Supporting Information

Fabrication of a Completely Transparent and Highly Flexible ITO Nanoparticle Electrode at Room Temperature

Jungheum Yun,*^{,†} Yeon Hyun Park,[‡] Tae-Sung Bae,[§] Sunghun Lee[‡], and Gun-Hwan Lee[‡]

[†]Advanced Functional Thin Film Department and [‡]Plasma Coating Technology Department, Korea Institute of Materials Science, Changwon, Gyeongnam 641-831, Republic of Korea

[§]Jeonju Center, Korea Basic Science Institute, Jeonju, Jeonbuk 561-180, Republic of Korea

*Address correspondence to e-mail: jungheum@kims.re.kr; Tel: +82 (0)552803515; Fax: +82

(0)552803570

Figure S1 (a) High-angle annular-dark-field TEM image of the ITO nanoarrays corresponding to Figure 2 and EDS spectra of areas of (b) 1 and (c) 2. The Cu detected was from the sample grid.

Figure S2 Dependence of specular reflection spectra of PET substrates coated by ITO nanoarrays and continuous ITO films on (a) the ITO thickness and (b) the pretreatment period.

Figure S3. Change in the absolute sheet resistance of the ITO nanoarrays and the continuous films as a function of (a) the bending radius during the irreversible bending test and (b) the bending cycle with the bending radius being constant at 5 mm.