Enantioselective Synthesis of Planar Chiral Ferrocenes via

 Palladium-catalyzed Direct Coupling with Aryl Boronic AcidsDe-Wei Gao, Yan-Chao Shi, Qing Gu,* Zheng-Le Zhao, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China Fax (+86) 21-54925087; E-mail: qinggu@sioc.ac.cn or slyou@sioc.ac.cn

Table of Contents

General Methods S2
Complete optimization data S2
Monitoring kinetic resolution effect of bispenylation S4
Enantioselective synthesis of planar chiral ferrocene S4
Determination of the absolute configuration of product 3a S12
Synthesis of $\mathbf{L 1}$ and Pd-catalyzed asymmetric allylic alkylation S14
References S16
Copies of NMR and HPLC spectra S17

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian instrument (300 MHz and $75 \mathrm{MHz}, 400 \mathrm{MHz}$ and 100 MHz , respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant(s) in Hz, integration). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm).

Compounds 1a-d ${ }^{1-3}$ were prepared by reductive amination of ferrocene aldehyde with the corresponding amines. $\left(S, R_{\mathrm{p}}\right)-7$ was prepared according to the reported procedure. ${ }^{4}$

Complete optimization data

Table 1. Examination of oxidants ${ }^{a}$

entry	oxidant	3a:3a' ${ }^{b}$	${\text { yield }(\%)^{c}}^{c}$	ee $(\%)^{d}$
$\mathbf{1}$	Air	$\mathbf{8 . 3 : 1}$	74^{c}	$\mathbf{9 8}$
2	$\mathrm{Ag}_{2} \mathrm{O}$	-	7	-
3	$\mathrm{AgOAc}^{\text {a }}$	-	<5	-
4	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	-	15	-
5	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	-	15	-
6	$\mathrm{Cu}(\mathrm{OAc})_{2}$	-	14	-
7	$\mathrm{Cu}(\mathrm{OTf})_{2}$	-	24	-
8^{e}	O_{2}	$15: 1$	$69(80)$	95

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol}), \mathbf{2 a}(0.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, Boc-L-Val-OH (20 mol \%), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv), TBAB (0.25 equiv) and oxidant (2 equiv for entries 2-7) in DMA at $80^{\circ} \mathrm{C} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{c}$ Isolated yield. ${ }^{d}$ Ee of $\mathbf{3 a}$ was determined by HPLC analysis. ${ }^{e}$ Oxygen balloon was used.

Table 2. Examination of base and solvent ${ }^{a}$

entry	solvent	base	3a:3a' ${ }^{b}$	yield (\%) ${ }^{c}$	ee (\%) ${ }^{d}$
$\mathbf{1}$	DMA	$\mathbf{K}_{2} \mathbf{C O}_{3}$	$\mathbf{8 . 3 : 1}$	$\mathbf{7 4}$	$\mathbf{9 8}$
2	DMA	KHCO_{3}	$9.5: 1$	46^{b}	-
3	DMA	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$8: 1$	24^{b}	-
4	DMA	$\mathrm{NaOAc}^{\mathrm{BAc}}$	$5.6: 1$	23^{b}	-
5	DMA	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$7.7: 1$	70	99
6	DMF	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$22: 1$	39	97
7	2-methyl-2-butanol	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$4.3: 1$	12^{b}	-
8	NMP	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$20: 1$	55	92

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a $(0.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, Boc-L-Val-OH (20 mol \%), base (1 equiv), TBAB (0.25 equiv) in 1.5 mL solvent at $80^{\circ} \mathrm{C}$. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{c}$ Isolated yield. ${ }^{d}$ Ee of 3a was determined by HPLC analysis.

Table 3. Examination of the amount of phenylboronic acid, catalyst loading and temperature ${ }^{a}$

entry	equiv of 2a	x	y	$T\left({ }^{\circ} \mathrm{C}\right)$	3a:3a' b	${\text { yield }(\%)^{c}}^{c}$	ee $(\%)^{d}$
1	1.1	10	20	80	$25: 1$	60	97
2	1.5	10	20	80	$8.3: 1$	71	98
3	2	10	20	80	$8.3: 1$	74	98
4	3	10	20	80	$9.5: 1$	23	90
5	2	5	10	60	$33: 1$	45	97
6	2	2.5	5	60	-	29	95
7	2	1	2	60	-	9^{b}	-
8	2	10	11	60	$12: 1$	71	96

[^0]Table 4. Monitoring kinetic resolution effect of bispenylation ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a $(0.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, Boc-L-Val-OH (20 $\mathrm{mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv), TBAB (0.25 equiv) in 1.5 mL DMA under air at $60^{\circ} \mathrm{C}$. The ratio of 3a/3a' and ee of 3a were determined every two hours. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{c}$ Determined by HPLC analysis.

General procedure for the enantioselective synthesis of planar chiral ferrocene

To a solution of boronic acid $2(0.4 \mathrm{mmol})$ in DMA (1.5 mL) was added Boc-L-Val-OH ($8.7 \mathrm{mg}, 0.04 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(27.6$ $\mathrm{mg}, 0.2 \mathrm{mmol}$), TBAB (tetrabutyl ammonium bromide) ($16.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) and ferrocene $\mathbf{1}(0.2 \mathrm{mmol})$ successively. The mixture was stirred at $60^{\circ} \mathrm{C}$ under air (open flask). After the reaction was complete (monitored by TLC), it was then quenched with saturated aqueous NaHCO_{3} solution and extracted with EtOAc three times. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine successively, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (ethyl acetate/ petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v}, 2 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford desired product 3.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-phenyl ferrocene (3a)
Yellow oil ($50.7 \mathrm{mg}, 79 \%$ yield, $98 \% \mathrm{ee}$). Analytical data for 3a: $[\alpha]_{\mathrm{D}}{ }^{20}=+182.3^{\circ}(\mathrm{c}=$ 0.25 Acetone, $98 \% e e$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 6 \mathrm{H}), 3.15\left(\mathrm{AB}, J_{A B}=\right.$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~s}, 5 \mathrm{H}), 4.23-4.24(\mathrm{~m}, 1 \mathrm{H})$, 4.30-4.31 (m, 1H), 4.46-4.47 (m, 1H), 7.23-7.30 (m, 1H), 7.31-7.34 (m, 2H), 7.70-7.73 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.0,57.9,67.1,69.9,70.0,71.5$, 82.2, 88.1, 126.0, 127.9, 129.3, 138.9; IR (film) 3070, 2932, 2762, 1725, 1600, 1452, 1357, 1255, 1171, 1105, 1014, 816, 761, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NFe}\right)$ requires $m / z 317.1065$, found m / z 317.1073. The enantiomeric excess was determined by phenomenex cellulose-4 $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=29 / 1,0.3$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=15.35 \mathrm{~min}, \mathrm{t}($ major $)=15.93 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-(4-methylphenyl) ferrocene (3b)
Yellow oil ($47.0 \mathrm{mg}, 70 \%$ yield, 97% ee). Analytical data for $\mathbf{3 b}:[\alpha]_{\mathrm{D}}{ }^{20}=+157.9^{\circ}(\mathrm{c}=$ 0.25 Acetone, 97% ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16$ (s, 6H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 3.15$ $\left(\mathrm{AB}, J_{A B}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63\left(\mathrm{BA}, J_{B A}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{~s}, 5 \mathrm{H}), 4.19-4.21(\mathrm{~m}$, $1 \mathrm{H}), 4.27-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.43(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.1,45.0,57.8,66.9,69.6,69.9,71.3,82.0$, 88.3, 128.6, 129.2, 135.5, 135.6; IR (film) 3092, 2935, 2811, 2762, 1726, 1524, 1454, 1301, 1258, 1173, 1105, 1016, 815, $721 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NFe}\right)$ requires m / z 331.1221, found m / z 331.1213. The enantiomeric excess was determined by phenomenex cellulose-4 $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=29 / 1,0.3$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=14.36 \mathrm{~min}, \mathrm{t}($ major $)=15.40 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-(3-methylphenyl) ferrocene (3c)
Yellow oil ($54.3 \mathrm{mg}, 81 \%$ yield, $99 \% e e$). Analytical data for $3 \mathrm{c}: ~[\alpha]_{\mathrm{D}}{ }^{20}=+168.1^{\circ}$ ($\mathrm{c}=$ 0.25 Acetone, 99% ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.19$ (s, 6H), 2.39 ($\mathrm{s}, 3 \mathrm{H}$), 3.15 $\left(\mathrm{AB}, J_{A B}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.65\left(\mathrm{BA}, J_{B A}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06(\mathrm{~s}, 5 \mathrm{H}), 4.06-4.23(\mathrm{~m}$, $1 \mathrm{H}), 4.30-4.31(\mathrm{~m} \mathrm{1H}), 4.46-4.47(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,44.9,57.8,66.9,69.8$, 69.9, 71.3, 82.1, 88.2, 126.4, 126.8, 127.7, 130.0, 137.2, 138.7; IR (film) 3093, 2936, 2811, 2762, 1727, 1605, 1499, 1454, 1354, 1258, 1173, 1105, 1020, 1000, 807, 785, $705 \mathrm{~cm}^{-1} ;$ HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NFe}\right)$ requires m / z 331.1221, found m / z 331.1214. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=29 / 1,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=14.95$ $\min , \mathrm{t}($ major $)=16.31 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-(2-methylphenyl) ferrocene (3d)
Yellow oil ($22.4 \mathrm{mg}, 33 \%$ yield, $94 \% \mathrm{ee}$). Analytical data for 3d: $[\alpha]_{\mathrm{D}}^{20}=-128.1^{\circ}$ (c = 0.25 Acetone, 94% ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.91$ (s, 6H), $2.15(\mathrm{~s}, 3 \mathrm{H}), 3.21$ $\left(\mathrm{AB}, J_{A B}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.47\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19(\mathrm{~s}, 5 \mathrm{H}) 4.28-4.31(\mathrm{~m}$, $2 \mathrm{H})$, 4.39-4.30 (m, 1H), 7.14-7.25 (m, 3H), 7.82-7.84 (m, 1H), ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.7,30.9,44.3,56.1,66.5,69.2,69.7,83.8,90.0,124.9,126.6,129.8$, 132.9, 136.0, 137.7; IR (film) 3093, 2926, 2812, 2763, 2322, 1676, 1498, 1454, 1247, 1175, 1106, 1018, 1001, 814, 762, $726 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NFe}\right)$ requires $m / z 331.1221$, found m / z 331.1216. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=29 / 1,0.3$
$\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=16.13 \mathrm{~min}, \mathrm{t}($ minor $)=17.49 \mathrm{~min}$.

(S_{p})-1-Dimethylaminomethyl-2-(4-methoxyphenyl) ferrocene (3e)
Yellow oil (59% yield, $96 \% \mathrm{ee}$). Analytical data for $3 \mathrm{e}:[\alpha]_{\mathrm{D}}{ }^{20}=+173.5^{\circ}(\mathrm{c}=0.25$ Acetone, $96 \% \mathrm{ee})$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 2.15(\mathrm{~s}, 6 \mathrm{H}), 3.12\left(\mathrm{AB}, J_{A B}=12.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61\left(\mathrm{BA}, J_{B A}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 5 \mathrm{H}), 4.18-4.19(\mathrm{~m}, 1 \mathrm{H})$, 4.25-4.26 (m, 1H), 4.39-4.40 (m, 1H), 6.85-6.88 (m, 2H), 7.62-7.65 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 45.0,55.2,57.9,66.8,69.5,69.9,71.2,82.0,88.3,113.3$, 130.3, 130.9, 158.0; IR (film) 3092, 2934, 2812, 2764, 1610, 1574, 1521, 1455, 1364, 1288, 1244, 1176, 1105, 1034, $830 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NOFe}\right)$ requires m / z 347.1170, found m / z 347.1162. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes $/ \mathrm{IPA}=29 / 1,0.3$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=18.79 \mathrm{~min}, \mathrm{t}($ major $)=20.32 \mathrm{~min}$.

(S_{p})-1-Dimethylaminomethyl -2-(2-naphthyl) ferrocene (3f)
Yellow oil ($55.8 \mathrm{mg}, 75 \%$ yield, $96 \% \mathrm{ee}$). Analytical data for $3 \mathrm{f}:[\alpha]_{\mathrm{D}}{ }^{20}=-42.6^{\circ}(\mathrm{c}=$ 0.25 Acetone, $96 \% e e) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.24(\mathrm{~s}, 6 \mathrm{H}), 3.15\left(\mathrm{AB}, J_{A B}=\right.$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73\left(\mathrm{BA}, J_{B A}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~s}, 5 \mathrm{H}), 4.27-4.28(\mathrm{~m}, 1 \mathrm{H})$, 4.33-4.34 (m, 1H), 4.58-459 (m, 1H), 7.41-7.47 (m, 2H), 7.78-7.84 (m, 4H), $8.24(\mathrm{~s}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.1,58.2,67.4,70.0,70.1,71.9,82.3,87.8$, 125.4, 126.0, 127.2, 127.3, 127.6, 127.9, 128.0, 132.0, 133.5, 136.4; IR (film) 3090, 2934, 2852, 2811, 2763, 1724, 1628, 1599, 1508, 1454, 1354, 1253, 1173, 1104, 1016, $999,963,813,746 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NFe}\right)$ requires m / z
367.1221, found m / z 367.1217. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=29 / 1,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=$ $16.88 \mathrm{~min}, \mathrm{t}($ major $)=18.28 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-(4-chlorophenyl) ferrocene (3g)
Yellow oil ($50.9 \mathrm{mg}, 72 \%$ yield, $97 \% e e$). Analytical data for $3 \mathrm{~g}:[\alpha]_{\mathrm{D}}{ }^{20}=+185.7^{\circ}(\mathrm{c}=$ 0.25 Acetone, 97% ee). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.19(\mathrm{~s}, 6 \mathrm{H}), 3.09\left(\mathrm{AB}, J_{A B}=\right.$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.04(\mathrm{~s}, 5 \mathrm{H}), 4.04-4.25(\mathrm{~m}, 1 \mathrm{H})$, 4.30-4.31 (m, 1H), 4.46-4.47 (m, 1H), 7.27-7.30 (m, 2H), 7.68-7.71 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 45.0,58.0,67.3,70.0,70.1,71.9,82.1,86.8,128.1,130.4$, 131.6, 137.6; IR (film) 3092, 2936, 2812, 2765, 1725, 1503, 1454, 1257, 1174, 1091, 1014, $971,817,726 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NClFe}\right)$ requires m / z 351.0675, found m / z 351.0668. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes $/ \mathrm{IPA}=29 / 1,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ $(\operatorname{minor})=13.94 \mathrm{~min}, \mathrm{t}($ major $)=14.70 \mathrm{~min}$.

(S_{p})-1-Dimethylaminomethyl-2-(4-fluorophenyl) ferrocene (3h)
Yellow oil ($37.5 \mathrm{mg}, 55 \%$ yield, 97% ee). Analytical data for $3 \mathbf{h}:[\alpha]_{\mathrm{D}}{ }^{20}=+153.1^{\circ}$ (c $=$ 0.25 Acetone, $97 \% e e$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16(\mathrm{~s}, 6 \mathrm{H}), 3.09\left(\mathrm{AB}, J_{A B}=\right.$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{~s}, 5 \mathrm{H}), 4.20-4.21(\mathrm{~m}, 1 \mathrm{H})$, 4.26-4.27 (m, 1H), 4.41-4.42 (m, 1H), 6.97-7.02 (m, 2H), 7.68-7.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 45.0,57.9,67.0,69.9,70.0,71.6,82.1,87.3,114.7$ (d, $J=$ $21.0 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 161.3(\mathrm{~d}, J=243.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.8; IR (film) 3093, 2935, 2813, 2766, 1604, 1519,

1455, 1364, 1301, 1221, 1159, 1105, 1016, $811 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for ($\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NFFe}$) requires m / z 335.0970, found m / z 335.0961. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes / IPA $=29 / 1$, $0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=14.23 \mathrm{~min}, \mathrm{t}($ major $)=15.06 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl -2-(4-trifluoromethylphenyl) ferrocene (3i)
Yellow oil ($47.0 \mathrm{mg}, 61 \%$ yield, $94 \% \mathrm{ee}$).Analytical data for $3 \mathrm{i}:[\alpha]_{\mathrm{D}}{ }^{20}=+198.1^{\circ}(\mathrm{c}=$ 0.25 Acetone, $94 \% e e) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.21(\mathrm{~s}, 6 \mathrm{H}), 3.09\left(\mathrm{AB}, J_{A B}=\right.$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~s}, 5 \mathrm{H}), 4.28-4.30(\mathrm{~m}, 1 \mathrm{H})$, $4.34-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.4-4.55(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 45.0,58.0,67.6,70.2,70.6,72.4,82.2,85.9$, $124.4(\mathrm{q}, J=270.7 \mathrm{~Hz}), 124.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 127.7(\mathrm{q}, J=31.6 \mathrm{~Hz}), 129.1,143.4(\mathrm{q}$, $J=1.3 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3$; IR (film) 3094, 2767, 2330, 1615, $1529,1456,1409,1322,1258,1160,1117,1069,1016,973,819,689,655 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NF}_{3} \mathrm{Fe}\right)$ requires $m / z 385.0939$, found m / z 385.0930. The enantiomeric excess was determined by phenomenex cellulose-4 (25 cm), Hexanes $/ \mathrm{IPA}=98 / 2,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}($ minor $)=13.08 \mathrm{~min}, \mathrm{t}$ (major) $=13.74 \mathrm{~min}$.

(S_{p})-1-Dimethylaminomethyl-2-(4-ethoxycarbonylphenyl) ferrocene (3j)
Yellow oil ($56.3 \mathrm{mg}, 72 \%$ yield, 95% ee). Analytical data for $3 \mathbf{j}:[\alpha]_{\mathrm{D}}{ }^{20}=+207.9^{\circ}(\mathrm{c}=$ 0.25 Acetone, 95% ee $).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 2.17 (s, $6 \mathrm{H}), 3.08\left(\mathrm{AB}, J_{A B}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.62\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01(\mathrm{~s}, 5 \mathrm{H})$, $4.26-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.54(\mathrm{~m}, 1 \mathrm{H})$,
7.79 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.97 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $14.4,45.0,58.1,60.8,67.8,70.3,70.6,72.5,82.3,86.2,127.8,128.8,129.2,144.8$, 166.7; IR (film) 2976, 2935, 2855, 2813, 1709, 1606, 1520, 1456, 1365, 1269, 1175, 1098, 1018, 817, 774, $709 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Fe}\right)$ requires $m / z 389.1276$, found $m / z 389.1265$. The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=29 / 1,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=19.35 \mathrm{~min}, \mathrm{t}($ minor $)=22.20 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-methyl ferrocene ($\mathbf{3 k}$)
Yellow oil ($7.3 \mathrm{mg}, 14 \%$ yield). Analytical data for $3 \mathbf{k}:[\alpha]_{\mathrm{D}}{ }^{20}=-40.0^{\circ}(\mathrm{c}=0.25$ Acetone). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 3.27\left(\mathrm{AB}, J_{A B}=\right.$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.99(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 5 \mathrm{H})$, $4.06(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.4$, 44.8, 57.2, 65.8, 69.0, 69.5, 69.7, 82.3, 84.0; IR (film) 3402, 3089, 2922, 2473, 2324, 1727, 1633, 1475, 1383, 1262, 1104, 1036 927, $810 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NFe}\right)$ requires $m / z 255.0908$, found $m / z 255.0906$.

(S_{p})-1-Diethylaminomethyl-2-phenyl ferrocene (31)
Yellow oil ($46.3 \mathrm{mg}, 67 \%$ yield, $90 \% \mathrm{ee}$). Analytical data for 31: $[\alpha]_{\mathrm{D}}{ }^{20}=+178.4^{\circ}(\mathrm{c}=$ 0.25 Acetone, $90 \% e e$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.41$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.42\left(\mathrm{AB}, J_{A B}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{BA}$, $\left.J_{B A}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06(\mathrm{~s}, 5 \mathrm{H}), 4.21-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.45(\mathrm{~m}$, $1 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.79(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.5,46.0,51.4,66.9,69.7,70.0,71.6,83.0,88.4,126.0,127.8,129.6$,
138.9; IR (film) 3092, 3057, 2966, 2931, 2792, 2349, 2322, 1601, 1506, 1456, 1369, 1286, 1195, 1167, 1105, 1033, 1000, 807, 763, 700, $650 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NFe}\right)$ requires $\mathrm{m} / \mathrm{z} 345.1378$, found m / z 345.1370. The enantiomeric excess was determined by phenomenex cellulose-1 $(25 \mathrm{~cm}), \mathrm{CH}_{3} \mathrm{OH} /$ $I P A=9 / 1,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}($ minor $)=5.51 \mathrm{~min}, \mathrm{t}($ major $)=5.85 \mathrm{~min}$.

(S_{p})-1-(Pyrrolidin-1-yl-methyl)-2-phenyl ferrocene (3m)
Yellow oil ($49.0 \mathrm{mg}, 71 \%$ yield, $98 \% \mathrm{ee}$). Analytical data for $3 \mathrm{~m}:[\alpha]_{\mathrm{D}}{ }^{20}=+162.4^{\circ}$ (c $=0.25$ Acetone, $98 \% e e) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.71(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H})$, $2.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.33\left(\mathrm{AB}, J_{A B}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.05(\mathrm{~s}, 5 \mathrm{H}), 4.22(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 23.5,53.9,54.1,67.0,69.8,70.0,71.0,83.0,87.8,126.0,127.9,129.4$, 139.0; IR (film) 3091, 3056, 2959, 2925, 2777, 1730, 1601, 1506, 1459, 1343, 1317, 1260, 1105, 1033, 1000, 933, 877, 808, 764, $701 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NFe}\right)$ requires $m / z 343.1221$, found m / z 343.1216. The enantiomeric excess was determined by phenomenex cellulose-1 $(25 \mathrm{~cm}), \mathrm{CH}_{3} \mathrm{CN} / \mathrm{IPA}=95 / 5$, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}($ major $)=10.123 \mathrm{~min}, \mathrm{t}($ minor $)=10.700 \mathrm{~min}$.

$\left(S_{\mathrm{p}}\right)$-1-Dimethylaminomethyl-2-phenyl-1'-bromo ferrocene (3n)
Yellow oil (54.9 mg, 69\% yield, 97% ee $)$. Analytical data for $3 \mathbf{n}:[\alpha]_{\mathrm{D}}{ }^{20}=+173.6^{\circ}$ (c $=$ 0.25 Acetone, $97 \% e e) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 6 \mathrm{H}), 3.18\left(\mathrm{AB}, J_{A B}=\right.$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60\left(\mathrm{BA}, J_{B A}=12.8 \mathrm{~Hz}, \underset{\mathrm{~s} 11}{1 \mathrm{H}}\right), 3.95-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.21(\mathrm{~m}, 1 \mathrm{H})$,
4.26-4.27 (m, 1H), 4.31-4.32 (m, 2H), 4.48-4.49 (m, 1H), 7.24-7.35 (m, 3H), 7.72-7.74 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 45.0,56.9,69.3,69.7,70.0,71.6$, $72.2,72.3,74.5,78.4,83.4,89.4,126.3,128.0,129.4,137.8$; IR (film) 3084, 3056, 2938, 2812, 2763, 2322, 1727, 1601, 1506, 1456, 1409, 1351, 1258, 1174, 1151, 1017, 871, 804, 764, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NBrFe}\right)$ requires m / z 395.0170, found m / z 395.0158. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=98 / 2,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ $(\operatorname{minor})=17.10 \mathrm{~min}, \mathrm{t}($ major $)=19.41 \mathrm{~min}$.

Determination of the absolute configuration of product 3a

Synthesis of 1-Methyl-2-phenyl-ferrocene (S_{p})-8

A solution of ($S, R p$) $\mathbf{6}^{[4]}(424.0 \mathrm{mg}, 1.14 \mathrm{mmol})$ in freshly distilled THF $(100 \mathrm{~mL})$ was successively treated with water $(1.1 \mathrm{~mL})$ and sodium sulfate $(8.3 \mathrm{~g}, 58.4 \mathrm{mmol})$. Then the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before trifluoroacetic acid (0.5 mL) was added via a syringe. The reaction mixture was stirred for 60 h at room temperature, and then sodium sulfate ($2.4 \mathrm{~g}, 16.9 \mathrm{mmol}$) was added before the reaction mixture was filtered. The organic solvent was removed under reduced pressure to leave a dark oil, which was immediately dissolved in freshly distilled 30 mL dichloromethane. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$, and acetic anhydride ($4 \mathrm{~mL}, 42.3 \mathrm{mmol}$) was added followed by pyridine ($6.3 \mathrm{~mL}, 80.2 \mathrm{mmol}$). The mixture was stirred overnight at room temperature. Then the resulting dark solution was quenched with 3 N HCl , washed
with saturated sodium bicarbonate solution, dried over anhydrous MgSO_{4} and filtrated. After the solvent was removed under reduced pressure, the residue amide $\left(\mathrm{S}, R_{p}\right)-7$ was obtained and used directly in the next step.

To a solution of the above amide (S, Rp)-7 ($344.5 \mathrm{mg}, 0.79 \mathrm{mmol}$) in THF (5 mL) and $\mathrm{CH}_{3} \mathrm{OH}(15 \mathrm{~mL})$ was added aqueous $\mathrm{NaOH}(7.9 \mathrm{~mL}, 2.5 \mathrm{~N})$. The reaction was refluxed for 2 h , then the mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was acidified with hydrochloric acid to $\mathrm{pH}=1$, then extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the crude carboxylic acid $\left(R_{\mathrm{p}}\right)$ - $\mathbf{8}$ was obtained and used directly in the next step.

To a solution of $\left(R_{\mathrm{p}}\right)-\mathbf{8}(246.8 \mathrm{mg}, 0.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added oxalyl chloride ($154.2 \mathrm{mg}, 1.22 \mathrm{mmol}$). The reaction was stirred for 4 h at room temperature, and then the solvent was removed under reduced pressure. The residue was dissolved with $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and triethylamine ($163.9 \mathrm{mg}, 1.62 \mathrm{mmol}$) and dimethylamine hydrochloride ($66.0 \mathrm{mg}, 0.81 \mathrm{mmol}$) were then added. After the resulting mixture was stirred for 4 h , it was quenched with saturated sodium bicarbonate solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 8)$ to afford amide $\left(R_{\mathrm{p}}\right)-\mathbf{9}(220.3 \mathrm{mg}, 82 \%$ yield $)$. Analytical data for $\left(R_{\mathrm{p}}\right)-\mathbf{9}$: $[\alpha]_{\mathrm{D}}{ }^{20}=+51.8(\mathrm{c}=0.25$ Acetone $) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.95$ $(\mathrm{s}, 3 \mathrm{H}), 4.24(\mathrm{~s}, 5 \mathrm{H}), 4.32(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.2,38.1,65.8,67.4,70.7,71.3,85.0$, 85.6, 126.4, 127.5, 128.2, 138.1, 169.6; IR (film) 2963, 1634, 1412, 1260, 1090, 1019, $866,798 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NFe}\right)$ requires m / z 331.0857, found $m / z 331.0863$.

Under argon, to a solution of amide $\left(R_{\mathrm{p}}\right)-\mathbf{9}(220.3 \mathrm{mg}, 0.66 \mathrm{mmol})$ in THF (4 mL) was added $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(150.4 \mathrm{mg}, 1.98 \mathrm{mmol}, 3$ equiv). After the reaction was refluxed for 4 h , the mixture was quenched with water, extracted with
dichloromethane. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 50)$ to give $\left(S_{\mathrm{p}}\right) \mathbf{- 1 0}(36.5 \mathrm{mg}, 20 \%$ yield $)$. Analytical data for $\left(S_{\mathrm{p}}\right)-10:[\mathrm{a}]_{\mathrm{D}}{ }^{20}=-104.1(\mathrm{c}=0.25$ Acetone, 93% ee $) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.81(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 5 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.53-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.8,66.1,69.0,70.1,70.5,81.8$, 86.7, 125.9, 127.8, 128.8, 139.0; IR (film) 3087, 3057, 2920, 1946, 1740, 1600, 1504, 1438, 1376, 1265, 1103, 1031, 999, 808, 761, 696, 660, $638 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Fe}\right)$ requires m / z 274.0643, found m / z 274.0635. The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA $=29 / 1,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=17.32 \mathrm{~min}, \mathrm{t}($ major $)=18.72 \mathrm{~min}$.

Synthesis of 1-methyl-2-phenyl-ferrocene $\left(R_{\mathrm{p}}\right)$ - $\mathbf{1 0}$

To a solution of product $3 \mathbf{a}(220.3 \mathrm{mg}, 0.69 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$ was added $\mathrm{CH}_{3} \mathrm{I}$ ($293.8 \mathrm{mg}, 2.07 \mathrm{mmol}$). After the reaction was stirred for 1 h at room temperature, diethyl ether was added and the reaction mixture was filtrated. The solid was washed with diethyl ether three times. The combined organic filtrate was concentrated under reduced pressure. The solid was dissolved in acetonitrile, NaBH_{4} ($52.2 \mathrm{mg}, 1.38 \mathrm{mmol}$) was added in portions. After the reaction was refluxed for 4 h , the reaction mixture was cooled to room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl
acetate/petroleum ether $=1 / 10)$ to give $\left(R_{\mathrm{p}}\right)-\mathbf{1 0}(142.9 \mathrm{mg}, 75 \%$ yield $)$. Analytical data $\operatorname{for}\left(R_{\mathrm{p}}\right)-10:[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+140.9(\mathrm{c}=0.25$ Acetone, $98 \% e e)$; The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes / IPA = $29 / 1,0.3 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}, \mathrm{t}($ major $)=17.20 \mathrm{~min}, \mathrm{t}($ minor $)=18.68 \mathrm{~min}$.

Synthesis of L1 and Pd-catalyzed asymmetric allylic alkylation

Synthesis of 1-dimethylaminomethyl-2-phenyl-1'-diphenylphosphine ferrocene (L1)

To a solution of compound $\left(S_{\mathrm{p}}\right)$ - $\mathbf{3 n}(473 \mathrm{mg}, 1.1 \mathrm{mmol})$ in THF $(8.8 \mathrm{~mL})$ was added $n-\mathrm{BuLi}\left(0.55 \mathrm{~mL}, 1.3 \mathrm{mmol}, 2.4 \mathrm{M}\right.$ in n -hexane) at $-78^{\circ} \mathrm{C}$ under argon. The resulting deep red solution was stirred for 30 min . Then chlorodiphenylphosphine $(0.29 \mathrm{~mL}, 1.5 \mathrm{mmol})$ was added. The mixture was warmed slowly to $0^{\circ} \mathrm{C}$ and stirred for 1 h . Then the reaction mixture was quenched with water, extracted with ether. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (ethyl acetate/petroleum $=1 / 15 \mathrm{v} / \mathrm{v}, 2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give $\left(S_{\mathrm{p}}\right)$-L1 (406 mg, 68% yield, 92% ee) as an orange solid. Analytical data for $\left(S_{\mathrm{p}}\right)$-L1: $[\alpha]_{\mathrm{D}}{ }^{20}=+24.8^{\circ}(\mathrm{c}=0.25$ Acetone, $92 \% e e) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{~s}$, $6 \mathrm{H}), 2.88\left(\mathrm{AB}, J_{A B}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52\left(\mathrm{AB}, J_{B A}=12.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~s}, 2 \mathrm{H})$, 4.11-4.13 (m, 2H), $4.20(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.41(\mathrm{~m}, 13 \mathrm{H})$, 7.63-7.65 (m, 2H); ${ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3} 161 \mathrm{MHz}$) δ-16.91; IR (film) 3055, 2930, 2819, $2772,2361,1598,1504,1455,1434,1303,1250,1158,1091,1065,1017,970,921$, 886, 825, 765, $744 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\left(\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NPFe}\right)$ requires m / z 501.1507, found m / z 501.1523. The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=98 / 2,0.3 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}$ $(\operatorname{minor})=18.78 \mathrm{~min}, \mathrm{t}($ major $)=22.80 \mathrm{~min}$.

Palladium-Catalyzed Allylic Alkylation with $\left(S_{\mathrm{p}}\right)$-L1

A mixture of ligand $\left(S_{\mathrm{p}}\right)-\mathbf{L 1}(92 \%$ ee, $10.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}$ ($3.7 \mathrm{mg}, 0.01 \mathrm{mmol}$) in dry THF (2 mL) was stirred at room temperature for 0.5 h , and to the resulting yellow solution was added 4 ($100.9 \mathrm{mg}, 0.4 \mathrm{mmol}$). After an additional stirring for 10 min , sodium dimethyl malonate [generated in situ by mixture dimethyl malonate ($0.08 \mathrm{~mL}, 0.8 \mathrm{mmol}$) with sodium hydride ($19.2 \mathrm{mg}, 0.8 \mathrm{mmol}$) in 2 mL THF] was added. The reaction was stirred at room temperature. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) and extracted with ether. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (ethyl acetate $/$ petroleum $=10 / 1)$ to give $10(126 \mathrm{mg}, 98 \%$ yield, $15 \% e e)$. Analytical data for $(S)-10^{[5]}:[\alpha]_{\mathrm{D}}{ }^{20}=-0.51^{\circ}(\mathrm{c}=1.4$ Chloroform, $15 \% e e) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=8.8,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.8,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.33(\mathrm{~m}$, 10H); The enantiomeric excess was determined by Diacel Chiralcel OD-H (25 cm), Hexanes $/ \mathrm{IPA}=90 / 10,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ minor $)=8.12 \mathrm{~min}, \mathrm{t}($ major $)=$ 8.71 min . The absolute configuration of the product 10 was assigned as (S) by comparing the optical rotation with that reported in the literature. ${ }^{[6]}$

References

(1) Khrushcheva, N. S.; Sokolov, V. I. Russian. Chemical. Bulletin. 2004, 53, 830.
(2) Bhat, A. R.; Bhat, A. I.; Athar, F.; Azam, A. Helvetica. Chimica. Acta. 2009, 92, 1644.
(3) Michael, W.; Ulrike, N.; Kurt, M. Tetrahedron: Asymmetry 1999, 10, 4369.
(4) Xia, J.-B.; You, S.-L. Organometallics 2007, 26, 4869.
(5) Deng, W.-P.; You, S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W.; Sun, J. J. Am. Chem. Soc. 2001, 123, 6508.
(6) Hayashi, T.; Yamamoto, A.; Hagihara, T.; Ito, Y. Tetrahedron Lett. 1986, 27, 191.

NMR and HPLC Spectra

..- 200

$\stackrel{\circ}{\circ}$

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	15.347	95079	0.90	5192	0.88
2	15.932	10507655	99.10	582706	99.12

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	14.358	191614	1.75	10688	1.72
2	15.399	10743350	98.25	609479	98.28

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	14.945	48952	0.65	2569	0.67
2	16.306	7524140	99.35	378712	99.33

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height 1 16.131
10273430	96.82	461685	97.99		
2	17.489	337344	3.18	9476	2.01

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	18.802	2864542	49.70	121924	52.62
2	20.515	2898851	50.30	109799	47.38

	RT (min)	Area $\left(\mu \mathrm{V}^{\star} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	18.794	116096	2.16	4485	2.12
2	20.320	5260322	97.84	207483	97.88

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	16.463	2160276	49.93	94476	52.52
2	18.094	2166318	50.07	85408	47.48

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	16.884	53752	2.02	2173	2.14
2	18.280	2603002	97.98	99454	97.86

	RT (min)	Area $\left(\mu \mathrm{V}^{*}\right.$ sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	14.187	3206840	48.96	205700	52.01
2	15.072	3342871	51.04	189823	47.99

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	14.233	61140	1.69	3539	1.72
2	15.057	3567058	98.31	201826	98.28

色谱图（gdw2－43－3．org）

NO．	Time	Height	Area	Percent
1	13.082	5602.569	95153.945	2.9033
2	13.735	197002.766	3182240.500	97.0967
		202605.335	3277394.445	100.0000

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		5.510	7964.6	63290.5	4.5295
2	2		5.845	155872.8	1333993.5	95.4705
Total				163837.4	1397284.0	100.0000

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		10.127	336782.5	4592806.2	49.0314
2	2		10.727	328692.5	4774262.7	50.9686
Total				665475.0	9367068.9	100.0000

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1		10.123	890498.4	11167632.6
2	2	10.700	9009.2	127816.4	98.8684
Total				899507.6	11295449.0

NO.	Time	Height	Area	Percent
1	17.062	235543.578	7248012.000	49.2302
2	19.717	208333.734	7474683.000	50.7698
		443877.313	14722695.000	100.0000

NO.	Time	Height	Area	Percent
1	17.100	6840.289	180528.297	1.4142
2	19.407	379586.875	12584795.000	98.5858
		386427.164	12765323.297	100.0000

NO.	Time	Height	Area	Percent
1	18.100	357102.250	15758846.000	48.7153
2	22.448	315193.781	16590040.000	51.2847
		672296.031	32348886.000	100.0000

NO.	Time	Height	Area	Percent
1	18.775	1873.883	99021.203	3.9278
2	22.800	44000.984	2422027.000	96.0722
		45874.867	2521048.203	100.0000

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	17.205	3251971	98.80	161126	99.09
2	18.683	39415	1.20	1488	0.91

色谱图（gdw－2－69－rac－90－10．org）

No．	Time	Height	Area	Percent
1	8.320	85921.734	1200669.500	49.6353
2	8.915	78175.141	1218312.125	50.3647
		164096.875	2418981.625	100.0000

色谱图（gdw－2－69－90－10．org）

No．	Time	Height	Area	Percent
1	8.122	608668.500	8568984.000	42.6514
2	8.707	733313.313	11521746.000	57.3486
		1341981.813	20090730.000	100.0000

[^0]: ${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2a, $\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{x} \mathrm{mol} \%)$, Boc-L-Val-OH(y mol \%), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv), TBAB (0.25 equiv) in 1.5 mL DMA under air. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{c}$ Isolated yield. ${ }^{d}$ Ee of 3 a was determined by HPLC analysis.

