t-Bu ${ }_{3}$ P-Coordinated 2-Phenylaniline-Based Palladacycle Complex as a Precatalyst for the Suzuki Cross-coupling Polymerization of Aryl Dibromides with Aryldiboronic Acids

Hong-Hai Zhang, Chun-Hui Xing, Georges Bouobda Tsemo and Qiao-Sheng Hu*

Department of Chemistry, College of Staten Island and Graduate Center of the City University of New York, Staten Island, New York, 10314, United States

QiaoSheng.Hu@csi.cuny.edu

Supporting Information

General: ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian 600 MHz NMR spectrometer. Chemical shifts were determined relative to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ (TMS). All yields reported refer to isolated yields unless otherwise indicated. Mn and $\mathrm{Mw} / \mathrm{Mn}$ (PDI) value of polymers were measured with gel permeation chromatography (Waters alliance GPC 2000) using THF as eluent ($1 \mathrm{~mL} / \mathrm{min}$) at $40^{\circ} \mathrm{C}$, which were calibrated with polystyrene standards. Melting points were measured on a Fisher-Johns Melting Point Apparatus and uncorrected.

1,4-Dibromo-2,5-bis(hexyloxy)benzene, 2,5-bis(hexyloxy)-1,4-phenylenediboronic acid were prepared according to the reported procedure. ${ }^{1}$ 7-Dibromo-9,9-dioctyl-9H-fluorene, 2,7-dibromo-9,9-dihexyl-9H-fluorene, 9,9-dioctyl-2,7-bis(4,4',5,5'-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene and 9,9-dihexyl-2,7-bis(4,4',5,5'-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene are prepared in a way similar to the literature. ${ }^{2}$ Ferrocenylmethyl alcohol was also prepared according to reported literature. ${ }^{3}$ Complexes $\mathbf{1 b}$ and $\mathbf{1 d}$ were prepared by following reported method. ${ }^{4}$ The purity of these monomers was estimated to be greater than 98% as determined by ${ }^{1} \mathrm{H}$ NMR or GC-MS. The product purity was estimated to be greater than 95% as determined by ${ }^{1} \mathrm{H}$ NMR. THF was freshly distilled from sodium/benzophenone. Unless otherwise mentioned, other solvents and reagents were purchased from commercial sources and used as received.

General Procedure for the Synthesis of precatalyst 1a and 1c: In a glovebox, a mixture of $\operatorname{Pd}(\mathrm{OAc})_{2}(336 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 2-aminobiphenyl ($264 \mathrm{mg}, 1.5 \mathrm{mmol}$) in anhydrous toluene (10 mL) was heated at $60^{\circ} \mathrm{C}$ under N_{2} atmosphere for 30 min . After the reaction was cooled to room temperature, the toluene was removed. The remaining solid was washed with anhydrous toluene ($2 \times 2 \mathrm{~mL}$) and then suspended in anhydrous acetone (10 mL). Lithium chloride ($191 \mathrm{mg}, 4.5 \mathrm{mmol}$) was added to the suspension and the mixture was stirred at room temperature under N_{2} atmosphere for
$1 \mathrm{~h} . t-\mathrm{Bu}_{3} \mathrm{P}$ or $\mathrm{PCy}_{3}(1.4 \mathrm{mmol})$ was then added to the solution. The mixture was stirred at room temperature for 2.5 h . Removal of about 90% of the solvent under vacuum afforded yellow slurry, which was treated with methyl t-butyl ether (5 mL) and pentane $(10 \mathrm{~mL})$. The mixture was then placed in refrigerator for 1 h . Then, the mixture was filtered, washed with water and pentane and dried under vacuum to afford complex $\mathbf{1 a}$ or $\mathbf{1 c}$.

1a: Yield: 58% Yellow solid. Mp: 164.0-164.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.47(\mathrm{dd}, J=3.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14 \sim 7.20(\mathrm{~m}, 4 \mathrm{H})$, $7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 27 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,140.1,139.0,138.2$, $138.2,136.1,128.1,126.7,126.4,125.0,124.7,119.0,39.9,32.6 \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR (121 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 77.79 \mathrm{ppm}$. HRMS (ESI) Calcd for: $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NPPd}\left([\mathrm{M}+\mathrm{H}-\mathrm{HCl}]^{+}\right)$ 476.1698. Found: 476.1703.

1c: ${ }^{5}$ Yield: 63% Gray solid. Mp: 228.9-229.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (dd, $J=1.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16 \sim 7.23(\mathrm{~m}, 4 \mathrm{H}), 7.07$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{br}, 1 \mathrm{H}), 4.61(\mathrm{br}, 1 \mathrm{H}), 2.08(\mathrm{q}, J$ $=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.54 \sim 1.62(\mathrm{~m}, 9 \mathrm{H}), 1.35 \sim$ $1.48(\mathrm{~m}, 6 \mathrm{H}), 1.11 \sim 1.19(\mathrm{~m}, 6 \mathrm{H}), 0.88 \sim 0.90(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}): $\delta 153.2,140.3,140.1,137.5,135.5,127.9,127.4,127.2,125.4,125.0,124.9$, $119.9,33.7(\mathrm{~d}, J=19 \mathrm{~Hz}), 30.0,29.2,27.6(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 27.4(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 26.3$ ppm. ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 42.08 \mathrm{ppm}$. HRMS (ESI) Calcd for: $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{NPPd}\left([\mathrm{M}+\mathrm{H}-\mathrm{HCl}]^{+}\right)$554.2168. Found: 554.2174.

General Procedure for the Suzuki cross-coupling polymerization: Under N_{2} atmosphere, to a solution of dibromide monomer $(0.101 \mathrm{mmol})$ and diboronic acid monomer $(0.1 \mathrm{mmol})$ in dry THF $(0.5 \mathrm{~mL})$, precatalyst $\mathbf{1 a}(0.002 \mathrm{mmol}, 2 \mathrm{mmol} \%)$ was added. $\mathrm{K}_{3} \mathrm{PO}_{4}$ solution ($2 \mathrm{M}, 0.2 \mathrm{~mL}$) was then added to the mixture. After stirring at $60^{\circ} \mathrm{C}$ for 1 h , the mixture was poured into HCl solution $(5 \mathrm{M}, 10 \mathrm{~mL})$ with stirring. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvents under vacuum, the residue was dissolved in a small amount of THF and added slowly to methanol with stirring. The precipitation formed was collected by filtration, washed with methanol. The dissolution-precipitation process was repeated two more times to
afford the final product, which was dried under vacuum for 4 h .

Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 4 \mathrm{H}), 1.67 \sim 1.68$ $(\mathrm{m}, 4 \mathrm{H}), 1.27 \sim 1.36(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 150.0,127.5,117.2,69.5,31.6,29.5,25.7,22.6,14.0 \mathrm{ppm}$. GPC profile: $M n=19800(\mathrm{PDI}=2.25)$.

The polymerization was repeated and the polymer was obtained with a $M \mathrm{n}=19500$ $(\mathrm{PDI}=2.35)$.

Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71 \sim 7.81(\mathrm{~m}, 4 \mathrm{H}), 7.58 \sim 7.63(\mathrm{~m}, 2$ H), $7.14(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.04(\mathrm{br}, 4 \mathrm{H}), 1.75(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$, $1.30 \sim 1.41(\mathrm{~m}, 16 \mathrm{H}), 1.05 \sim 1.21(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 150.5,150.4,139.8,137.0,131.2$, $127.9,124.4,121.5,119.1,116.7,69.8,55.0,40.6,31.6,31.5,29.9,29.4,25.7,22.7$, 22.6, 14.0, 14.0 ppm. GPC profile: $M \mathrm{n}=11500$ ($\mathrm{PDI}=2.38$).

The polymerization was repeated and the polymer was obtained with a $\mathrm{Mn}=10800$ $(\mathrm{PDI}=2.17)$.

Brown solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80 \sim 7.84(\mathrm{~m}, 6 \mathrm{H}), 7.66 \sim 7.69(\mathrm{~m}, 4$ H), $2.10(\mathrm{br}, 4 \mathrm{H}), 1.10 \sim 1.16(\mathrm{~m}, 12 \mathrm{H}), 0.76 \sim 0.80(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta 151.8,140.7,140.0,139.5,127.6,126.2,121.4,119.9,55.2,40.6$, 31.4, 29.6, 23.8, 22.5, 14.0 ppm. GPC profile: $\mathrm{Mn}=42000$ ($\mathrm{PDI}=2.85$).

The polymerization was repeated and the polymer was obtained with a $M n=44000$ ($\mathrm{PDI}=2.23$).

Brown solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47 (t, , J = $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (s, 2 H), 3.96 (t, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H}$), 1.72 (s, 4 H$), 1.24$ ~ $1.37(\mathrm{~m}, 16 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 150.3,138.1$, $130.8,130.3,128.3,127.3,116.4,116.2,69.6,31.5,29.4,25.8,22.5,22.5,14.0,14.0$, 14.0 ppm . GPC profile: $\mathrm{Mn}=9400$ (PDI $=1.86$).

The polymerization was repeated and the polymer was obtained with a $\mathrm{Mn}=8100$ $(\mathrm{PDI}=2.10)$.

Brown solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71 \sim 7.81(\mathrm{~m}, 4 \mathrm{H}), 7.58 \sim 7.63(\mathrm{~m}, 2$ H), 7.14 (s, 2 H), $3.99(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.04(\mathrm{br}, 4 \mathrm{H}), 1.75(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$, $1.30 \sim 1.41(\mathrm{~m}, 16 \mathrm{H}), 1.05 \sim 1.21(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.5,150.4,139.8,137.0,131.2$, $127.9,124.4,121.5,119.1,116.7,69.8,55.0,40.6,31.6,31.5,29.9,29.4,25.7,22.7$, 22.6, 14.0, 14.0 ppm . GPC profile: Mn 20900 ($\mathrm{PDI}=2.52$).

The polymerization was repeated and the polymer was obtained with a $M \mathrm{n}=20500$ $(\mathrm{PDI}=2.26)$.

Brown solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.67 \sim 7.70(\mathrm{~m}$,
$4 \mathrm{H}), 2.12(\mathrm{br}, 4 \mathrm{H}), 1.13 \sim 1.17(\mathrm{~m}, 16 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,140.5,140.0,126.1,121.0,119.9,55.4,40.2,31.4,29.6$, 22.5, 14.0 ppm . GPC profile: Mn 19300 (PDI = 2.83).

20.00	22.00	24.00	26.00	28.00

The polymerization was repeated and the polymer was obtained with a $M \mathrm{n}=18900$ $(\mathrm{PDI}=3.04)$.

Brown solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72 \sim 7.80(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 2 H), 7.13 (s, 2 H), 3.98 (t, $J=6.0 \mathrm{~Hz}, 4 \mathrm{H}$), 2.04 (br, 4 H), 1.74 (t, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), $1.30 \sim 1.41(\mathrm{~m}, 16 \mathrm{H}), 1.08 \sim 1.16(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.5,150.4,139.8,137.0,131.2$, $127.9,124.4,119.1,116.8,69.8,55.0,40.5,31.8,31.5,30.3,29.4,29.4,29.4,29.1$, 29.1, 25.8, 24.1, 22.6, 22.6, 14.0, 14.0 ppm. GPC profile: Mn 19800 (PDI = 2.67).

The polymerization was repeated and the polymer was obtained with a $\mathrm{Mn}=18900$ $(\operatorname{PDI}=2.11)$.

Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.67 \sim 7.70(\mathrm{~m}$, 8 H), 2.12 (br, 4 H), $1.14 \sim 1.22(\mathrm{~m}, 36 \mathrm{H}), 0.78 \sim 0.84(\mathrm{~m}, 20 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.5,151.7,140.5,139.9,139.0,130.1,126.1,121.4,121.1,119.9$, $55.3,40.3,40.1,31.7,31.4,30.0,29.8,29.6,29.2,23.9,23.8,23.9,22.6,22.5,14.0$, 14.0 ppm . GPC profile: Mn 45300 (PDI = 2.10).

The polymerization was repeated and the polymer was obtained with a $\mathrm{Mn}=40700$ $(\mathrm{PDI}=2.30)$.

Red solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65 \sim 7.69(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{~s}$, 1 H), $4.17 \sim 4.34(\mathrm{~m}, 9 \mathrm{H}), 3.90(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 1.66 \sim 1.69(\mathrm{~m}, 4$ H), $1.22 \sim 1.33(\mathrm{~m}, 16 \mathrm{H}), 0.83(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3$, $142.3,138.0,130.7,126.3,116.3,94.2,72.4,69.6,68.4,68.07,68.0,67.5,66.1,31.5$, $29.4,25.8,22.6,14.0 \mathrm{ppm}$. GPC profile: $\mathrm{Mn}=7900$ (PDI = 1.69).

The polymerization was repeated and the polymer was obtained with a $M \mathrm{n}=8400$ $(\mathrm{PDI}=1.70)$.

Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.67 \sim 7.70(\mathrm{~m}$, 4 H), $2.12(\mathrm{br}, 4 \mathrm{H}), 1.14 \sim 1.24(\mathrm{~m}, 24 \mathrm{H}), 0.79 \sim 0.84(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.8,140.4,140.0,126.1,121.4,119.9,55.3,40.3,31.7,30.0,29.2$, 24.8, 23.8, 22.6, 14.0 ppm . GPC profile: $M \mathrm{n}=77600(\mathrm{PDI}=2.45)$.

The polymerization was repeated and the polymer was obtained with a $M n=88300$ $(\mathrm{PDI}=2.26)$.

References:

1. Maruyama, S.; Kawanishi, Y., J. Mater. Chem. 2002, 12, 2245-2249.
2. Cho, S. Y.; Grimsdale, A. C.; Jones, D. J.; Watkins, S. E.; Holmes, A. B., J. AM. Chem. Soc 2007, 129, 11910-11911.
3. Hu, Q.-S.; Lu, Y.; Tang, Z.-Y.; Yu, H.-B., J. Am. Chem. Soc 2003, 125, 2856-2857.
4. (a) Hughes, G.; Wang, C.; Batsanov, A. S.; Fern, M.; Frank, S.; Bryce, M. R.; Perepichka, I. F.; Monkman, A. P.; Lyons, B. P., Org. Biomol. Chem. 2003, 1 (17), 3069. (b) Kinzel, T.; Zhang, Y.; Buchwald, S. L., J. AM. Chem. Soc 2010, 132, 14073-14075.
5. Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658-668.
6. Albert, J.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans, X., J. Organomet.

Chem. 2005, 690, 422-429.

SWNO\&1

