1H), 4.46-4.47 (m, 1H), 7.27-7.30 (m, 2H), 7.68-7.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.0, 58.0, 67.3, 70.0, 70.1, 71.9, 82.1, 86.8, 128.1, 130.4, 131.6, 137.6; IR (film) 3092, 2936, 2812, 2765, 1725, 1503, 1454, 1257, 1174, 1091, 1014, 971, 817, 726 cm⁻¹; HRMS (ESI) exact mass calcd for (C₁₉H₂₀NClFe) requires *m/z* 351.0675, found *m/z* 351.0668. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (minor) = 13.94 min, t (major) = 14.70 min.


(S_p)-1-Dimethylaminomethyl-2-(4-fluorophenyl) ferrocene (**3h**)

Yellow oil (37.5 mg, 55% yield, 97% *ee*). Analytical data for **3h**: $[\alpha]_D^{20} = +153.1^{\circ}$ (c = 0.25 Acetone, 97% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 6H), 3.09 (AB, $J_{AB} =$ 12.8 Hz, 1H), 3.68 (BA, $J_{BA} =$ 12.8 Hz, 1H), 4.03 (s, 5H), 4.20-4.21 (m, 1H), 4.26-4.27 (m, 1H), 4.41-4.42 (m, 1H), 6.97-7.02 (m, 2H), 7.68-7.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.0, 57.9, 67.0, 69.9, 70.0, 71.6, 82.1, 87.3, 114.7 (d, J = 21.0 Hz), 130.6 (d, J = 7.2 Hz), 134.7 (d, J = 3.2 Hz), 161.3 (d, J = 243.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.8; IR (film) 3093, 2935, 2813, 2766, 1604, 1519,

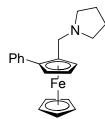

1455, 1364, 1301, 1221, 1159, 1105, 1016, 811 cm⁻¹; HRMS (ESI) exact mass calcd for (C₁₉H₂₀NFFe) requires m/z 335.0970, found m/z 335.0961. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (minor) = 14.23 min, t (major) = 15.06 min.

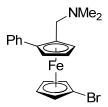
(*S*_p)-1-Dimethylaminomethyl -2-(4-trifluoromethylphenyl) ferrocene (**3i**) Yellow oil (47.0 mg, 61% yield, 94% *ee*).Analytical data for **3i**: $[\alpha]_D^{20} = +198.1^\circ$ (c = 0.25 Acetone, 94% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.21 (s, 6H), 3.09 (AB, *J_{AB}* = 12.8 Hz, 1H), 3.63 (BA, *J_{BA}* = 12.8 Hz, 1H), 4.05 (s, 5H), 4.28-4.30 (m, 1H), 4.34-4.35 (m, 1H), 4.4-4.55 (m, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.0, 58.0, 67.6, 70.2, 70.6, 72.4, 82.2, 85.9, 124.4 (q, *J* = 270.7 Hz), 124.8 (q, *J* = 3.8 Hz), 127.7 (q, *J* = 31.6 Hz), 129.1, 143.4 (q, *J* = 1.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; IR (film) 3094, 2767, 2330, 1615, 1529, 1456, 1409, 1322, 1258, 1160, 1117, 1069, 1016, 973, 819, 689, 655 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₀H₂₀NF₃Fe) requires *m/z* 385.0939, found *m/z* 385.0930. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA = 98 / 2, 0.3 mL/min, λ = 210 nm, t (minor) = 13.08 min, t (major) = 13.74 min.



(*S*_p)-1-Dimethylaminomethyl-2-(4-ethoxycarbonylphenyl) ferrocene (**3j**) Yellow oil (56.3 mg, 72% yield, 95% *ee*). Analytical data for **3j**: $[\alpha]_D^{20} = +207.9^\circ$ (c = 0.25 Acetone, 95% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 1.39 (t, *J* = 7.2 Hz, 3H), 2.17 (s, 6H), 3.08 (AB, *J*_{AB} = 12.8 Hz, 1H), 3.62 (BA, *J*_{BA} = 12.8 Hz, 1H), 4.01 (s, 5H), 4.26-4.28 (m, 1H), 4.32-4.33 (m, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 4.52-4.54 (m, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 45.0, 58.1, 60.8, 67.8, 70.3, 70.6, 72.5, 82.3, 86.2, 127.8, 128.8, 129.2, 144.8, 166.7; IR (film) 2976, 2935, 2855, 2813, 1709, 1606, 1520, 1456, 1365, 1269, 1175, 1098, 1018, 817, 774, 709 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₂H₂₅NO₂Fe) requires *m/z* 389.1276, found *m/z* 389.1265. The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (major) = 19.35 min, t (minor) = 22.20 min.

(S_p)-1-Dimethylaminomethyl-2-methyl ferrocene (**3k**)


Yellow oil (7.3 mg, 14% yield). Analytical data for **3k**: $[\alpha]_D^{20} = -40.0^\circ$ (c = 0.25 Acetone). ¹H NMR (400 MHz, CDCl₃) δ 1.99 (s, 3H), 2.18 (s, 6H), 3.27 (AB, $J_{AB} =$ 12.8 Hz, 1H), 3.36 (BA, $J_{BA} =$ 12.8 Hz, 1H), 3.99 (t, J = 2.8 Hz, 1H), 4.01 (s, 5H), 4.06 (t, J = 1.6 Hz, 1H), 4.12 (q, J = 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.4, 44.8, 57.2, 65.8, 69.0, 69.5, 69.7, 82.3, 84.0; IR (film) 3402, 3089, 2922, 2473, 2324, 1727, 1633, 1475, 1383, 1262, 1104, 1036 927, 810 cm⁻¹; HRMS (ESI) exact mass calcd for (C₁₄H₁₉NFe) requires *m/z* 255.0908, found *m/z* 255.0906.


(S_p)-1-Diethylaminomethyl-2-phenyl ferrocene (**3**I)

Yellow oil (46.3 mg, 67% yield, 90% *ee*). Analytical data for **3l**: $[\alpha]_D^{20} = +178.4^\circ$ (c = 0.25 Acetone, 90% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, J = 7.2 Hz, 6H), 2.41 (q, J = 7.2 Hz, 2H), 2.53 (q, J = 7.2 Hz, 2H), 3.42 (AB, $J_{AB} = 13.2$ Hz, 1H), 3.72 (BA, $J_{BA} = 13.2$ Hz, 1H), 4.06 (s, 5H), 4.21-4.23 (m, 1H), 4.31-4.32 (m, 1H), 4.44-4.45 (m, 1H), 7.22-7.25 (m, 1H), 7.29-7.33 (m, 2H), 7.76-7.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.5, 46.0, 51.4, 66.9, 69.7, 70.0, 71.6, 83.0, 88.4, 126.0, 127.8, 129.6,

138.9; IR (film) 3092, 3057, 2966, 2931, 2792, 2349, 2322, 1601, 1506, 1456, 1369, 1286, 1195, 1167, 1105, 1033, 1000, 807, 763, 700, 650 cm⁻¹; HRMS (ESI) exact mass calcd for ($C_{21}H_{25}NFe$) requires m/z 345.1378, found m/z 345.1370. The enantiomeric excess was determined by phenomenex cellulose-1 (25 cm), CH₃OH / IPA = 9 / 1, 0.7 mL/min, λ = 214 nm, t (minor) = 5.51 min, t (major) = 5.85 min.

(*S*_p)-1-(Pyrrolidin-1-yl-methyl)-2-phenyl ferrocene (**3m**) Yellow oil (49.0 mg, 71% yield, 98% *ee*). Analytical data for **3m**: $[α]_D^{20} = +162.4^\circ$ (c = 0.25 Acetone, 98% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 1.71 (t, *J* = 6.4 Hz, 4H), 2.44 (t, *J* = 8.0 Hz, 4H), 3.33 (AB, *J*_{AB} = 12.8 Hz, 1H), 3.83 (BA, *J*_{BA} = 12.8 Hz, 1H), 4.05 (s, 5H), 4.22 (t, *J* = 2.4 Hz , 1H), 4.33 (t, *J* = 2.0 Hz , 1H), 4.45 (t, *J* = 2.0 Hz, 1H), 7.23-7.25 (m, 1H), 7.30-7.34 (m, 2H), 7.70-7.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.5, 53.9, 54.1, 67.0, 69.8, 70.0, 71.0, 83.0, 87.8, 126.0, 127.9, 129.4, 139.0; IR (film) 3091, 3056, 2959, 2925, 2777, 1730, 1601, 1506, 1459, 1343, 1317, 1260, 1105, 1033, 1000, 933, 877, 808, 764, 701 cm⁻¹; HRMS (ESI) exact mass calcd for (C₂₁H₂₃NFe) requires *m/z* 343.1221, found *m/z* 343.1216. The enantiomeric excess was determined by phenomenex cellulose-1 (25 cm), CH₃CN / IPA = 95 / 5, 0.5mL/min, $\lambda = 214$ nm, t (major) = 10.123 min, t (minor) = 10.700 min.

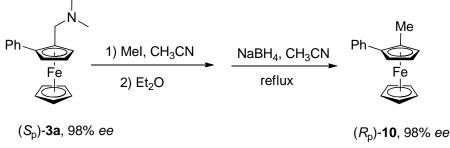
 $(S_{\rm p})$ -1-Dimethylaminomethyl-2-phenyl -1'-bromo ferrocene (**3n**) Yellow oil (54.9 mg, 69% yield, 97% *ee*). Analytical data for **3n**: $[\alpha]_{\rm D}^{20} = +173.6^{\circ}$ (c = 0.25 Acetone, 97% *ee*). ¹H NMR (400 MHz, CDCl₃) δ 2.17 (s, 6H), 3.18 (AB, $J_{AB} =$ 12.8 Hz, 1H), 3.60 (BA, $J_{BA} = 12.8$ Hz, 1H), 3.95-3.98 (m, 2H), 4.20-4.21 (m, 1H), 4.26-4.27 (m, 1H), 4.31-4.32 (m, 2H), 4.48-4.49 (m, 1H), 7.24-7.35 (m, 3H), 7.72-7.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 45.0, 56.9, 69.3, 69.7, 70.0, 71.6, 72.2, 72.3, 74.5, 78.4, 83.4, 89.4, 126.3, 128.0, 129.4, 137.8; IR (film) 3084, 3056, 2938, 2812, 2763, 2322, 1727, 1601, 1506, 1456, 1409, 1351, 1258, 1174, 1151, 1017, 871, 804, 764, 700 cm⁻¹; HRMS (ESI) exact mass calcd for (C₁₉H₂₀NBrFe) requires *m/z* 395.0170, found *m/z* 395.0158. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 98 / 2, 0.3 mL/min, λ = 210 nm, t (minor) = 17.10 min, t (major) = 19.41 min.

Determination of the absolute configuration of product 3a

A solution of (S, Rp)-**6**^[4] (424.0 mg, 1.14 mmol) in freshly distilled THF (100 mL) was successively treated with water (1.1 mL) and sodium sulfate (8.3 g, 58.4 mmol). Then the mixture was cooled to 0 °C before trifluoroacetic acid (0.5 mL) was added *via* a syringe. The reaction mixture was stirred for 60 h at room temperature, and then sodium sulfate (2.4 g, 16.9 mmol) was added before the reaction mixture was filtered. The organic solvent was removed under reduced pressure to leave a dark oil, which was immediately dissolved in freshly distilled 30 mL dichloromethane. The resulting solution was cooled to 0 °C, and acetic anhydride (4 mL, 42.3 mmol) was added followed by pyridine (6.3 mL, 80.2 mmol). The mixture was stirred overnight at room temperature. Then the resulting dark solution was quenched with 3 N HCl, washed

Synthesis of 1-Methyl-2-phenyl-ferrocene (S_p) -8

with saturated sodium bicarbonate solution, dried over anhydrous MgSO₄ and filtrated. After the solvent was removed under reduced pressure, the residue amide (S, R_p)-7 was obtained and used directly in the next step.

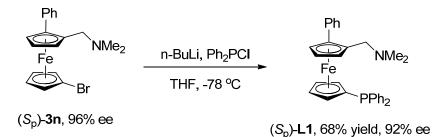

To a solution of the above amide (S, Rp)-7 (344.5 mg, 0.79 mmol) in THF (5 mL) and CH₃OH (15 mL) was added aqueous NaOH (7.9 mL, 2.5 N). The reaction was refluxed for 2 h, then the mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was acidified with hydrochloric acid to pH = 1, then extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the crude carboxylic acid (R_p)-8 was obtained and used directly in the next step.

To a solution of (R_p) -8 (246.8 mg, 0.81 mmol) in CH₂Cl₂ (20 mL) was added oxalyl chloride (154.2 mg, 1.22 mmol). The reaction was stirred for 4 h at room temperature, and then the solvent was removed under reduced pressure. The residue was dissolved with 20 mL CH₂Cl₂, and triethylamine (163.9 mg, 1.62 mmol) and dimethylamine hydrochloride (66.0 mg, 0.81 mmol) were then added. After the resulting mixture was stirred for 4 h, it was quenched with saturated sodium bicarbonate solution, extracted with CH₂Cl₂, washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/8) to afford amide (R_p)-9 (220.3 mg, 82% yield). Analytical data for (R_p)-9: $[\alpha]_D^{20} = +51.8$ (c = 0.25 Acetone). ¹H NMR (300 MHz, CDCl₃) δ 2.41 (s, 3H), 2.95 (s, 3H), 4.24 (s, 5H), 4.32 (t, J = 2.1 Hz, 1H), 4.54 (s, 2H), 7.22-7.31 (m, 3H), 7.49 (d, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.2, 38.1, 65.8, 67.4, 70.7, 71.3, 85.0, 85.6, 126.4, 127.5, 128.2, 138.1, 169.6; IR (film) 2963, 1634, 1412, 1260, 1090, 1019, 866, 798 cm⁻¹; HRMS (ESI) exact mass calcd for ($C_{20}H_{23}NFe$) requires m/z 331.0857, found *m/z* 331.0863.

Under argon, to a solution of amide (R_p) -9 (220.3 mg, 0.66 mmol) in THF (4 mL) was added BH₃ • Me₂S (150.4 mg, 1.98 mmol, 3 equiv). After the reaction was refluxed for 4 h, the mixture was quenched with water, extracted with

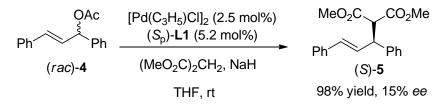
dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/50) to give (S_p)-**10** (36.5 mg, 20% yield). Analytical data for (S_p)-**10**: [a]_D²⁰ = -104.1 (c = 0.25 Acetone, 93% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 2.81 (s, 3H), 4.03 (s, 5H), 4.13 (s, 1H), 4.20 (s, 1H), 4.38 (s, 1H), 7.23-7.34 (m, 3H), 7.53-7.56 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 14.8, 66.1, 69.0, 70.1, 70.5, 81.8, 86.7, 125.9, 127.8, 128.8, 139.0; IR (film) 3087, 3057, 2920, 1946, 1740, 1600, 1504, 1438, 1376, 1265, 1103, 1031, 999, 808, 761, 696, 660, 638 cm⁻¹; HRMS (ESI) exact mass calcd for (C₁₇H₁₆Fe) requires *m/z* 274.0643, found *m/z* 274.0635. The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (minor) = 17.32 min, t (major) = 18.72 min.

Synthesis of 1-methyl-2-phenyl-ferrocene (R_p) -10


 $[a]_{D}^{20} = +140.9^{\circ}$ (c 0.25 Acetone)

To a solution of product **3a** (220.3 mg, 0.69 mmol) in acetonitrile (20 mL) was added CH₃I (293.8 mg, 2.07 mmol). After the reaction was stirred for 1 h at room temperature, diethyl ether was added and the reaction mixture was filtrated. The solid was washed with diethyl ether three times. The combined organic filtrate was concentrated under reduced pressure. The solid was dissolved in acetonitrile, NaBH₄ (52.2 mg, 1.38 mmol) was added in portions. After the reaction was refluxed for 4 h, the reaction mixture was cooled to room temperature, quenched with H₂O and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl

acetate/petroleum ether = 1/10) to give (R_p)-10 (142.9 mg, 75% yield). Analytical data for(R_p)-10: [a]_D²⁰ = +140.9 (c = 0.25 Acetone, 98% *ee*); The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA = 29 / 1, 0.3 mL/min, λ = 254 nm, t (major) = 17.20 min, t (minor) = 18.68 min.


Synthesis of L1 and Pd-catalyzed asymmetric allylic alkylation

Synthesis of 1-dimethylaminomethyl-2-phenyl -1'-diphenylphosphine ferrocene (L1)

To a solution of compound (S_p) -3n (473 mg, 1.1 mmol) in THF (8.8 mL) was added n-BuLi (0.55 mL, 1.3 mmol, 2.4 M in n-hexane) at -78°C under argon. The resulting deep red solution was stirred for 30 min. Then chlorodiphenylphosphine (0.29 mL, 1.5 mmol) was added. The mixture was warmed slowly to 0°C and stirred for 1 h. Then the reaction mixture was quenched with water, extracted with ether. The combined organic layers were washed with brine, dried over Na₂SO₄, and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum = 1/15 v/v, 2% Et₃N) to give (S_p) -L1 (406 mg, 68% yield, 92% ee) as an orange solid. Analytical data for (S_p) -L1: $[\alpha]_{D}^{20} = +24.8^{\circ}$ (c = 0.25 Acetone, 92% ee). ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 6H), 2.88 (AB, $J_{AB} = 12.8$ Hz, 1H), 3.52 (AB, $J_{BA} = 12.8$ Hz, 1H), 4.05 (s, 2H), 4.11-4.13 (m, 2H), 4.20 (s, 1H), 4.24 (s, 1H), 4.41 (s, 1H), 7.19-7.41 (m, 13H), 7.63-7.65 (m, 2H); ³¹P NMR (CDCl₃ 161 MHz) δ -16.91; IR (film) 3055, 2930, 2819, 2772, 2361, 1598, 1504, 1455, 1434, 1303, 1250, 1158, 1091, 1065, 1017, 970, 921, 886, 825, 765, 744 cm⁻¹; HRMS (ESI) exact mass calcd for (C₃₁H₃₀NPFe) requires m/z 501.1507, found m/z 501.1523. The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA = 98 / 2, 0.3 mL/min, λ = 210 nm, t (minor) = 18.78 min, t (major) = 22.80 min.

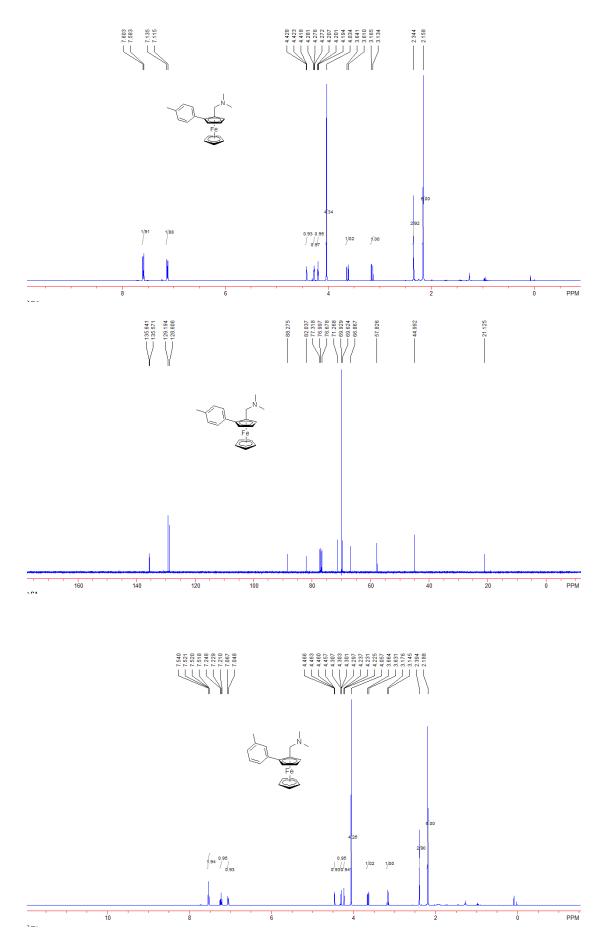
Palladium-Catalyzed Allylic Alkylation with (S_p)-L1

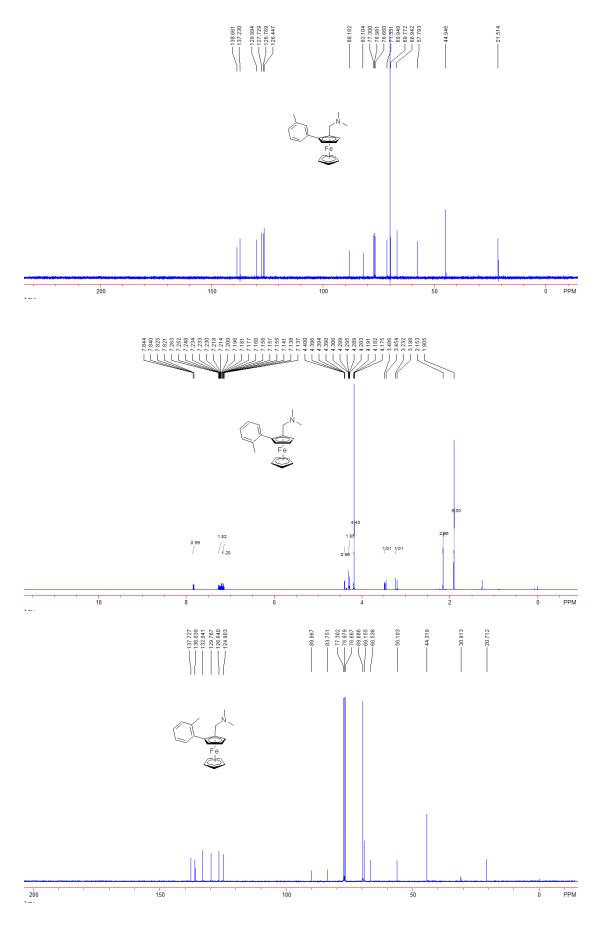
A mixture of ligand (S_p) -L1 (92% ee, 10.1 mg, 0.02 mmol) and $[Pd(C_3H_5)Cl]_2$ (3.7 mg, 0.01 mmol) in dry THF (2 mL) was stirred at room temperature for 0.5 h, and to the resulting yellow solution was added 4 (100.9 mg, 0.4 mmol). After an additional stirring for 10 min, sodium dimethyl malonate [generated in situ by mixture dimethyl malonate (0.08 mL, 0.8 mmol) with sodium hydride (19.2 mg, 0.8 mmol) in 2 mL THF] was added. The reaction was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with NH₄Cl (aq.) and extracted with ether. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (ethyl acetate / petroleum = 10/1) to give **10** (126 mg, 98% yield, 15% ee). Analytical data for (S)- $10^{[5]}$: $[\alpha]_D^{20} = -0.51^\circ$ (c = 1.4 Chloroform, 15% ee). ¹H NMR (400 MHz, $CDCl_3$) δ 3.51 (s, 3H), 3.70 (s, 3H), 3.96 (d, J = 11.2 Hz, 1H), 4.27 (dd, J = 8.8, 10.4 Hz, 1H), 6.33 (dd, J = 8.8, 15.8 Hz, 1H), 6.48 (d, J = 16.0 Hz, 1H), 7.17-7.33 (m, 10H); The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA = 90 / 10, 0.7 mL/min, $\lambda = 254$ nm, t (minor) = 8.12 min, t (major) = 8.71 min. The absolute configuration of the product 10 was assigned as (S) by comparing the optical rotation with that reported in the literature.^[6]

References

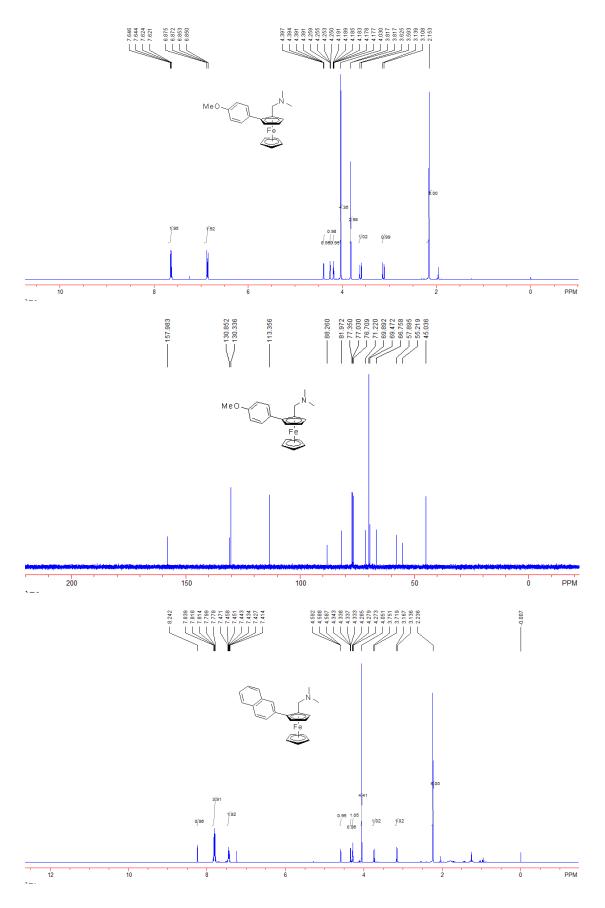
- (1) Khrushcheva, N. S.; Sokolov, V. I. Russian. Chemical. Bulletin. 2004, 53, 830.
- (2) Bhat, A. R.; Bhat, A. I.; Athar, F.; Azam, A. *Helvetica. Chimica. Acta.* **2009**, *92*, 1644.
- (3) Michael, W.; Ulrike, N.; Kurt, M. Tetrahedron: Asymmetry 1999, 10, 4369.

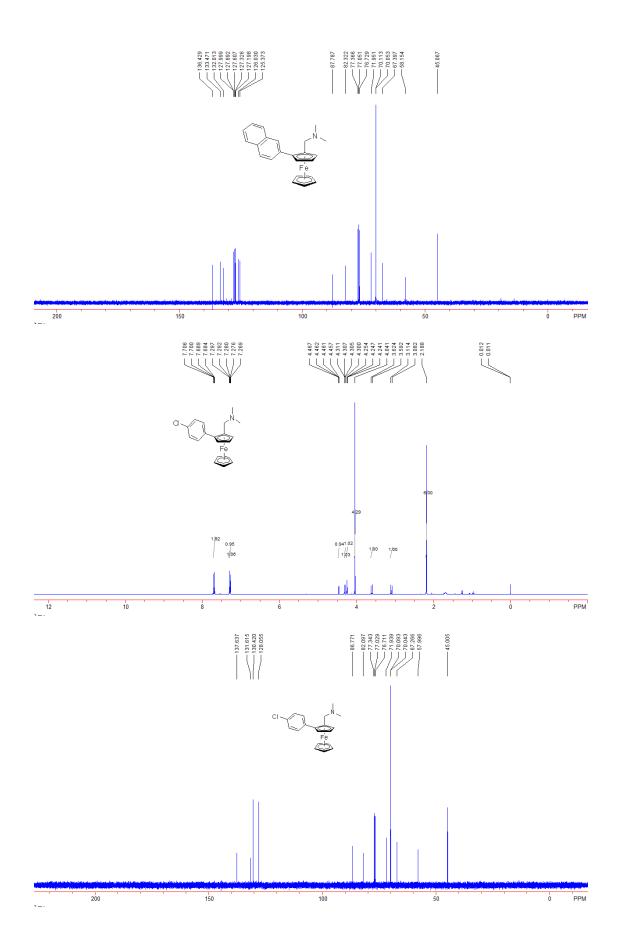
(4) Xia, J.-B.; You, S.-L. Organometallics 2007, 26, 4869.

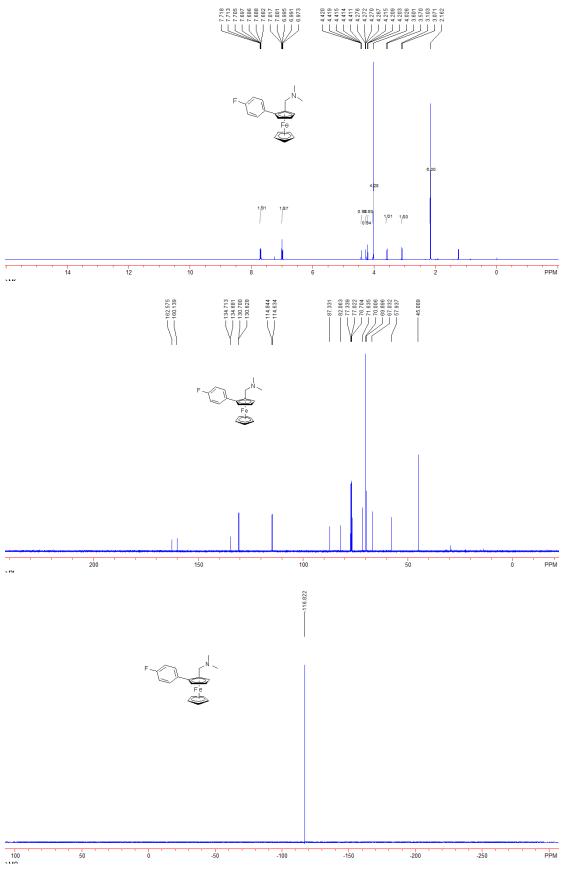

(5) Deng, W.-P.; You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W.; Sun, J. J.

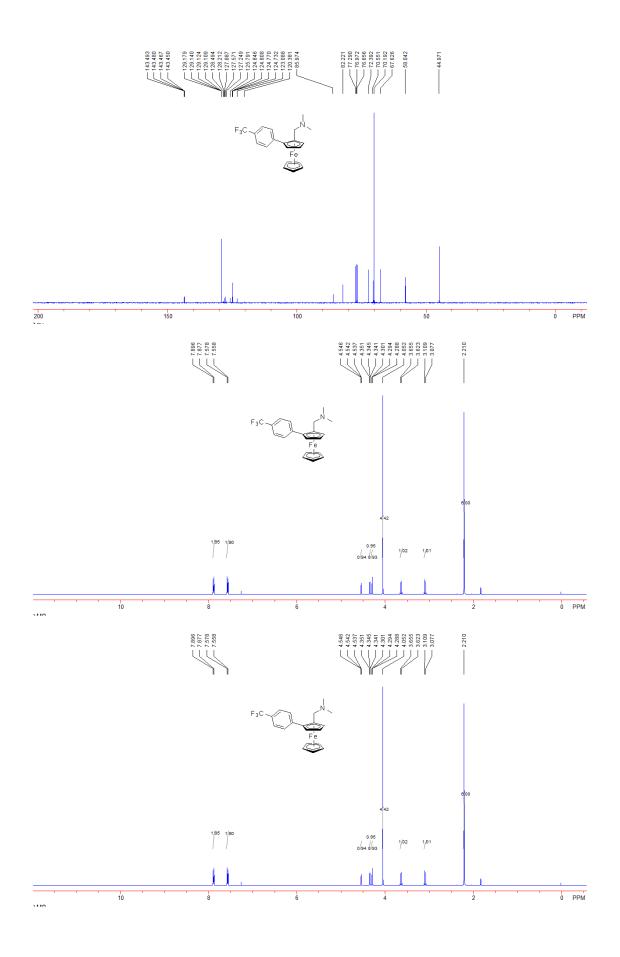

Am. Chem. Soc. 2001, 123, 6508.

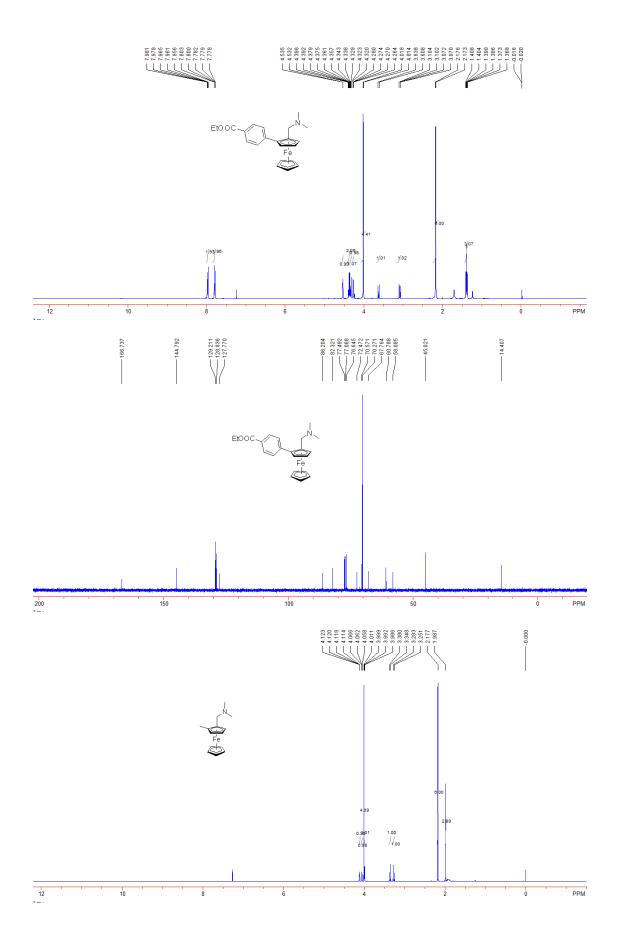
(6) Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. Tetrahedron Lett. 1986, 27,

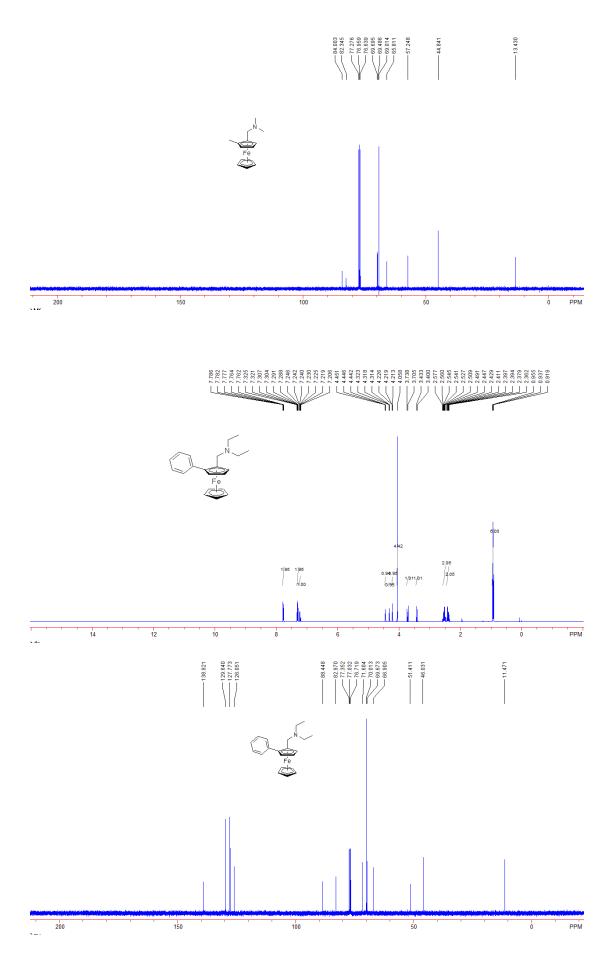

191.

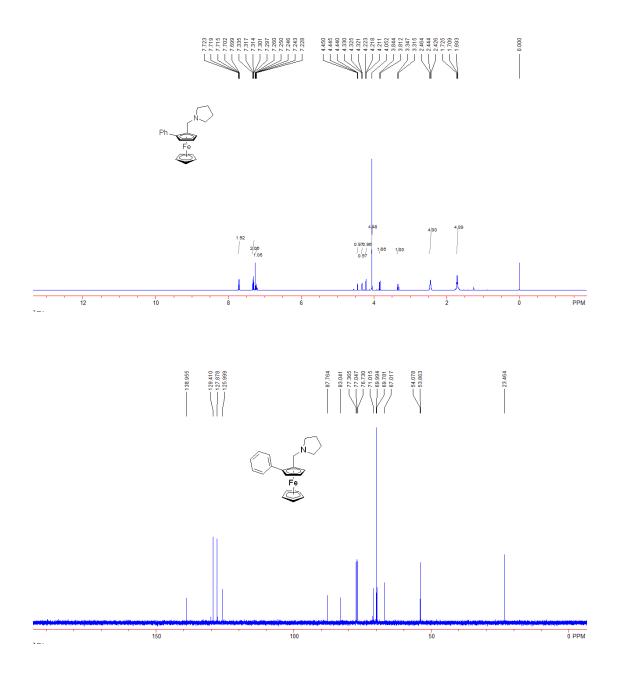

NMR and HPLC Spectra 4,471 4,467 4,466 4,466 4,466 4,466 4,466 4,462 4,462 4,462 4,209 4,209 4,209 4,209 4,209 4,209 3,105 3,105 3,105 3,105 3,1169 4,11694,1169 4,1169 4,1169 4,1169 4,1169 4,1169 4,1169 4,11694,1169 4,1169 4,1169 4,1169 4,1169 4,11694,1169 4,1169 4,1169 4,1169 4,11694,1169 4,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,11694,1169 4,11694,1169 4,1169 4,11694,1169 4,1169 4,11694,1169 4,11694,1169 4,11694,1169 4,11694,1169 4,11694 0.072 1.83 1/88 / / 0.92 0.89 0.90 _f.01 1.02 LU. PPM 10 ·_-129.323 -138.862 82.157 77.335 77.016 76.696 71.521 70.020 69.885 67.088 67.088 -88.134 -45.031 200 150 50 PPM 100 0

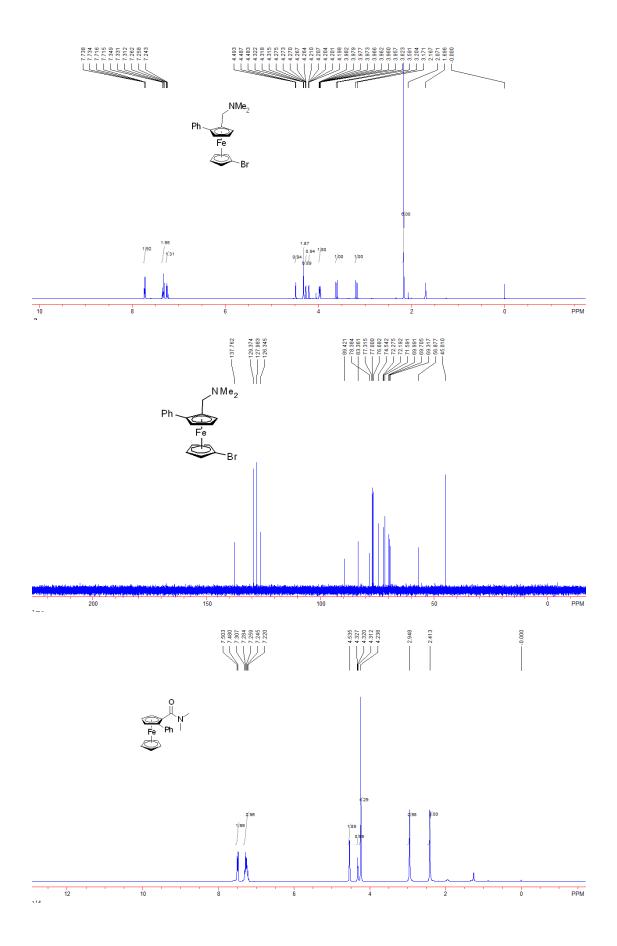


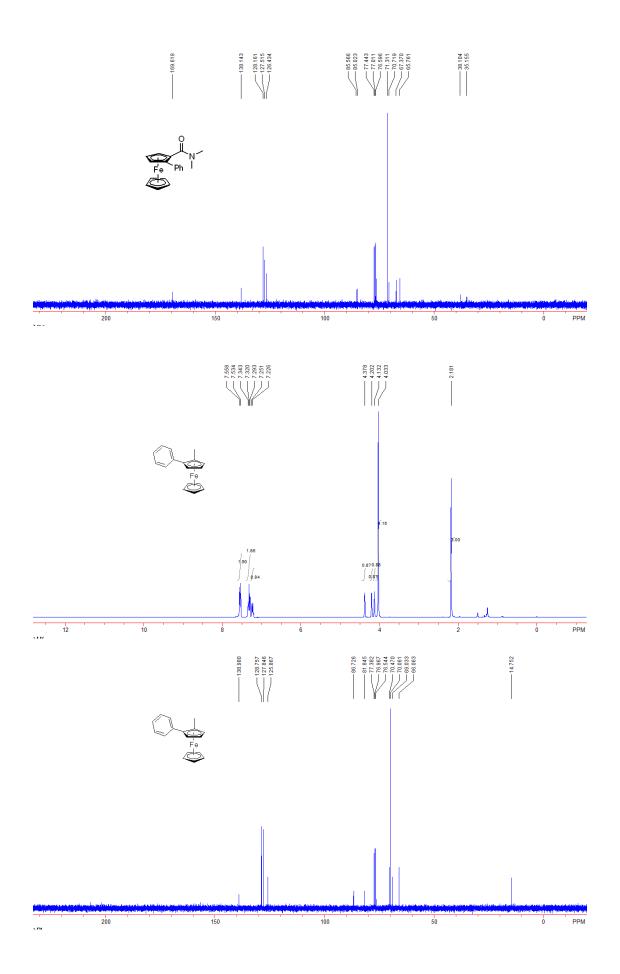

S19

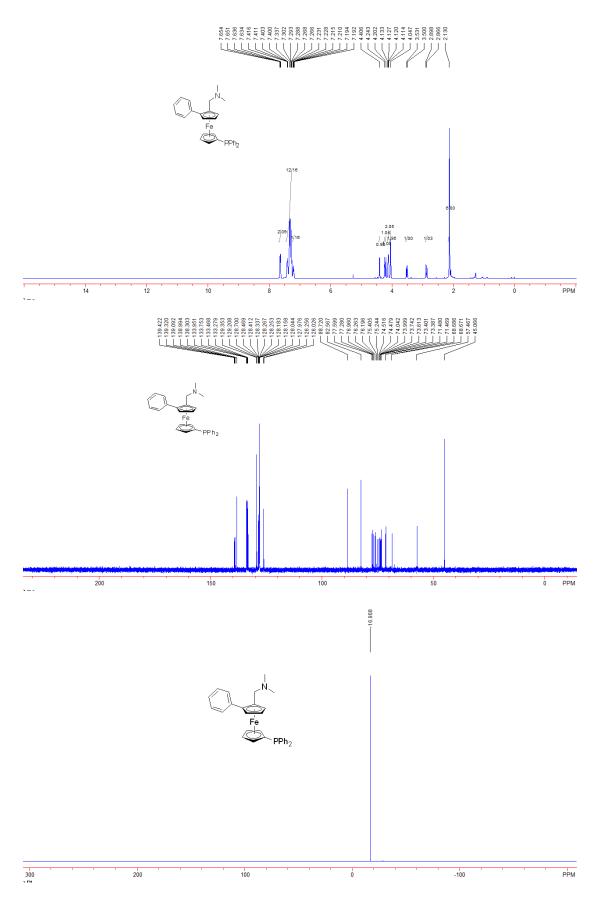


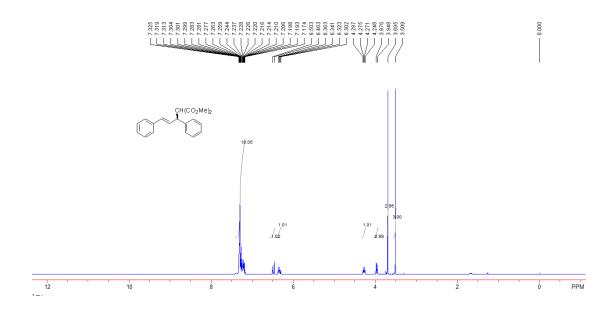


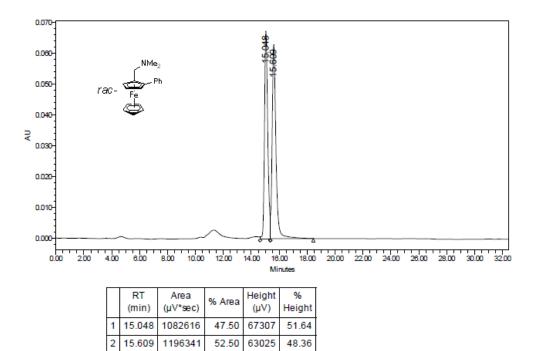


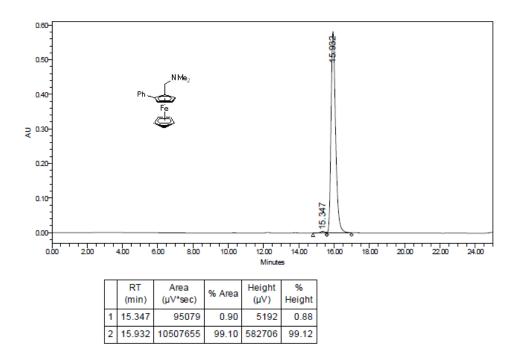


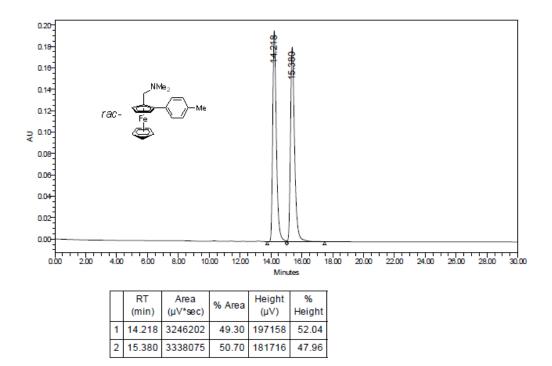


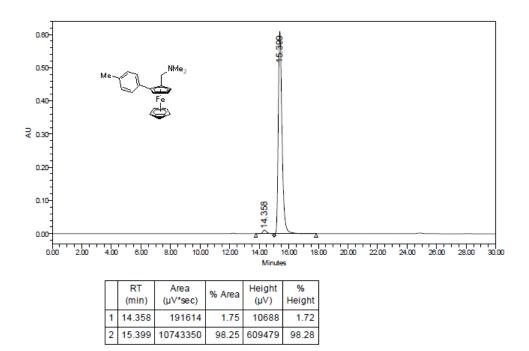


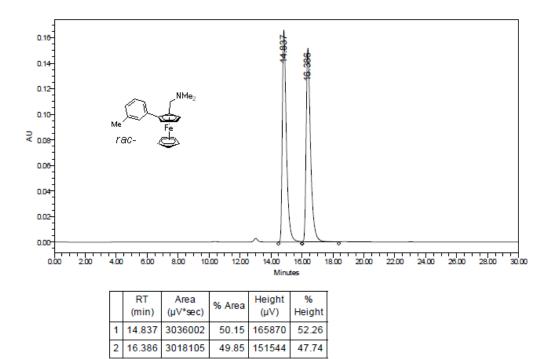

S25

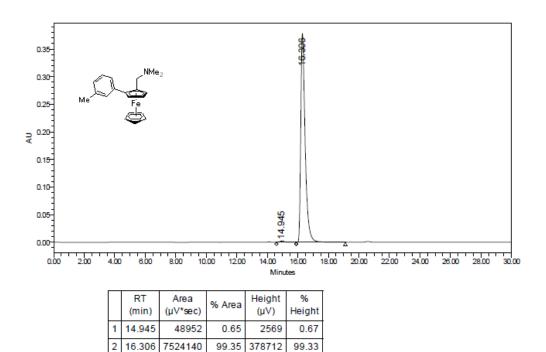


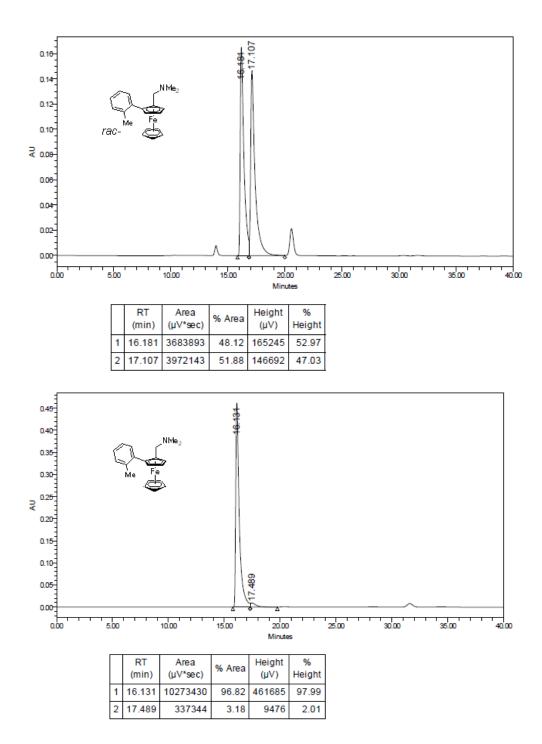


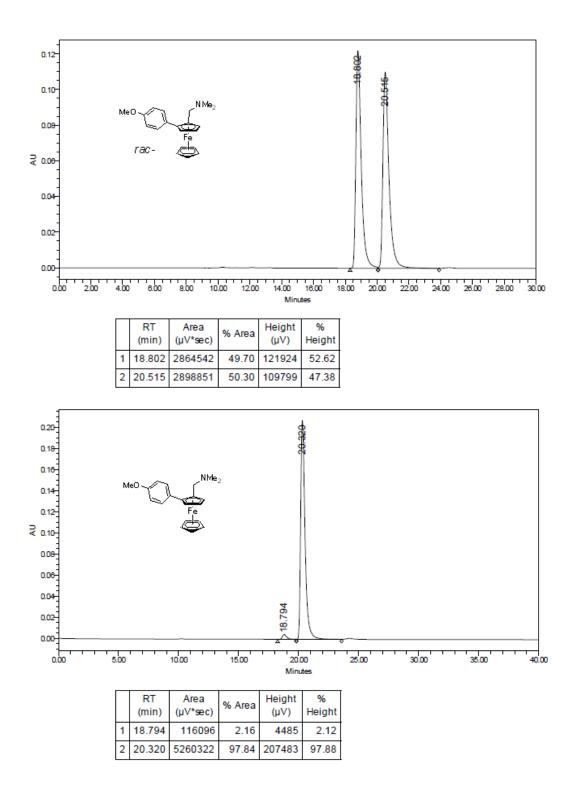


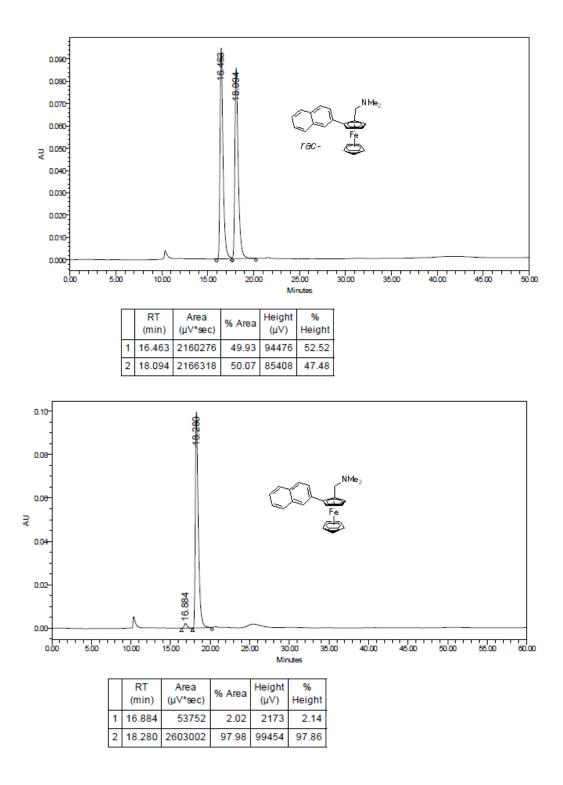


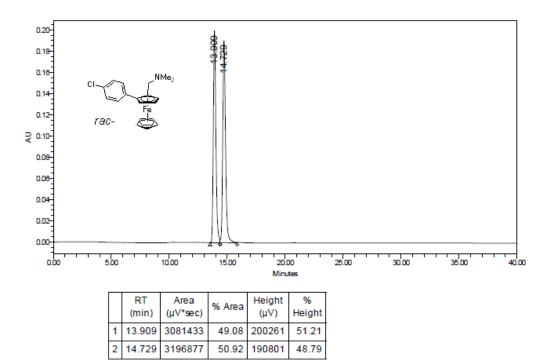


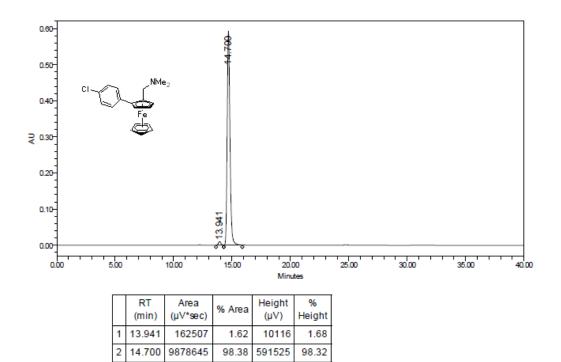


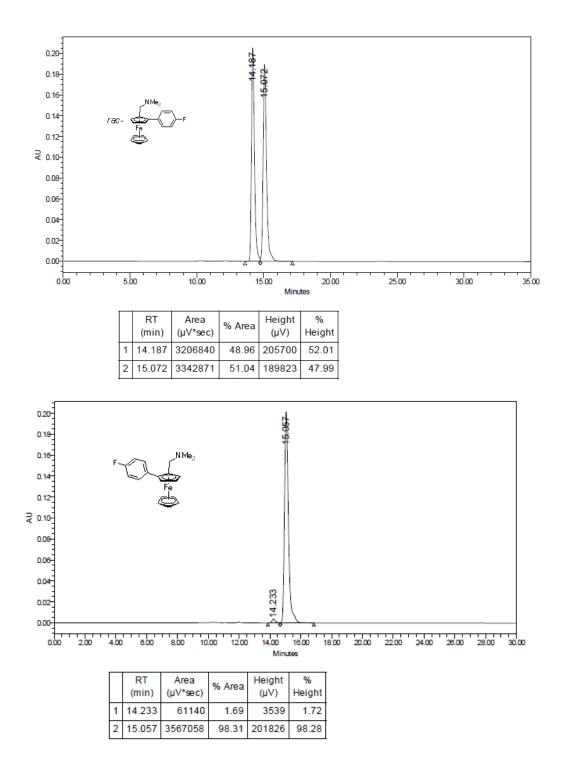


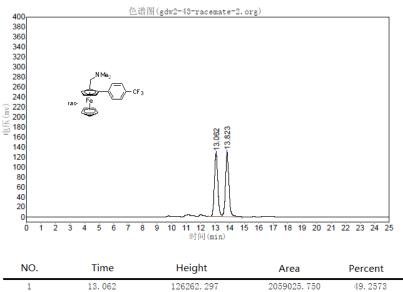


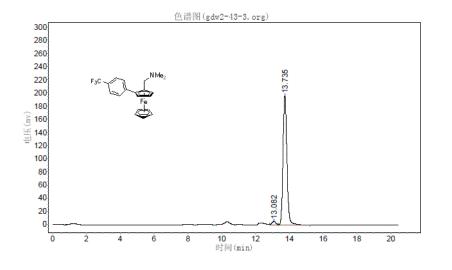


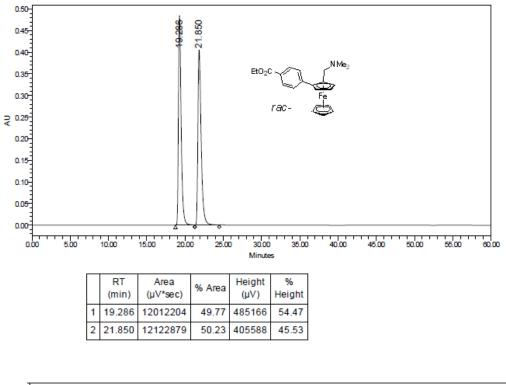


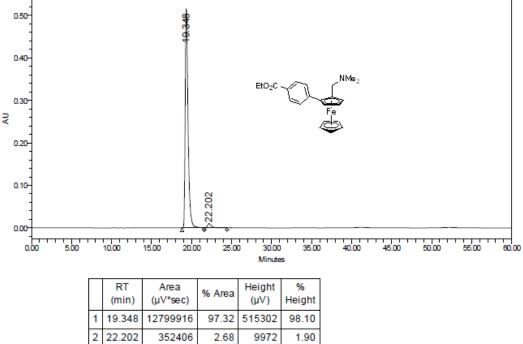


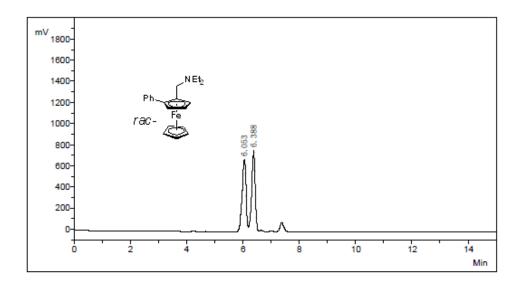




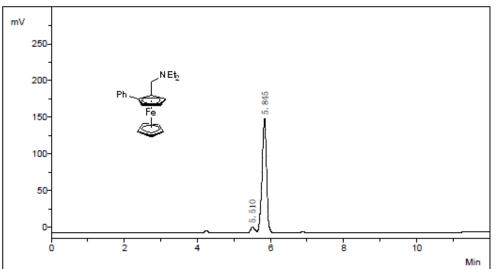




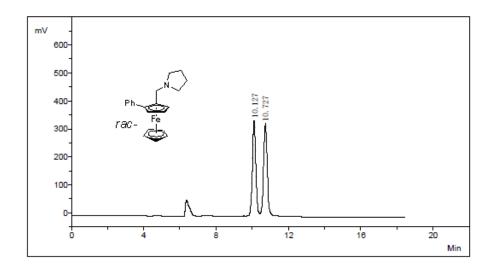


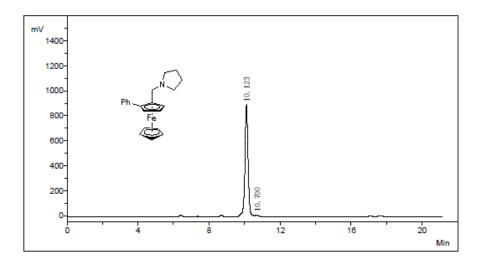

2 13.823 129310.391 2121119.750 50.7427	 50.7427	2121119.750	129310.391	13. 625	4
1 13.062 126262.297 2059025.750 49.2573	49.2573	20000201.000			1

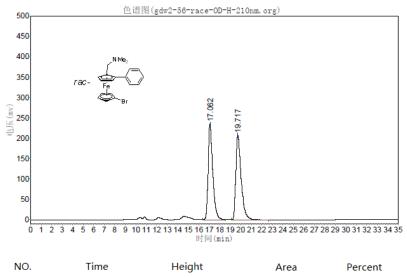
NO.	Time	Height	Area	Percent
1	13.082	5602.569	95153.945	2.9033
2	13.735	197002.766	3182240.500	97.0967
		202605.335	3277394.445	100.0000

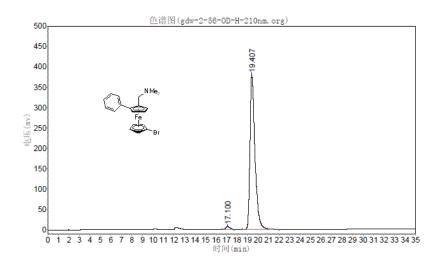


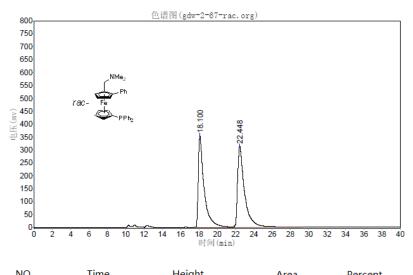
No. I	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		6.053	670736.9	6496442.6	49.6486	
2	2		6.388	754749.2	6588415.9	50.3514	

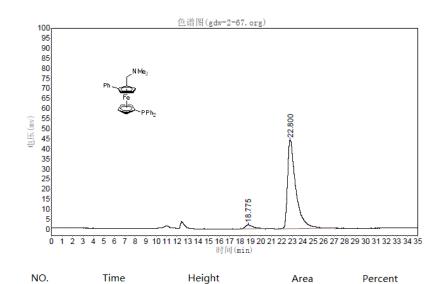


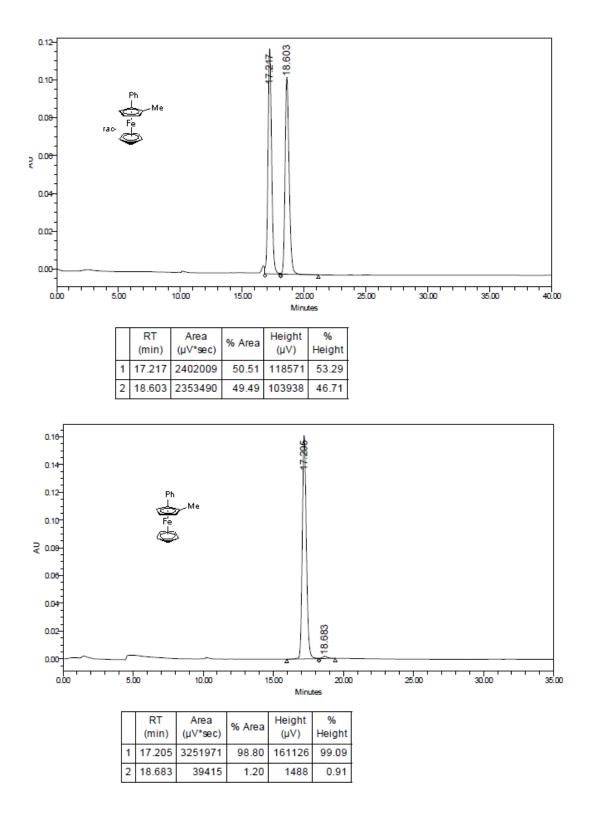


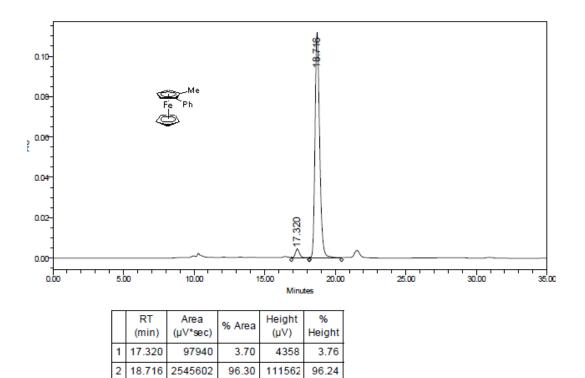

No. P	eakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1 2	1 2		5. 510 5. 845	7964. 6 155872. 8	63290. 5 1333993. 5	4. 5295 95. 4705	
Total				163837.4	1397284.0	100.0000	

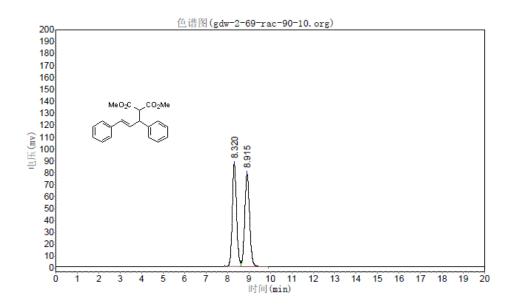

No. P	eakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
-	1		10.127	336782.5	4592806.2	49.0314	
2	2		10.727	328692.5	4774262.7	50.9686	
Total				665475.0	9367068.9	100.0000	

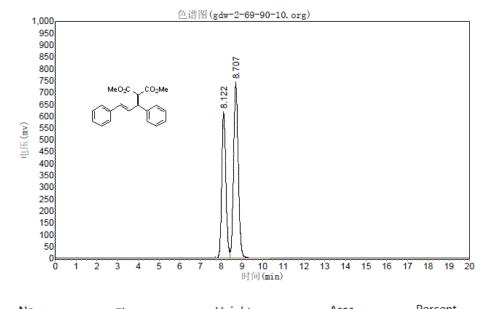

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1 2	1 2		10. 123 10. 700	890498. 4 9009. 2	11167632.6 127816.4	98.8684 1.1316	
Total				899507.6	11295449.0	100.0000	


		5		
1	17.062	235543.578	7248012.000	49.2302
2	19.717	208333.734	7474683.000	50.7698
		443877.313	14722695.000	100.0000


NO.	Time	Height	Area	Percent
1	17.100	6840.289	180528.297	1.4142
2	19.407	379586.875	12584795.000	98.5858
		386427.164	12765323.297	100.0000




NO.	Time	Height	Area	Percent	
1	18.100	357102.250	15758846.000	48.7153	
2	22.448	315193.781	16590040.000	51.2847	
		672296.031	32348886.000	100.0000	


NO). Time	Height	Area	Percent
1	18.775	1873.883	99021.203	3.9278
2	22.800	44000.984	2422027.000	96.0722
		45874.867	2521048.203	100.0000

No.	Time	Height	Area	Percent	
1	8.320	85921.734	1200669.500	49.6353	
2	8.915	78175.141	1218312. 125	50.3647	
		164096.875	2418981.625	100.0000	

No.	Time	Height	Area	Percent	
1	8.122	608668.500	8568984.000	42.6514	
2	8.707	733313. 313	11521746.000	57.3486	
		1341981.813	20090730.000	100.0000	