Rh(ili)-CAtAlyzed Regioselective Synthesis ofPyridines from Alkenes and $\boldsymbol{\alpha}, \boldsymbol{\beta}$-UnsAturatedOXIME Esters

Jamie M. Neely and Tomislav Rovis*
Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523

Supporting Information

1. General Methods S2
2. Synthesis of Oxime Ester Precursors S2
3. General Procedure for Oxime Ester Synthesis S2
4. Reaction Optimization S4
5. General Procedure for Pyridine Synthesis S6
6. Mechanistic Experiments S10
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of New Compounds S13

General Methods

All reactions were carried out in oven-dried glassware under an atmosphere of argon with magnetic stirring. ACS grade acetic acid and 2,2,2-trifluoroethanol and reagent grade silver acetate were purchased from Sigma-Aldrich Co. and used without further purification. Dichloroethane was distilled from calcium hydride under an atmosphere of argon. Alkenes $\mathbf{2 g}, \mathbf{2 j}, \mathbf{2 k}, \mathbf{2 0}, \mathbf{2 q},(\boldsymbol{Z}) \mathbf{- 6 a}$ and $(\boldsymbol{E}) \mathbf{- 6 a}$ were purchased from Sigma-Aldrich Co. and used without further purification. Methyl acetylacrylate $\mathbf{6 c}$ was purchased from Tokyo Chemical Industry Co. and used without further purification. Alkenes $\mathbf{2 n}, \mathbf{2 p}$ and $\mathbf{2 r}$ were distilled and alkenes $\mathbf{2 a - f}, \mathbf{2 h}, \mathbf{2 i}, \mathbf{2 I}$ and $\mathbf{2 m}$ were distilled under reduced pressure prior to use. $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}$ was prepared as previously reported. ${ }^{1}$ Column chromatography was performed on Silicycle ${ }^{\circledR}$ SilicaFlash ${ }^{\circledR}$ P60 (230-400 mesh). Thin layer chromatography was performed on Silicycle ${ }^{\circledR} 250 \mu \mathrm{~m}$ silica gel 60A plates. Visualization was accomplished with UV light (254 nm) or potassium permanganate.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were collected at ambient temperature in CDCl_{3} on a Varian 400 MHz . Chemical shifts are expressed as parts per million (δ, ppm) and are referenced to $7.26\left(\mathrm{CHCl}_{3}\right)$ for ${ }^{1} \mathrm{H}$ NMR and $77.16\left(\mathrm{CDCl}_{3}\right)$ for ${ }^{13} \mathrm{C}$ NMR. Proton signal data uses the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $J=$ coupling constant. Mass spectra were obtained on a Fisons VG Autospec (HRMS) or an Agilent Technologies 6130 Quadropole Mass Spec (LRMS). Infrared spectra were collected on a Bruker Tensor 27 FT-IR spectrometer.

Regioisomeric ratios were determined by integration of ${ }^{1} \mathrm{H}$ NMR spectra of product mixtures collected with first relaxation delay $(\mathrm{d} 1)=15$ seconds. The major product of the reaction of $\mathbf{1 c}$ and $\mathbf{6 c}$ was identified as 7ce by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC (p. S54).

Synthesis of Oxime Ester Precursors

The α, β-unsaturated ketones corresponding to $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 h}$ and to $\mathbf{1 c}$ were purchased from SigmaAldrich Co. and Tokyo Chemical Industry Co., respectively. The precursors of $\mathbf{1 d} \mathbf{- 1 g}$ were obtained by methylenation of the appropriate ketones by the following procedure, adapted from the literature. ${ }^{2}$ A solution of the ketone (20 mmol), aqueous formaldehyde ($4.9 \mathrm{~mL}, 3$ equiv) and morpholine (0.86 mL , 0.5 equiv) in 18 mL acetic acid was heated at $120^{\circ} \mathrm{C}$ for 20 hours. After cooling, the mixture was neutralized with 3 M NaOH and extracted with diethyl ether three times. The combined organic layers were washed with saturated NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography.

General Procedure for Oxime Ester Synthesis

All O-pivaloyl oxime esters 1 were generated from the corresponding α, β-unsaturated ketones according to the following procedure, adapted from the literature. ${ }^{3}$ Hydroxylamine hydrochloride ($347 \mathrm{mg}, 1.4$ equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(742 \mathrm{mg}, 1.4$ equiv) were added to the enone (5 mmol) in 15 mL MeOH and the mixture was stirred at $65^{\circ} \mathrm{C}$ for 1 hour (or room temperature for 4 hours in the case of $\mathbf{1 h}$). The solvent was removed in vacuo and the resulting residue was dissolved in 10 mL DCM and cooled to $0^{\circ} \mathrm{C}$. After the addition of $\mathrm{Et}_{3} \mathrm{~N}(1.74 \mathrm{~mL}, 2.5$ equiv), a solution of pivaloyl chloride ($1.23 \mathrm{~mL}, 2.0$ equiv) in 5 mL DCM was added dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature overnight and quenched with water. The aqueous layer was extracted with DCM three times and the combined organic layers were washed with saturated NaHCO_{3} and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography.

(\boldsymbol{E})-1-(cyclohex-1-en-1-yl)ethanone \boldsymbol{O}-pivaloyl oxime (1a). White solid. $\mathrm{R}_{\mathrm{f}}=$ 0.25 ($10: 1$ hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.35(\mathrm{~m}, 1 \mathrm{H}), 2.40$ $(\mathrm{m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.3,164.1,134.6,133.5,38.9,27.4,26.3,24.6,22.2,22.0$,
12.0. IR $\left(\mathrm{NaCl}\right.$, thin film) $v 2936,1759,1638,1590,1480,1294,1114,917,804 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[2 \mathrm{M}+\mathrm{Na}]$ calcd 469.3042, found 469.3046.

(\boldsymbol{E})-1-(cyclopent-1-en-1-yl)ethanone \boldsymbol{O}-pivaloyl oxime (1b). Colorless liquid. $\mathrm{R}_{\mathrm{f}}=0.33\left(10: 1\right.$ hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.35(\mathrm{~m}, 1 \mathrm{H})$, $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,161.1,140.8,138.0,39.0,33.4,31.5,27.4,23.4$, 13.3. IR $\left(\mathrm{NaCl}\right.$, thin film) v 2971, $1760,1480,1272,1113,891 \mathrm{~cm}^{-1}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$ calcd 210.1494, found 210.1495.

(\boldsymbol{E})-3-methylbut-3-en-2-one \boldsymbol{O}-pivaloyl oxime (1c). Colorless liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.43 (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54(\mathrm{~m}, 1 \mathrm{H}), 5.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.2,163.7,141.0,120.6,38.9,27.4,19.3,12.2$. IR (NaCl, thin film) v 2976, 1762, 1480, 1270, 1108, $921 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 184.1338, found 184.1331.

(\boldsymbol{E})-3-methyleneheptan-2-one \boldsymbol{O}-pivaloyl oxime (1d). Colorless liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.45 (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.38$ $(\mathrm{m}, 1 \mathrm{H}), 2.44(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1$, 163.5, 145.4, 119.1, 38.9, 32.0, 30.6, 27.4, 22.6, 14.1, 12.8. IR (NaCl, thin film) v 2960, 1763, 1480, 1270, 1107, $920 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]$ calcd 248.1626, found 248.1622.

(\boldsymbol{E})-6-chloro-3-methylenehexan-2-one \boldsymbol{O}-pivaloyl oxime (1e). Colorless liquid. $\mathrm{R}_{\mathrm{f}}=0.33(10: 1$ hexanes $/ \mathrm{EtOAc}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.62(\mathrm{~s}$, $1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}$,
$3 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.2, 162.7, 143.6, 120.9, 44.7, 39.0, 31.4, 30.0, 27.4, 12.6. IR (NaCl , thin film) v 2971, 1761, 1480, 1270, 1106, 1027, $921 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 246.1, found 246.1.

(\boldsymbol{E})-3-phenylbut-3-en-2-one \boldsymbol{O}-pivaloyl oxime (1f). White solid. $\mathrm{R}_{\mathrm{f}}=0.26$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.70$ $(\mathrm{d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,165.4,145.2,137.5,128.6,128.4,127.9$, 119.4, 39.0, 27.5, 15.6. IR (NaCl , thin film $) ~ v 2980,1752,1584,1367,1267,1110,1031,947,896$, $776,695 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]$ calcd 268.1313, found 268.1312.

(\boldsymbol{E})-4-methylenenonan-5-one \boldsymbol{O}-pivaloyl oxime (1g). Colorless liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.26 (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.38$ $(\mathrm{m}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.35(\mathrm{~m}$, $6 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.2,167.3,144.2,119.1,38.9,34.7,29.5,27.4,26.8,23.1,21.5,13.9$. IR (NaCl , thin film) v 2962, $1763,1462,1110,1026,916 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]$ calcd 276.1939, found 276.1935.

Pent-1-en-3-one \boldsymbol{O}-pivaloyl oxime (1h). Pale yellow liquid, 5.1:1 mixture of isomers. $\mathrm{R}_{\mathrm{f}}=0.46\left(5: 1\right.$ hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.9$ (dd, $J=18.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=18.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=18.0,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=11.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,167.5,164.4,132.2,125.3,125.2,122.7,38.9,27.4,27.3,24.1$, 18.9, 12.3, 11.4. IR (NaCl, thin film) v 2977, 1762, 1481, 1271, 1110, 1027, $899 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 184.1, found 184.2.

Reaction Optimization ${ }^{a}$

		RhCp* ${ }^{2}$, oxidant solvent, temp.		
entry		temp. $\left({ }^{\circ} \mathrm{C}\right)$	oxidant	yield 3aa (\%) ${ }^{\text {b }}$
1	TFE	74	AgOAc	30^{c}
2	EtOH	90	AgOAc	<5
3	$t \mathrm{AmOH}$	90	AgOAc	0
4	MeCN	90	AgOAc	<5
5	PhMe	110	AgOAc	0
6	dioxane	110	AgOAc	0
7	acetone	68	AgOAc	<5
8	THF	68	AgOAc	0
9	PrOH	68	AgOAc	0
10	HFIP	68	AgOAc	20
11	DCE	85	AgOAc	<5
12	DCE/AcOH (20:1)	85	AgOAc	25
13	DCE/AcOH (10:1)	85	AgOAc	35
14	DCE/AcOH (2:1)	85	AgOAc	45
15	AcOH	85	AgOAc	35
$16^{\text {d }}$	DCE/AcOH (2:1)	85	AgOAc	65
17	DCE/AcOH (2:1)	85	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	0
18	DCE/AcOH (2:1)	85	CAN	0
19	DCE/AcOH (2:1)	85	benzoquinone	0
20	DCE/AcOH (2:1)	85	anthraquinone	10
21	DCE/AcOH (2:1)	85	NMO	10
22	DCE/AcOH (2:1)	85	TEMPO	20

${ }^{a}$ Conditions: 1.2 equiv 2a, 2.1 equiv oxidant (1.05 equiv $2 \mathrm{e}^{-}$oxidants). Entries $1-16:\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ ($2.5 \mathrm{~mol} \%$), 0.15 M solution. Entries 17-22: $\mathrm{RhCp}^{*}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, 0.3 M solution. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c} \sim 4: 1$ mixture of Et and $\mathrm{CH}_{2} \mathrm{CF}_{3}$ esters. ${ }^{d} 0.3 \mathrm{M}$ solution.

General Procedure for Pyridine Synthesis

A 0.5 dram vial was charged with oxime ester $1(0.21 \mathrm{mmol})$ and $\mathrm{AgOAc}(73.6 \mathrm{mg}, 2.1$ equiv) and a solution of $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.3 \mathrm{mg}, 0.025$ equiv) and alkene $2(0.252 \mathrm{mmol}, 1.2$ equiv) in $0.7 \mathrm{~mL} 2: 1$ $\mathrm{DCE} / \mathrm{AcOH}$ was added. The vial was flushed with argon, sealed and heated at $85^{\circ} \mathrm{C}$ in an aluminum heating block for 14 hours. The solids were filtered and the mixture was diluted with DCM and washed with $15 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$. The aqueous layer was extracted twice with DCM and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography.

Compound 3cf was previously characterized by Ogoshi and coworkers. ${ }^{4}$ Compounds 3cp and 5cp were previously characterized by Ellman and coworkers. ${ }^{5}$

3-Methyl-4,5,6,7-tetrahydrobenzo[d]isoxazole (4). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.34$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $2.64(\mathrm{tt}, J=6.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{tt}, J=6.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, 1.86-1.71 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,158.3,112.1$,
22.7, 22.6, 22.3, 19.3, 10.1. IR (NaCl , thin film) $v 2938,2856,1642,1466,1321,1201,869,740 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 138.1, found 138.2.

Ethyl 1-methyl-5,6,7,8-tetrahydroisoquinoline-3-carboxylate (3aa). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.13$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}), 2.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0$, $157.8,147.0,144.1,135.4,124.0,61.8,29.6,26.4,22.8,22.6,22.0,14.5$. IR $\left(\mathrm{NaCl}\right.$, thin film) $v 2944,1708,1589,1372,1317,1261,1212,1028,789 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z $[\mathrm{M}+\mathrm{H}]$ calcd 220.1338, found 220.1339.

Ethyl 1-methyl-6,7-dihydro-5H-cyclopenta[c]pyridine-3-carboxylate (3ba). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.12$ ($3: 1$ hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{dd}, J=7.6$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.0,154.5,146.0,142.5,119.6,61.8,33.0,31.0,24.3,22.4,14.5$. IR $\left(\mathrm{NaCl}\right.$, thin film) $\vee 2960,1716,1594,1376,1329,1224,1030,791 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 206.1181, found 206.1175.

Ethyl 5,6-dimethylpicolinate (3ca). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.15 (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,157.9,145.4,137.7,135.9,123.0,61.8,23.0,19.5,14.4$. IR $(\mathrm{NaCl}$, thin film) $v 2983,1716,1460,1369,1312,1249,1188,1135$, 1025, 783, $718 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 180.1025, found 180.1025.

Ethyl 5-butyl-6-methylpicolinate (3da). Yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.26 (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 5 \mathrm{H}), 0.94(\mathrm{t}, J=$ $5.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,157.4,145.3,140.3$, $136.9,123.0,61.8,32.6,31.7,22.6,22.5,14.4,14.0$. IR (NaCl , thin film) v 2959, 1717, 1574, 1458, 1369, 1313, 1180, 1138, $1028 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 222.1494, found 222.1489.

Ethyl 5-(3-chloropropyl)-6-methylpicolinate (3ea). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.17$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,157.5,145.9,138.3,137.2,123.1,61.9,44.2,32.1,30.0,22.6$, 14.5. IR $\left(\mathrm{NaCl}\right.$, thin film) $v 2960,1716,1573,1445,1369,1312,1184,1138,1028 \mathrm{~cm}^{-1}$. LRMS (ESI $+\mathrm{APCI}) m / z[\mathrm{M}+\mathrm{H}]$ calcd 242.1, found 242.1.

Ethyl 6-methyl-5-phenylpicolinate (3fa). Yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.23 (5:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 4.49$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,156.7,146.6,140.5,139.2,138.0,128.9$, 128.7,
128.1, 122.7, 62.0, 23.9, 14.5. IR (NaCl, thin film) v 2982, 1716, 1561, 1446, 1369, 1309, 1200, 1142, 1027, 861, 763, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 242.1181, found 242.1179.

Ethyl 6-butyl-5-propylpicolinate (3ga). Pale yellow viscous liquid. R_{f} $=0.47$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,161.2,145.6,139.4,137.3,122.7$, $61.7,35.0,34.4,32.0,23.7,23.0,14.5,14.1$. IR (NaCl , thin film) v 2960, 1717, 1572, 1456, 1369, 1312, 1178, 1138, $1024 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 250.1807, found 250.1809.

Ethyl 6-ethylpicolinate (3ha). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.07$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (dd, $J=7.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,164.3,148.0,137.3$, $125.4,122.6,61.9,31.6,14.5,14.2$. IR (NaCl , thin film) v 2976, 1718, 1591, $1463,1368,1235,1139,761 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 180.1, found 180.1.

Benzyl 5,6-dimethylpicolinate (3cb). Yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.21$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.43(\mathrm{~s}$, 2H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4$, $158.1,145.1,137.7,136.1,128.6,128.5,128.3,123.2,67.3,23.0,19.6$. IR (NaCl , thin film) v 2954, 1716, 1587, 1456, 1398, 1308, 1255, 1185, 1131, 1002, 782, $698 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 242.1181, found 242.1173.

Phenyl 5,6-dimethylpicolinate (3cc). Off-white solid. $\mathrm{R}_{\mathrm{f}}=0.24$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.59 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.39$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,158.3,151.3,144.7$, $137.9,136.7,129.5,126.1,123.9,122.0,23.1,19.7$. IR (NaCl , thin film) $v 2923,1732,1591,1493,1309,1196,1109,746 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 228.1, found 228.1.

$\boldsymbol{N , N , 5 , 6 - T e t r a m e t h y l p i c o l i n a m i d e ~ (3 c d) . ~ P a l e ~ y e l l o w ~ v i s c o u s ~ l i q u i d . ~}$ $\mathrm{R}_{\mathrm{f}}=0.21$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,156.0,151.3,138.1$, 132.7, 121.1, 39.2, 35.9, 22.5, 19.3. IR (NaCl , thin film) v 2926, 1637, 1575, 1441, 1397, 1274, 1175, 1104, $843 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) m / z
$[\mathrm{M}+\mathrm{H}]$ calcd 179.1, found 179.1.

1-(5,6-Dimethylpyridin-2-yl)ethanone (3ce). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.26\left(5: 1\right.$ hexanes/EtOAc). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.78(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0,1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.34$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.7,156.8,151.2,137.7$, $136.0,119.5,25.9,22.9,19.6$. IR (NaCl , thin film) v 2926, 1696, 1573, $1459,1355,1301,1177,1122,956,839 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) m / z $[\mathrm{M}+\mathrm{H}]$ calcd 150.1, found 150.2.

(E)-2,3-Dimethyl-6-(2-styrylphenyl)pyridine (2-styrenyl-3cf). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.66(20: 1 \mathrm{DCM} / \mathrm{EtOAc}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.19(\mathrm{~m}, 9 \mathrm{H}), 7.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9$, $155.6,137.9,137.3,135.9,130.4,129.7,128.7,128.4,128.1,127.8$, $127.5,126.7,126.3,122.7,22.9,19.1$. IR (NaCl , thin film) v 2922, 1737, 1589, 1462, 1236, 1129, 961, 836, 761, $692 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$ calcd 286.2, found 286.2

2-Butyl-6-phenyl-3-propylpyridine (3gf). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.11$ ($1: 1$ hexanes/DCM). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (m, $2 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 5 \mathrm{H}), 2.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,154.2,137.4$, 133.8, 128.7, 128.4, 126.8, 117.7, 34.8, 34.2, 31.7, 23.9, 23.0, 14.3, 14.2. IR (NaCl , thin film) v 2959, 2871, 1585, 1564, 1457, 1379, 833, 758, $693 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 254.2, found 254.2.

2-Butyl-6-(2-methoxyphenyl)-3-propylpyridine (3gg). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.20$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (ddd, $J=6.8,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (ddd, $J=7.6$, $7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=8.0,2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}$, $2 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,157.1$, 152.7, 136.4, 133.2, 131.4, 129.4, 122.3, 121.2, 111.5, 55.7, 34.9, 34.2, 32.1, 24.0, 23.1, 14.3. IR (NaCl , thin film) $v 2958,1585,1493,1461,1240,1027,752 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 284.2014, found 284.2013.

2-Butyl-6-(3-methoxyphenyl)-3-propylpyridine (3gh). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.45$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dd}, J=2.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, 7.6,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=8.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92$ (ddd, $J=8.0,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}$, $2 \mathrm{H}), 1.01(\mathrm{t}, J=5.4,3 \mathrm{H}), 0.99(\mathrm{t}, J=5.4,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,153.9,141.6$, $137.4,134.0,130.0,119.3,117.8,114.2,112.3,55.4,34.8,34.2,31.6,23.9,23.0,14.3,14.2$. IR (NaCl , thin film) $v 2958,2871,1566,1463,1222,1048,826,782 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 284.2014, found 284.2015 .

2-Butyl-6-(4-methoxyphenyl)-3-propylpyridine (3gi). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.43$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.1,160.0$ $153.9,137.4,133.0,128.1,117.0,114.1,55.5,34.8,34.1,31.7,24.0,23.0,14.3,14.2$. IR (NaCl , thin film) $v 2958,1609,1585,1513,1456,1249,1181,1032,825 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 284.2, found 284.2.

2-Butyl-6-(2-fluorophenyl)-3-propylpyridine (3gj). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.16\left(1: 1\right.$ hexanes/DCM). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.04 (ddd, $J=8.0,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33(\mathrm{~m}, 1 \mathrm{H}), 7.25$ (ddd, $J=7.6,7.6,1.2 \mathrm{~Hz}$), 7.13 (ddd, $J=11.6,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.2,3 \mathrm{H})$, $0.99(\mathrm{t}, J=7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.7(\mathrm{~d}, J=247.7 \mathrm{~Hz}), 160.4,151.1(\mathrm{~d}, J=2.2)$, 137.0, 134.2, 131.2 (d, $J=3.1$), 129.8 (d, $J=8.4$), 124.5 (d, $J=3.4$), 121.8 (d, $J=9.2$), 116.3, 116.0, $34.8,34.2,31.8,23.9,23.0,14.2$. IR (NaCl , thin film) v 2959, 2872, 1585, 1491, 1455, 1387, 1212, $1109,816,757 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 272.2, found 272.2.

2-Butyl-6-(3-chlorophenyl)-3-propylpyridine (3gk). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.38\left(1: 1\right.$ hexanes/DCM). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.03 (ddd, $J=2.0,1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (ddd, $J=7.2,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (ddd, $J=8.0,7.2$, $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (ddd, $J=8.0,2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.01$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,152.6,141.9,137.5$, $134.8,134.5,129.9,128.4,127.0,124.9,117.7,34.8,34.2,31.6,23.9,23.0,14.2$. IR (NaCl , thin film) v 2959, 2871, 1561, 1454, 1379, 1078, $784 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 288.2, found 288.2.

6-(4-Bromophenyl)-2-butyl-3-propylpyridine (3gl). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.63$ (10:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.89(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.64$ $(\mathrm{m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,152.9,138.9,137.5,134.3,131.8$, $128.4,122.8,117.4,34.8,34.2,31.6,23.9,23.0,14.3,14.2$. IR (NaCl, thin film) v 2958, 2930, 2871 , 1586, 1454, 1377, 1072, 1009, $818 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[M+H]$ calcd 332.1, found 332.1.

2,3-Dimethyl-6-(phenoxymethyl)pyridine (3cm). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.38$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~m}, 3 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 2.53$ $(\mathrm{s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,156.6,153.8$, 138.3, 130.6, 129.6, 121.1, 119.0, 115.0, 70.4, 22.4, 19.1. IR (NaCl , thin film) v 2923, 1599,1496 , 1403, 1242, 1060, 753, $691 \mathrm{~cm}^{-1}$. HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 214.1232, found 214.1232.

${ }^{1}$. LRMS $(\mathrm{ESI}+\mathrm{APCI}) m / z[\mathrm{M}+\mathrm{H}]$ calcd 214.1, found 214.1.

2,3-Dimethyl-5-(phenoxymethyl)pyridine (5cm). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.09$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.38(\mathrm{~d}, J=1.5,1 \mathrm{H}), 7.51(\mathrm{~d}, J=0.9,1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 3 \mathrm{H})$, $5.01(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.6, 157.3, 145.9, 136.8, 131.6, 130.0, 129.7, 121.3, 114.9, 67.6, 22.5, 19.3. IR (NaCl , thin film) $v 2923,1598,1496,1240,1031,754,691 \mathrm{~cm}^{-}$

6-Hexyl-2,3-dimethylpyridine (3cn). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.52 (5:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,156.1,137.4,128.1,119.8,38.1,31.7,30.2$,
29.1, 22.6, 22.5, 18.7, 14.1. IR (NaCl , thin film) $v 2926,2857,1578,1467,1397,824 \mathrm{~cm}^{-1}$. LRMS $(\mathrm{ESI}+\mathrm{APCI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$ calcd 192.2, found 192.2

5-Hexyl-2,3-dimethylpyridine (5cn). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.26 (5:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13$ (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,146.5,137.3,135.5,130.9,32.6,31.8,31.4,29.0$, 22.7, 22.2, 19.2, 14.2. IR (NaCl , thin film) $v 2928,2857,1474,1412$, 1139, 1020, 899, $727 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 192.2, found 192.2.

6-Cyclopentyl-2,3-dimethylpyridine (3co). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.60$ (5:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30$ (d, J $=8.0,1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $162.6,156.1,137.5,128.3,118.3,48.0,33.9,25.8,22.8,18.9$. IR (NaCl , thin film) $v 2952,2868,1578,1465,1400,1127,825 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 176.1, found 176.2.

5-Cyclopentyl-2,3-dimethylpyridine (5co). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.19$ (5:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (d, J $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.50(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $154.4,145.6,139.1,135.8,130.9,43.0,34.6,25.6,22.2,19.4$. IR (NaCl , thin film) $v 2953,2869,1475,1242,1020,892,732 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 176.1, found 176.1.

6-(sec-Butyl)-2,3-dimethylpyridine (3cq). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.65$ (5:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.23$ $(\mathrm{s}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,156.1,137.6,128.4$, $118.2,43.4,30.2,22.7,20.7,18.9,12.3$. IR $(\mathrm{NaCl}$, thin film $) \vee 2962$, 2927, 1741, 1578, 1467, 1377, 1107, $827 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 164.1, found 164.2.

1111, 1019, 898, $733 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 164.1, found 164.2.

5-(tert-Butyl)-2,3-dimethylpyridine (5cr). Yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.10 (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,143.7,143.6,134.6,130.6$, 33.2, 31.2, 22.0, 19.5. IR (NaCl , thin film) v 2962, 1481, 1397, 1167, $733 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 164.1439, found 164.2.

Dimethyl 5,6-dimethylpyridine-2,3-dicarboxylate (7ca). White solid. $\mathrm{R}_{\mathrm{f}}=0.19$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~s}$, $1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,166.1,160.9,148.2,138.2,133.7,123.7,53.1$, 52.8, 22.9, 19.1. IR (NaCl, thin film) v 2955, 1732, 1597, 1428, 1309, 1151, 1046, $797 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 224.1,
found 224.1.

Ethyl 3,5,6-trimethylpicolinate (7cb). Pale yellow viscous liquid. $\mathrm{R}_{\mathrm{f}}=$ 0.23 (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H})$, $4.42(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,154.7$, 144.7, $140.8,134.6,132.4,61.5,22.4,19.5,19.1,14.4$. IR $(\mathrm{NaCl}$, thin film) v 2981, 1719, 1462, 1310, 1237, 1155, 1062, $713 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 194.1, found 194.1.

Methyl 3-acetyl-5,6-dimethylpicolinate (7cc). White solid. $\mathrm{R}_{\mathrm{f}}=0.11$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (s, 1H), 3.97 (s, 3H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 200.5,166.8,159.7,144.1,136.2,135.1,134.8,53.2,29.7$, 22.9, 19.4. IR (NaCl , thin film) v 2954, 1744, 1692, 1591, 1552, 1429, 1365, 1301, 1261, 1161, 1137, $1019 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) m / z $[\mathrm{M}+\mathrm{H}]$ calcd 208.1, found 208.1.

208.1, found 208.1.

Methyl 2-acetyl-5,6-dimethylnicotinate (8cc). White solid. $\mathrm{R}_{\mathrm{f}}=0.34$ (3:1 hexanes/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 3.89$ (s, 3H), $2.65(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 201.0,167.9,159.4,152.6,137.6,134.0,124.4,52.9,27.5$, 22.8, 19.2. IR (NaCl , thin film) v 2955, 1733, 1595, 1432, 1356, 1301, 1272, 1161, 1131, $1022 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd

2-Butyl-3-propyl-5,6-dihydrobenzo[h]quinoline (10). Colorless viscous liquid. $\mathrm{R}_{\mathrm{f}}=0.14$ (3:1 hexanes/DCM). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.19(\mathrm{~m}, 4 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 6 \mathrm{H})$, $2.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.01$ $(\mathrm{t}, J=5.7,3 \mathrm{H}), 0.99(\mathrm{t}, J=5.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $158.2,149.3,137.9,136.3,135.2,134.0,128.8,128.4,127.7,127.1$, $124.8,34.4,34.2,31.7,28.5,27.8,24.0,23.0,14.3$. IR (NaCl , thin film) v 2957, 2931, 2870,1553 , 1461, 1438, 1377, 915, $740 \mathrm{~cm}^{-1}$. LRMS (ESI + APCI) $m / z[\mathrm{M}+\mathrm{H}]$ calcd 280.2, found 280.2.

Mechanistic Experiments

Isotope experiments were conducted with AcOD (purchased from Sigma-Aldrich Co. and used as received) according to the reaction procedure described above for the length of time indicated. Deuterium incorporation was determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectra collected with first relaxation delay $(d 1)=15$ seconds of the crude reaction mixtures.

*deuterium incorporation at other aryl positions could not be determined due to signal overlap

A stoichiometric experiment was performed according to the following procedure. A 0.5 dram vial was charged with $\mathrm{RhCp} *(\mathrm{OAc})_{2}(9.6 \mathrm{mg}, 100 \mathrm{~mol} \%)^{6}$ and a solution of $\mathbf{1 c}(0.027 \mathrm{mmol})$ and $\mathbf{2 a}(2.7$ $\mathrm{mg}, 1$ equiv) in $0.09 \mathrm{~mL} 2: 1 \mathrm{DCE} / \mathrm{AcOH}$ was added. The vial was flushed with argon, sealed and heated at $85^{\circ} \mathrm{C}$ in an aluminum heating block for 20 minutes. The solvent was removed and the reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$). The key upfield signal at -9.005 ppm consistent with a $\mathrm{Rh}-\mathrm{H}$ is highlighted in the spectrum provided below.

${ }^{1}$ Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2004, 6, 2785.
${ }^{2}$ Ezequias, S. F. P.; Rodrigues, J. A. R.; Moran, P. J. S. Tetrahedron-Asymmetr. 2001, 12, 847.
${ }^{3}$ Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
${ }^{4}$ Ohashi, M.; Takeda, I.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 18018.
${ }^{5}$ Martin, R. M.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2012, 77, 2501.
${ }^{6} \mathrm{RhCp} *(\mathrm{OAc})_{2}$ was prepared as previously reported with the following modifications: dichloromethane was used as the solvent at a concentration of 0.05 M for a reaction time of 48 hours. See: Boyer, P. M.; Roy, C. P.; Bielski, J. M.; Merola, J. S. Inorg. Chim. Acta 1996, 245, 7.

(1)

7cc
${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC:

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC:

