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1. The quantum-yield dependence of effective FRET parameters for a static equilibrium 

distance distribution. 

1.1. The quantum-yield dependence of the effective distance 

The quantum yield dependence of the effective distance was found to be: 
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The derivation begins with the definition of the effective distance. 
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Given a distance probability density distribution, p(r), the ETE in the absence of diffusion obeys 

( )0 0 0( )E E p r E r dr= = ∫  

(Recall the definition of the average of an observable, A, ( ) ( )A A x p x dx= ∫ , the observed ETE 

has to be identical to the distance average of the local efficiency, E0(r).) 
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and that the average of a constant is the constant itself, we can form 
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Inserting this expression into the definition of the effective distance, we obtain 
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∫ . 

The quantum-yield dependence is obtained after the replacements 6 6
0 D FR R=Φ  and 1/6

0 D FR R=Φ . 

For a single, static distance, RDA, the distribution is close to a δ-function and the integral 
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. Insertion yields correctly that eff DAR R= . We see that the 

quantum-yield dependence of the effective distance is a consequence of the distance distribution: 
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It does not apply to the case of a single, static distance that describes, for instance, a short, 

inflexible polyproline peptide. 

 

1.2. The quantum-yield dependence of the effective FRET rate   

Although the elementary FRET rate constant, kT(r) does not depend on the quantum yield, the 

effective FRET rate, kFRET, shows a weak dependence, because it is experimentally defined 

through the observed efficiency, Eobs. In the absence of diffusion, an analytical treatment is 

possible. The quantum yield dependence of the effective FRET rate was found to be: 
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We recognize the consistency of the obtained expressions with 
6
0
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To instill trust in and familiarity with this formula we offer two alternative derivations.  

1) The effective FRET rate in the absence of diffusion (Eobs = E0) is defined by 
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2) In the second derivation we use again the definition E0 = kFRET0/(kFRET0+kD) but also that E0 is 

given by E0 = (AD−ADA0)/AD), the areas under the kinetic traces, where (AD−ADA0) is the 

fluorescence quenched by FRET. Both equations are consequences of the ETE being the fraction 

of donor deactivation events caused by FRET. Eliminating E0, we obtain for kFRET 
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where we used that AD = τD = kD
−1. 

The time-course of the donor emission intensity of the donor-acceptor peptide in the absence 

of diffusion is given by 

( )DA0 D T( )exp( ( ( )) dI t p r k k r t r= − + ⋅∫ , 

where ( )DA0 0I t =  is 100%. 

The area, which presents the measure of the total emitted fluorescence, becomes 

( ) ( )( )DA0 D Texp d d
t r

A p r k k t r t= − +∫ ∫  

or, when we switch the order of integration 
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r t

A p r k k r t t r= − +∫ ∫ . 

The solution of the inner integral is 1/(kD+kT). 
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We use the Förster distance law  kT(r)=kD R0
6/r6 and kD

−1= τD to obtain 
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Insertion into kFRET = 1/ADA0 − kD yields 
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Both, kD and R0, depend on the quantum yield (eqs. 19 and 23 in main text), and the dependencies 

do not cancel out completely: 
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When the distribution narrows and approaches a δ-function, the Förster distance law is recovered 

and the quantum-yield dependence vanishes: 
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The results of both derivations are identical (use
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2. Pseudo-monoexponential kinetics in time-resolved FRET measurements 

We observed in the experiments that the donor decay kinetics of the donor-acceptor peptides 

NAla−(GS)6−Dbo and FTrp−(GS)6−Dbo could agreeably be fitted to monoexponential decay 

functions. Secondly, we noted in the simulations that the effective rate constant, kFRET, is virtually 

independent of the quantum yield, in contrast to the more pronounced dependency in the absence 

of diffusion. Both observations are related. 

When the donor emission decay in the donor-acceptor peptide proceeds monoexponentially, 

its time-dependent intensity has to follow IDA = I0 exp(−(kD + k'FRET)t). Neither kD nor k'FRET depend 

on the distance. The monoexponential time course is a consequence of a time-invariant shape of 

the distribution N*(r,t). Whereas N*(r,t) decreases with time, the normalized distribution p(r,t) is 

time invariant. For this invariancy to be possible, the rate constant of the emission decay cannot 

change with distance. We show shortly that k'FRET is identical to the effective FRET rate, kFRET, as 

defined by Eobs = kFRET/(kFRET+kD) and calculated by kFRET = kD Eobs/(1−Eobs). The area ADA under the 

kinetic trace obeys ADA = ∫t exp(−(kD+k'FRET)t) dt = (kD+k'FRET)−1. With that result used in the 

equation kFRET = 1/ADA − kD, we obtain kFRET = (kD+k'FRET) − kD = k'FRET.  
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The shape invariance of the distribution also means that the rate constant k'FRET is identical to 

the average of the distance-dependent FRET rate, ‹kT›, 78 which excludes any quantum-yield 

dependency: 

k'FRET = ‹kT› = ∫kT(r) p(r)dr = ∫kD(R0
6/r6) p(r)dr = kradRF

6‹r−6› 

It requires unrealistically large diffusion coefficients for the initial shape of the distance 

distribution to undergo not the slightest change. But an already sufficient condition for the 

experimental decays to appear monoexponentially is that the stationary probability distribution is 

attained very soon after excitation, and that the initial and stationary distribution differ only 

slightly (Fig. 8a in main text). 

 

3. Symbols and Abbreviations 

A   Index that denotes the FRET acceptor 

AD   Area under the time course of donor emission in the donor-only peptide 

ADA  Area under the time course of donor emission in the donor-acceptor peptide 

ADA0  Area under the time course of donor emission in the donor-acceptor peptide in the  

absence of diffusion (D = 0) 

D   Diffusion coefficient 

D   Index that denotes the FRET donor 

ETE   Energy transfer efficiency 

Eobs    Observed energy transfer efficiency 

E(r)  Distance-dependent energy transfer efficiency 

E0   Observed energy transfer efficiency in absence of diffusion 

ΔEFDE   Increase of Eobs  caused by diffusion 

EEQ   Fraction of donor-deactivation events attributable to equilibrium distance distribution 

EM   Fraction of donor-deactivation events attributable to donor-acceptor diffusional motion 

FDE   FRET diffusion enhancement 
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FRET  Förster resonance energy transfer 

ϕEQ   Fraction of FRET events attributable to the equilibrium distance distribution 

ϕM   Fraction of FRET events attributable to the equilibrium distance distribution 

ΦD   Donor-quantum yield 

HSE   Haas-Steinberg equation 

ID    Intensity of the donor fluorescence in the donor-only peptide. 

IDA   Intensity of the donor fluorescence in the donor-acceptor peptide. 

kT (r)   Distance-dependent rate constant of Förster transfer 

kFRET   Effective FRET rate constant 

kFRET0  Effective FRET rate constant in absence of diffusion 

krad   Rate constant of donor deactivation at a quantum yield of unity and in absence of   

   FRET 

N*(r,t)  Distance distribution after donor excitation in the donor-acceptor peptide  

N0*(r)  Normalized initial distance distribution at t = 0 

p(r)   Normalized equilibrium distance distribution 

ps(r)   Normalized stationary distance distribution attained after donor excitation 

r     Donor-acceptor distance in a distribution 

RDA   Single donor-acceptor distance in a rigid system 

Reff   Effective donor-acceptor distance 

R0    Förster radius at a specific donor quantum yield 

RF    Förster radius at a quantum yield of unity, radiative Förster radius 

τ0     Radiative donor lifetime at a quantum yield of unity 

τD    Experimentally determined donor lifetime in the donor-only peptide 

τ DA   Experimentally determined donor lifetime in the donor-acceptor peptide 


