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Note 1: Calculation methods

Our first-principles calculations are performed based on density functional theory (DFT) [1] as 

implemented in the Vienna ab initio simulation package (VASP) [2]. The exchange-correlation 

interaction is described by generalized gradient approximation (GGA) [3] in the form of Perdew, 

Burke, and Ernzerhof (PBE) functional. All atoms and structures are fully optimized during structure 

relaxation with the convergence criteria of 10-6 eV and 0.01 eVÅ−1 for energy and force, respectively. 

The cutoff energy is set to 600 eV. Considering the strong correlations, the effective Hubbard Ueff = 

2.0 eV is introduced for d electrons of Co atom according to previous work [4]. A Monkhorst-Pack 

k-point mesh of 15 × 15 × 1 is used to sample the Brillouin zone. To avoid spurious interlayer 

interaction, a vacuum space of at least 20 Å is included. DFT-D3 method is adopted to describe the 

van der Waals interactions between individual layers [5]. The phonon dispersion is calculated using 

the PHONOPY code [6]. The ferroelectric polarization is evaluated using the Berry phase approach 

[7], and ferroelectric switching pathway is obtained by nudged elastic band (NEB) method [8]. We 

employ VASPBERRY to calculate the Berry curvature [9]. Anomalous Hall conductivity is 

calculated using the maximally localized Wannier functions (MLWFs) as implemented in 

WANNIER90 package [10].

Note 2: The low energy k·p model

This model only focuses on the energy near the K and K′ valleys of the conduction and valence 

bands around the Fermi level. As the corresponding bands are mainly contributed by the d orbitals of 

transition metal (TM) atoms, the basis functions are usually composed of a linear combination of 

them. Under C3v symmetry, the d orbitals of TM atom split into  and . 21( )zA d 2 2( , ; , )xy xz yzx yE d d d d

The bottom of the conduction band and the top of the valance band dominantly consist from the 

hybridization between  and  orbitals on the TM atom, involving with a inappreciable xzd yzd

contribution from the  and  states. To describe the conduction and valence bands, the 2 2x yd  xyd

linear combinations of  and  orbitals are chosen as basis functions, then, symmetry adapted xzd yzd

basis functions are chosen as: 
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Under the above basis functions, the Hamiltonian is a 2 × 2 matrix: 
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The expansion to second order approximation near K and K′ valleys is given as: 
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where superscript u denotes upper layer of the bilayer lattice, Δ is the band gap of single layer at the 

valleys, ε is a correction energy bound up with the Fermi energy,  is the effective nearest-neighbor 12t

intralayer hopping integral, , , and  are parameters related to the second-nearest-neighbor 11t '
12t '

22t '

intralayer hopping and  is the momentum vector. The index τ = +1 (-1) represents the K   Kq k

(K′) valley. 

The multiferroic bilayer lattice has A-type AFM coupling and FE bilayer stacking pattern. 

Considering SOC effect and exchange interaction of localized d electrons, the total Hamiltonian of 

the bilayer system for the case of 0° rotation is expressed as follows: 
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Here,  has the same form as . The SOC term can be written as a 2 × 2 matrix: 0 ( )lH k 0 ( )uH k
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where the index s = +1 (-1) represents spin-up (-down) state. 2  is defined as the spin splitting at ( )c v

the bottom of the conduction band (the top of the valance band) in single-layer lattice. The exchange 

interaction is given by: 
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where  represents the effective exchange splitting at the band edge of conduction band (valance ( )c vm



band) for single-layer lattice.  is the interlayer hopping term, which can be written as: H
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Note that the minor interlayer hopping between conduction band and valence band is neglected.  cct

and  are the interlayer hopping energies for the conduction and valence bands, respectively.vvt

 represents the effect of out-of-plane electric polarization, which is given by:PH
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I2 here is the 2 × 2 identity matrix. As a result, there is an energy shift of +U/2 for lower layer and the 

one of –U/2 for upper layer.

For the case of 180° rotation, the total Hamiltonian is expressed as follows: 
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Here,  is the complex conjugate of .  term is given by: 0 ( )uH k 0 ( )lH k H
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Note that other terms are invariable since the parameters describing intralayer effects are based on 

the single-layer lattice. 



Note 3: The schematic mechanism of LHE in multiferroic hexagonal lattice

Figure S1. Schematic diagrams of low-energy conduction band near the K and K′ valleys for (a) 

multiferroic hexagonal lattice with opposite magnetization orientations and (b) multiferroic bilayer 

lattice with 180° rotation under state-I (solid line in the top) and state-II (bold dashed line in the 

bottom). In (a, b), dark blue (brown) and light blue (orange) curves correspond to spin-down (up) 

bands from lower layer and upper layer, respectively. (c) Low-energy conduction bands around the 

K and K′ valleys and the schematic representations of the Berry curvature for state-I and state-II. Blue 

and red cones in (c) correspond to the spin-down bands from lower layer and spin-up bands from 

upper layer, respectively.



Note 4: Low-energy band dispersions around the K and K′ valleys obtained from the k·p model

Figure S2. Low-energy (a,b) conduction band and (c,d) valence band dispersions around the K and 

K′ valleys for the case of 0° rotation in (a,c) state-I and (b,d) state-II obtained from the k·p model. 

Upward-pointing (downward-pointing) triangles correspond to electronic states from lower (upper) 

layer.



Figure S3. Low-energy (a,b) conduction band and (c,d) valence band dispersions around the K and 

K′ valleys for the case of 180° rotation in (a,c) state-I and (b,d) state-II obtained from the k·p model. 

Upward-pointing (downward-pointing) triangles correspond to electronic states from lower (upper) 

layer.



Note 5: Phonon spectra

Figure S4. Phonon spectra of (a) single-layer Co2CF2, and -P phase of (b) AC and (c) AB′ patterns 

of bilayer Co2CF2.

Note 6: Electronic properties of single-layer Co2CF2

Figure S5. Spin-resolved band structures of single-layer Co2CF2 (a) without SOC; (b) and (c) with 

SOC for magnetic moment of Co along the positive and negative z direction (out of plane), 

respectively. (d) Orbital-resolved band structures of single-layer Co2CF2. The Fermi level is set to 0 

eV.



Note 7: Stacking patterns and calculation details of bilayer Co2CF2.

Figure S6. Crystal structures for different stacking patterns of bilayer Co2CF2.

Figure S7. Stacking energies under the magnetic ground state with respect to the -P phase of AC 

pattern. The circular symbols represent the -P phases, and the triangular symbols represent the 

antiferroelectric stacking. 

Table S1. Lattice constant (Å), interlayer distance (Å), energy difference between FM and AFM 

coupling (meV), band gap (eV), valley polarization (meV), electric polarization (pC m-1) and FE 

switching barriers (eV/f.u.) for the -/+ P phase of AC/AB and AB′/AC′ patterns in the 0° and 180° 

rotation cases, respectively. 



a d EFM-EAFM Gap ΔEc Polarization Barrier

0° rotation 2.85 2.46 0.10 0.131 58.9/-58.9 -15.12/15.12 0.144

180° rotation 2.85 2.43 0.11 0.128 59.4/59.4 -15.03/15.03 0.142



Note 8: Electronic properties for -P phase of AB′ pattern and +P phase of AC′ pattern

Figure S8. Crystal structures of bilayer Co2CF2 for (a) -P phase of AB′ pattern and (d) +P phase of 

AC′ pattern. Layer-resolved and spin-resolved band structures of bilayer Co2CF2 for (b, c) -P phase 

of AB′ pattern and (e, f) +P phase of AC′ pattern. The Fermi level is set to 0 eV. 

Figure S8 displays the corresponding results for -P phase of AB′ pattern and +P phase of AC′ 

pattern, which exhibit an indirect band gap of 0.128 eV. Similar to the case of AC and AB patterns, 

AB′ and AC′ patterns also have a pair of valleys in the conduction band. However, because of the 

180° rotation operation on one layer, the valley index is exchanged. In this regard, the CBM of -P 

and +P phases are both located at the K point and the spontaneous valley polarization are found to be 

ΔEc = 59.4 meV, as shown in Figure S8(c, f). For -P phase of AB′ pattern and +P phase of AC′ 

pattern, the CBM is from spin-down channel of lower layer and spin-up channel of upper layer, 

respectively (Figure S8). Therefore, similar to AC and AB patterns, the layer degree of freedom is 

also coupled with the band edge, spin and valley physics for AB′ and AC′ patterns.



Note 9: Comparison of low-energy band dispersions from DFT and k·p model for bilayer Co2CF2

Figure S9. Comparison of enlarged low-energy band dispersions around the K and K′ valleys from 

the k·p model (open triangles) and the corresponding results from first-principles calculations (solid 

lines). Conduction band for -P phase of (a) AC and (c) AB′ patterns, and +P phase of (b) AB and (d) 

AC′ patterns of bilayer Co2CF2.

Table S2. The low energy k·p model parameters obtained by fitting to first-principles calculations. 

The parameters describing intralayer effects are obtained from the single-layer band structures 

directly. All of the parameters are in units of eV. 

Δ є t11′ t12 t12′ t22′ λc λv mc mv tcc / tcc′ tvv / tvv′ |U |/|U′ |

1.95 0.278 0.006 0.525 0.076 0.031 0.029 0.021 0.871 0.29 0.147/0.16 0.01/0.007 0.619/0.613



Note 10: The feasibility of realizing and manipulating LP-AHE.

Figure S10. Anomalous Hall conductance for -P phase of (a) AC and (b) AB′ patterns of bilayer 

Co2CF2. 

Figure S11. Energy barriers of FE switching from (a) -P phase of AC pattern to +P phase of AB 

pattern and (c) -P phase of AB′ pattern to +P phase of AC′ pattern. Variation of out-of-plane electric 

polarization of bilayer Co2CF2 under FE switching from (b) -P phase of AC pattern to +P phase of 

AB pattern and (d) -P phase of AB′ pattern to +P phase of AC′ pattern.
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