Supporting Information for: # Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics G. Dinesha M. R. Dabera ^{‡§}, K. D. G. Imalka Jayawardena ^{‡§}, M. R. Ranga Prabhath [§], Iskandar Yahya [§], Y. Yuan Tan [§], N. Aamina Nismy [§], Hidetsugu Shiozawa ^¹, Markus Sauer ^¹, G. Ruiz-Soria ^¹, Paola Ayala ^¹, Vlad Stolojan [§], A. A. Damitha T. Adikaari ^{§†}, Peter D. Jarowski [§], Thomas Pichler ^¹, S. Ravi P. Silva ^{§*} § Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom [Elektronische Materialeigenschaften, Fakultätfür Physik, Universität Wien, Strudlhofgasse, 4, 1090, Wien, Austria E-mail: s.silva@surrey.ac.uk **Figure S1.** A magnified AFM phase image of a ~0.5 mg ml⁻¹ solution spin coated on ITO/Glass at a spin speed of 1500 rpm. The scan area is 973nm x 973 nm. The image displays the well percolated and dispersed networks of nanohybrids on substrates. **Figure S2.** The response of the "hole only" nanohybrid incorporated device under dark condition and upon illumination with AM 1.5G simulated light. The observed merging of light and dark characteristics at ~ 0.5 V indicates the built in potential of the system to be at this value. ## Fabrication of hole only devices for hole mobility calculations To calculate the hole mobility of OPV devices incorporating nanohybrids and PEDOT:PSS as the hole transport layer (HTL), devices were fabricated using the following procedure. Nanohybrids incorporated device: A portion of rr-P3HT/s-SWNT solution (~0.02 mg ml⁻¹) was spin coated on cleaned ITO coated glass (as given under methods section) at a speed of 1500 rpm for 1 minute and was annealed at a temperature of 120°C for 10 minutes. The active layer consisting of PTB7/PC₇₀BM was spin coated at 1000 rpm for 2 mins on top of the rr-P3HT/s-SWNT film where the active layer thickness is 100 nm. **PEDOT:PSS incorporated device:** A diluted solution of PEDOT:PSS was spin coated on cleaned ITO coated glass (same cleaning procedure as above) at a speed of 5000 rpm for 40seconds to obtain a thickness of 4 nm and was annealed at a temperature of 155°C for 10 minutes. The active layer consisting of PTB7/PC70BM was spin coated at 1000 rpm for 2 mins on top of the PEDOT:PSS film where the active layer thickness is 100nm. PTB7/PC7₀BM active layer: A mass of 10.00 mg of PTB7 (1-material Chemscitech Inc.) and 15.00 mg of PC70BM (99% pure; Solenne) were added to 1.0 ml of chlorobenzene/1,8-diiodooctane (97:3 vol%) and the solution was stirred overnight at 70°C after which filtering of the solution was carried out using a 0.2 μm filter. Afetr slow drying of the active layers in a glove box (MBRAUN), the devices were transferred to a thermal evapourator outside glove box where 10 nm of MoO_x was deposited through thermal evapouration at a rate of ~ 0.2 Å s⁻¹. The devices were then transferred to a thermal evaporator inside the glove box where 80 nm of Al (80 nm) was then thermally evaporated under vacuum of $< 3x10^{-6}$ mbar yielding a device with area 54 mm². Current density – Voltage (J-V) measurements were performed using a Keithley 2400 at room temperature. ## Hole mobility calculations based on SCLC model Field independent Mott-Gurney equation:¹ $$J = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu \frac{(V - V_{bi})^2}{L^3}$$ Was used to calculate the hole mobilities of the devices where, J is the current density, ε_0 is the permittivity of free space, ε_r is the relative permittivity of the organic layer (considered as 3), V is the applied potential, V_{bi} is the built in potential, L is the thickness of the device and μ is the hole mobility. V_{bi} was calculated considering the intersection point of the dark and light current-voltage curves of hole only devices. The μ value of both types of devices were estimated based on the linear region of figure. S3 where J is proportional to $(V-V_{bi})^2$ (space charge limited region). **Figure S3.** J – (V-V_{bi}) characteristics of nanohybrids and PEDOT:PSS incorporated hole only devices for SCLC analysis. ## References 1. Blom, P. W. M.; de Jong, M. J. M.; Vleggaar, J. J. M. Electron and hole transport in poly(p-phenylene vinylene) devices. *Appl Phys Lett* **1996**, *68*, 3308-3310.